
On Decidable Verification of Non-terminating Golog Programs
Jens Claßen, Martin Liebenberg and Gerhard Lakemeyer

Dept. of Computer Science
RWTH Aachen University

52056 Aachen
Germany

{classen,liebenberg,gerhard}@kbsg.rwth-aachen.de

Abstract

The high-level action programming language
GOLOG has proven to be a useful means for
the control of autonomous agents such as mobile
robots. Usually, such agents perform open-ended
tasks, and their control programs are hence non-
terminating. Before deploying such a program to
the robot, it is often desirable if not crucial to ver-
ify that it meets certain requirements, preferably
by means of an automated method. For this pur-
pose, Claßen and Lakemeyer recently introduced
algorithms for the verification of temporal proper-
ties of non-terminating GOLOG programs, based
on the first-order modal Situation Calculus vari-
ant ES, and regression-based reasoning. However,
while GOLOG’s high expressiveness is a desirable
feature, it also means that their verification proce-
dures cannot be guaranteed to terminate in gen-
eral. In this paper, we address this problem by
showing that, for a relevant subset, the verification
of non-terminating GOLOG programs is indeed de-
cidable, which is achieved by means of three re-
strictions. First, we use the ES variant of a de-
cidable two-variable fragment of the Situation Cal-
culus that was introduced by Gu and Soutchanski.
Second, we have to restrict the GOLOG program to
contain ground action only. Finally, we consider
special classes of successor state axioms, namely
the context-free ones and those that only admit lo-
cal effects.

1 Introduction
The GOLOG [De Giacomo et al., 2000; Levesque et al.,
1997] family of high-level action programming languages
and its underlying logic, the Situation Calculus [McCarthy
and Hayes, 1969; Reiter, 2001], have proven to be useful
means for the control of autonomous agents such as mobile
robots [Burgard et al., 1999]. Usually, the task of such an
agent is open-ended, i.e. there is no predefined goal or termi-
nal state that the agent tries to reach, but (at least ideally) the
robot works indefinitely, and its corresponding control pro-
gram is hence non-terminating.

As a simple example, consider a mobile robot whose task
it is to remove dirty dishes from certain locations in an office
on request. A program for this robot might look like this:

loop : while (∃x.OnRobot(x)) do
πx.unload(x)

endWhile;
πy.goToRoom(y);
while (∃x.DirtyDish(x, y)) do

πx.load(x, y)
endWhile;
goToKitchen

We assume that the robot is initially in the kitchen, its home
base. There is an infinite loop, where during each iteration the
robot first unloads all dishes it carries, then selects a room in
the office building, goes to this room, loads all dirty dishes in
this room, and returns to the kitchen. Here, DirtyDish(x, y)
should be read as “dirty dish x is in room y” and load(x, y) as
“load dish x in room y.” During the execution of the program,
people can send requests indicating that there is a dirty dish
in a certain room (not shown here).

Before actually deploying such a program on the robot and
executing it in the real world, it is often desirable if not cru-
cial to verify that it meets certain requirements such as safety,
liveness and fairness properties, for example that “every re-
quest will eventually be served by the robot” or whether “it
is possible that no request is ever served.” Moreover, the
verification is preferably done using an automated method,
since manual, meta-theoretic proofs such as done in [De Gi-
acomo et al., 1997] tend to be tedious and prone to errors.
For this purpose, Claßen and Lakemeyer [2008] recently pro-
posed the logic ESG, an extension of the modal Situation Cal-
culus variant ES [Lakemeyer and Levesque, 2010] by con-
structs that allow to express temporal properties of GOLOG
programs. They moreover provided algorithms for the verifi-
cation of a subset of the logic that resembles the branching-
time temporal logic CTL. Their methods rely on regression-
based reasoning and a newly introduced graph representation
of GOLOG programs to do a systematic exploration of a pro-
gram’s configuration space within a fixpoint approximation
loop. While the procedures are proven to be sound, no gen-
eral guarantee can be given for termination.

There are two reasons for this. On the one hand, to de-
tect the convergence of the fixpoint loop, the algorithm has
to check the equivalence of formulas that encode reachable

program configurations. Since these may be arbitrary first-
order formulas, this already amounts to an undecidable prob-
lem. Furthermore, even if all equivalence checks can be per-
formed in finite time (or if we assume a first-order oracle), the
fixpoint computation may never converge.

A straight-forward approach to remedy this problem is to
restrict the input language such that verification becomes de-
cidable, as done for instance by Baader, Liu and ul Mehdi
[2010]. Instead of using the full first-order expressiveness of
the Situation Calculus or ES, they resort to a dynamic exten-
sion [Baader et al., 2005] of the decidable description logic
ALC [Baader et al., 2003] to represent pre- and postcondi-
tions of actions, where properties are expressed by a variant
of LTL over ALC assertions [Baader et al., 2008]. Second,
they encode programs by finite Büchi automata instead of the
fully-fledged GOLOG language. They could show that under
these restrictions, verification reduces to a decidable reason-
ing task within the underlying description logic.

Although this is a step in the right direction, it requires
harsh restrictions in terms of expressiveness. In particular,
representing programs through Büchi automata loses one im-
portant feature of GOLOG, namely the possibility to include
test conditions in the form of formulas. Moreover, represent-
ing action effects withinALC only allows for basic STRIPS-
style addition and deletion of literals. While decidability can
obviously not be achieved without any restrictions on the in-
put languages, the high, first-order expressiveness of the Situ-
ation Calculus and GOLOG is typically considered a desirable
feature and the reason why these languages were chosen in
the first place, and one would rather give up as little as possi-
ble of it. Ideally, we could do the verification within the very
same expressive formalism and with the same reasoning tools
that are used for the actual control of the agent.

In this paper, we show that this is indeed possible for a rele-
vant subset of the formalism. In order to achieve decidability
for first-order equivalence checks, we rely on results by Gu
and Soutchanski [Gu and Soutchanski, 2010] who presented
a modified version of the Situation Calculus built using a two-
variable fragment of first-order logic and a variant of Reiter’s
regression operator such that the reasoning task of projection
becomes decidable. Since (as we will see later) this is in it-
self not sufficient to guarantee the termination of the over-
all verification method, we moreover consider special classes
of successor state axioms from the literature to be used in
the agent’s basic action theory, namely the context-free [Lin
and Reiter, 1997] ones as well as those that only admit lo-
cal effects [Liu and Levesque, 2005], and prove that under
these prerequisites, a termination guarantee can be given for
the verification methods if we restrict the GOLOG program
to contain ground actions only. Note that our restrictions al-
low us to retain a great deal of (first-order) expressiveness,
including test conditions in programs and conditional action
effects.

The remainder of this paper is organized as follows. In the
following section, we briefly recapitulate the logic ESG. Sec-
tion 3 then presents the verification procedures we consider.
In Section 4, we present a decidable subset of ES that is sim-
ilar to Gu and Soutchanski’s two-variable Situation Calculus
fragment. Sections 6 and 5 contain the main results of this

paper, namely the decidability of the verification methods for
the above mentioned classes of basic action theories. Section
7 reviews related work before we conclude in Section 8.

2 The Logic ESG
2.1 Syntax
The language is a first-order modal dialect with equality and
sorts of type object and action. It includes countably in-
finitely many standard names for each sort. Also included are
both fluent and rigid predicate and function symbols. Fluents
vary as the result of actions, but rigids do not. We assume that
the fluents include unary predicates Poss and Exo, whose ar-
gument is of type action and which will be used to specify
when an action is executable or exogenous, respectively.

The logical connectives are ∧, ¬, ∀, together with these
modal operators: X, U, [δ], and [[δ]], where δ is a program as
defined below. Other connectives like ∨, ⊃, ⊂, ≡, and ∃ are
used as the usual abbreviations.

Program constructs are logical (built-in) symbols with a
fixed meaning. The programs we consider are the ones ad-
mitted by the following grammar:

δ ::= t | α? | δ1; δ2 | δ1|δ2 | πx.δ | δ1||δ2 | δ∗ (1)

That is we allow primitive actions t (where t can be any ac-
tion term), tests α? (where α is a static situation formula as
defined below), sequence, nondeterministic branching, non-
deterministic choice of argument, concurrency, and nondeter-
ministic iteration. Moreover, conditionals and loops can be
defined in terms of the above constructs:

if φ then δ1 else δ2 endIf def= [φ?; δ1] | [¬φ?; δ2] (2)

while φ do δ endWhile def= [φ?; δ]
∗
;¬φ? (3)

The infinite loop, also abbreviated as δω , is further given by:

loop δ endLoop def
= while > do δ endWhile (4)

Formulas come in two different “flavours”, as given by the
following definitions:

Definition 1 (Situation Formulas). The situation formulas are
the least set such that

• if t1, . . . , tk are terms and P is a (fluent or rigid) k-ary
predicate symbol, then P (t1, . . . , tk) is a situation for-
mula;

• if t1 and t2 are terms, then (t1 = t2) is a situation for-
mula;

• if α and β are situation formulas, x is a variable, P is a
(fluent or rigid) predicate symbol, δ is a program, and φ
is a trace formula (defined below), then α∧β, ¬α, ∀x.α,
∀P.α, �α, [δ]α (“α holds after executing δ”), and [[δ]]φ
(“temporal property φ holds for all executions of δ”) are
situation formulas.

Situation formulas, roughly, express properties wrt a given
situation and possibly future situations, that is, the formu-
las may include references to future situations by means of
[·], �, or [[·]]. Moreover, let 〈δ〉α = ¬[δ]¬α and 〈〈δ〉〉ϕ =

¬[[δ]]¬ϕ. A situation formula α is called fluent when it con-
tains no [·], no �, and no [[·]] operators, nor any of the special
fluents Poss and Exo. It is called static when it contains no
[·], no � and no [[·]] operators. It is bounded when it con-
tains no � operators, no [[·]] operators, and [t] operators only
in case the argument is an action term t.
Definition 2 (Trace Formulas). The trace formulas are the
least set such that
• if α is a situation formula, then it is also a trace formula;
• if φ and ψ are trace formulas and x is a variable, then φ∧
ψ, ¬φ, ∀x.φ, Xφ (“φ holds in the next situation”), and
φ U ψ (“φ holds until ψ holds”) are also trace formulas.

Trace formulas, as the name suggests, are used to talk about
traces of situations, i.e. finite or infinite sequences of actions.
We will use them for representing the temporal properties of
program execution traces. In addition to the usual abbrevi-
ations, we also have Fφ = (> U φ) (“eventually φ”) and
Gφ = ¬F¬φ (“always φ”).

2.2 Semantics
Terms and formulas are interpreted with respect to worlds:
Definition 3 (Worlds). LetPO andPA denote the set of prim-
itive terms of sort object, and action, respectively, where a
primitive term is of the form f(n1, . . . , nk), where all the ni
are standard names. Similarly, let PF be the set of all prim-
itive formulas F (n1, . . . , nk). Moreover, let NO and NA be
the sets of all standard names of sort object and action, re-
spectively,N = NO ∪NA, and Z = NA∗ the set of all finite
sequences of action names. A world w then is a mapping
• w : PO ×Z → NO and
• w : PA ×Z → NA and
• w : PF ×Z → {0, 1}

satisfying the following constraints:
Rigidity: If R is a rigid function or predicate symbol,

then for all z, z′ ∈ Z , w[R(n1, . . . , nk), z] =
w[R(n1, . . . , nk), z′].

Unique names for actions: If g(~n) and g′(~n′) are two dis-
tinct primitive action terms, then for all z ∈ Z ,
w[g(~n), z] 6= w[g′(~n′), z].

LetW denote the set of all worlds.
A world thus maps primitive terms to co-referring standard
names of the corresponding sort, and primitive formulas to
truth values. The rigidity constraint ensures that rigid sym-
bols do not take different values in different situations, as ex-
pected. We further incorporate the unique names assumption
for actions into our logic’s semantics, as opposed to the Situ-
ation Calculus where this is typically asserted axiomatically.
Definition 4 (Denotation of Terms). Given a ground term t, a
world w, and an action sequence z ∈ Z , we define |t|zw (read:
“the co-referring standard name for t given w and z”) by:

1. If t ∈ N , then |t|zw = t;
2. if t = f(t1, . . . , tk), then |t|zw = w[f(n1, . . . , nk), z],

where ni = |ti|zw.

To interpret programs, we need the notion of program con-
figurations. A configuration 〈z, δ〉 consists of an action se-
quence z and a program δ, where intuitively z is the history
of actions that have already been performed, while δ is the
program that remains to be executed. Then we define the
possible transitions and finality of programs as follows:
Definition 5 (Program Transition Semantics). The transition
relation w−→ among configurations, given a world w, is the
least set satisfying

1. 〈z, t〉 w−→ 〈z · p,>?〉, if p = |t|zw;

2. 〈z, δ1; δ2〉
w−→ 〈z · p, γ; δ2〉, if 〈z, δ1〉

w−→ 〈z · p, γ〉;

3. 〈z, δ1; δ2〉
w−→ 〈z · p, δ′〉,

if 〈z, δ1〉 ∈ Fw and 〈z, δ2〉
w−→ 〈z · p, δ′〉;

4. 〈z, δ1|δ2〉
w−→ 〈z · p, δ′〉,

if 〈z, δ1〉
w−→ 〈z · p, δ′〉 or 〈z, δ2〉

w−→ 〈z · p, δ′〉;

5. 〈z, πx.δ〉 w−→ 〈z · p, δ′〉,
if 〈z, δxn〉

w−→ 〈z · p, δ′〉 for some n ∈ Nx;

6. 〈z, δ∗〉 w−→ 〈z · p, γ; δ∗〉, if 〈z, δ〉 w−→ 〈z · p, γ〉;

7. 〈z, δ1||δ2〉
w−→ 〈z · p, δ′||δ2〉, if 〈z, δ1〉

w−→ 〈z · p, δ′〉;

8. 〈z, δ1||δ2〉
w−→ 〈z · p, δ1||δ′〉, if 〈z, δ2〉

w−→ 〈z · p, δ′〉.
Above, Nx means the set of all standard names of the same
sort as x, and δxn refers to δ with x replaced by n.

The set of final configurations Fw of a world w is the
smallest set such that

1. 〈z, α?〉 ∈ Fw if w, z |= α;
2. 〈z, δ1; δ2〉 ∈ Fw if 〈z, δ1〉 ∈ Fw and 〈z, δ2〉 ∈ Fw;
3. 〈z, δ1|δ2〉 ∈ Fw if 〈z, δ1〉 ∈ Fw or 〈z, δ2〉 ∈ Fw;
4. 〈z, πx.δ〉 ∈ Fw if 〈z, δxn〉 ∈ Fw for some n ∈ Nx;
5. 〈z, δ∗〉 ∈ Fw;
6. 〈z, δ1||δ2〉 ∈ Fw if 〈z, δ1〉 ∈ Fw and 〈z, δ2〉 ∈ Fw.

Temporal properties that we express by situation formulas re-
fer to traces, as defined below.
Definition 6 (Traces). A trace is a possibly infinite sequence
of action standard names. As a notational convention, we use
τ to denote arbitrary traces, z for finite ones and π for infinite
ones. Let Π = NAω be the set of all infinite traces, and
T = Z ∪ Π the set of all traces. Furthermore, let π(i) stand
for the finite sequence that consists of the first i elements of
π, where π(0) is the empty sequence 〈〉.
We can now define the traces admitted by a given program:

Definition 7 (Traces of Programs). Let w−→∗ denote the re-
flexive and transitive closure of w−→. Given a world w and a
finite sequence of action standard names z, the set of traces
||δ||zw of a program δ is the set

{z′ ∈ Z | 〈z, δ〉 w−→∗〈z · z′, δ′〉, 〈z · z′, δ′〉 ∈ Fw} ∪
{π ∈ Π | 〈z, δ〉 w−→ 〈z · π(1), δ1〉

w−→ 〈z · π(2), δ2〉
w−→ · · ·

where for all i ≥ 0, 〈z · π(i), δi〉 6∈ Fw}

In words, the finite traces admitted by some δ given w and z
are those that correspond to a finite number of transitions by
means of which a final configuration is reachable. Its infinite
traces are given by all infinite sequences of transitions that
never visit any final configuration.

Situation and Trace Formulas
We are now equipped to define the truth of formulas:
Definition 8 (Truth of Situation and Trace Formulas). Given
a world w ∈ W and a situation formula α, we define w |= α
as w, 〈〉 |= α, where for any z ∈ Z:

1. w, z |= F (t1, . . . , tk) iff w[F (n1, . . . , nk), z] = 1,
where ni = |ti|zw;

2. w, z |= (t1 = t2) iff n1 and n2 are identical, where
ni = |ti|zw;

3. w, z |= α ∧ β iff w, z |= α and w, z |= β;
4. w, z |= ¬α iff w, z 6|= α;
5. w, z |= ∀x.α iff w, z |= αxn for all n ∈ Nx;
6. w, z |= �α iff w, z · z′ |= α for all z′ ∈ Z;
7. w, z |= [δ]α iff for all finite z′ ∈ ||δ||zw, w, z · z′ |= α;
8. w, z |= [[δ]]φ iff for all τ ∈ ||δ||zw, w, z, τ |= φ.

The truth of trace formulas φ is defined as follows forw ∈ W ,
z ∈ Z , and traces τ ∈ T :

1. w, z, τ |= α iff w, z |= α, if α is a situation formula;
2. w, z, τ |= φ ∧ ψ iff w, z, τ |= φ and w, z, τ |= ψ;
3. w, z, τ |= ¬φ iff w, z, τ 6|= φ;
4. w, z, τ |= ∀x.φ iff w, z, τ |= φxn for all n ∈ Nx;
5. w, z, τ |= Xφ iff τ = p · τ ′ and w, z · p, τ ′ |= φ;
6. w, z, τ |= φ U ψ iff there is z′ such that τ = z′ · τ ′

and w, z · z′, τ ′ |= ψ and for all z′′ 6= z′ with z′ =
z′′ · z′′′, w, z · z′′, z′′′ · τ ′ |= φ.

2.3 Basic Action Theories and Regression
Definition 9. A basic action theory (BAT) Σ = Σ0 ∪ Σpre ∪
Σpost ∪ Σexo describes the dynamics of a specific application
domain, where

1. Σ0, the initial database, is a finite set of fluent sentences
describing the initial state of the world.

2. Σpre is a precondition axiom of the form �Poss(a) ≡ π,
with π being a fluent formula, whose only free variable
is a, describing precisely the conditions under which a
is a possible action.

3. Σpost is a finite set of successor state axioms (SSAs), one
for each fluent relevant to the application domain, in-
corporating Reiter’s [Reiter, 2001] solution to the frame
problem, and encoding the effects the actions have on
the different fluents. The SSA for a fluent predicate has
the form �[a]F (~x) ≡ γ+F ∨ F (~x) ∧ ¬γ−F , whereas the
one for a functional fluent is of the form �[a]f(~x) =

y ≡ γ+f ∨ (f(~x) = y) ∧ ¬∃y′γ+f
y

y′
, where γ+F and γ−F

are fluent formulas with free variables ~x, and γ+f one
with free variables among ~x and y.

4. Σexo is the exogenous actions axiom, having the form
�Exo(a) ≡ χ, where χ is again a fluent formula with
the free variable a. It is used to express the necessary
and sufficient conditions under which an action is exoge-
nous, i.e. not controlled by the agent, but by “nature”.

Our algorithm relies on the equivalent of Reiter’s regression
operator R[α]. Roughly, the idea is that, whenever we en-
counter a subformula of the form [t]F (~x) within α, where t is
an action term, we may substitute it by the right-hand side of
the successor state axiom of the fluent F . This is sound in the
sense that the axiom defines the two expressions to be equiv-
alent. The result of the substitution will be true in exactly
the same worlds satisfying the action theory Σ as the origi-
nal one, but contains one less modal operator [t]. Similarly,
Poss(t) and Exo(t) are replaced by the right-hand sides of
the corresponding axiom. By iteratively applying such sub-
stitutions, we eventually get a fluent formula that describes
exactly the conditions on the initial situation under which the
original, non-static formula holds:

Theorem 10. Let Σ be a BAT and α a bounded sentence.
ThenR[α], the regression of α, is a fluent sentence and
Σ |= α iff Σ0 |= R[α].

3 Verification in ESG
We encode the space of reachable program configurations by
a characteristic graph Gδ = 〈v0, V, E〉 for a given program
δ. The nodes V in such a graph are of the form 〈δ′, φ〉, de-
noting the remaining program of a current run and the con-
dition under which execution may terminate there. v0 is the
initial node. Edges in E are labeled with tuples π~x : t/ψ,
where ~x is a list of variables (if it is empty, we omit the lead-
ing π), t is an action term and ψ is a formula (which we
omit when it is >). Intuitively, this means when one wants
to take action t, one has to choose instantiations for the ~x
and ψ must hold. Due to lack of space, we omit the for-
mal definition of characteristic graphs and refer the interested
reader to [Claßen and Lakemeyer, 2008]. Figure 1 shows the
graph corresponding to δrobot ||δexo, where δrobot denotes the
control program presented in the introduction and δexo is the
encoding of exogenous actions. Here it consists simply of
the requestDDR(x, y), which should be read as “requesting
the removal of dirty dish x from room y.” The nodes are
v0 = 〈δrobot ||δexo,⊥〉 and v1 = 〈(δ1; δrobot)||δexo,⊥〉, where
δ1 is the program

(πx.DirtyDish(x, y)?; load(x, y))∗;

¬∃x.DirtyDish(x, y)?; goToKitchen.

The verification algorithms work on labels of the charac-
teristic graph, where a label is given by 〈v, ψ〉 with v ∈ V
and ψ being a fluent formula. Intuitively, it represents all pro-
gram configurations corresponding to v as well as all worlds
w and action name sequences z satisfying ψ. A labelling is
then given by a set of labels, one for each node of the graph.
We need the following operations on labellings, as formal-
ized below: Initial labelling with a formula, conjunction and
disjunction of labellings, extraction of the label formula from

v0 v1

[πx, y : requestDDR(x, y)]

πx : unload(x)/
(∃x.OnRobot(x))

[πx, y : requestDDR(x, y)]

πx : load(x, y)/
(∃x.DirtyDish(x, y))

πy : goToRoom(y)/
(¬∃x.OnRobot(x))

goToKitchen/
(¬∃x.DirtyDish(x, y))

Figure 1: Characteristic graph for the robot example

the initial node, and the pre-image of a labelling:

LABEL[〈V,E, v0〉, α]
def
= {〈v, α〉 | v ∈ V }

L1 AND L2
def
= {〈v, ψ1 ∧ ψ2〉 | 〈v, ψ1〉 ∈ L1, 〈v, ψ2〉 ∈ L2}

L1 OR L2
def
= {〈v, ψ1 ∨ ψ2〉 | 〈v, ψ1〉 ∈ L1, 〈v, ψ2〉 ∈ L2}

INITLABEL[〈V,E, v0〉, L]
def
= ψ such that 〈v0, ψ〉 ∈ L

PRE[〈V,E, v0〉, L]
def
= {〈v, PRE[v, L]〉 | v ∈ V }

where

PRE[v, L]
def
=∨

{R[∃~x.φ ∧ [t]ψ] | v π~x:t/φ−−−−→ v′ ∈ E, 〈v′, ψ〉 ∈ L}.

Roughly, the pre-image of a label gives us a description of
the predecessor configuration of that label. (Note the use of
regression to eliminate the action term t.)

The verification algorithm works on a CTL-like fragment
of ESG:

ϕ ::= (t1 = t2) | F (~t) | ϕ ∧ ϕ | ¬ϕ | ∃x.ϕ |
〈〈δ〉〉Gϕ | 〈〈δ〉〉ϕ U ϕ

(5)

where we assume that δ is a non-terminating program of the
form δ1

ω|| · · · ||δkω . The algorithm then applies the following
transformation.

Definition 11. Let Σ be a BAT and ϕ a formula according to
(5). Then C[ϕ], the verification transformation of ϕ wrt Σ, is
inductively defined by

1. C[(t1 = t2)] = (t1 = t2);

2. C[F (~t)] = F (~t);

3. C[ϕ1 ∧ ϕ2] = C[ϕ1] ∧ C[ϕ2];

4. C[¬ϕ] = ¬C[ϕ];

5. C[∃x.ϕ] = ∃x.C[ϕ];

6. C[〈〈δ〉〉Gϕ] = CHECKEG[δ, C[ϕ]];

7. C[〈〈δ〉〉ϕ U ψ] = CHECKEU[δ, C[ϕ], C[ψ]].

The procedure for the case of the “always” operator G is as
follows:

Procedure 1 CHECKEG[δ, ϕ]

1: L′ := LABEL[Gδ,⊥];
2: L := LABEL[Gδ, ϕ];
3: while L 6≡ L′ do
4: L′ := L;
5: L := L′ AND PRE[Gδ, L′];
6: end while
7: return INITLABEL[Gδ, L]

The while loop is exited once L ≡ L′ holds, defined as fol-
lows:

L1 ≡ L2 iff for all v with 〈v, ψ1〉 ∈ L1 and 〈v, ψ2〉 ∈ L2,

|= ψ1 ≡ ψ2.

A similar procedure is used for the “until” operator U :

Procedure 2 CHECKEU[δ, ϕ1, ϕ2]

1: L′ := LABEL[Gδ,⊥];
2: L := LABEL[Gδ,>];
3: while L 6≡ L′ do
4: L′ := L;
5: L := L′ AND PRE[Gδ, L′];
6: end while
7: L′ := LABEL[Gδ,>];
8: L := LABEL[Gδ, ϕ2] AND L;
9: while L 6≡ L′ do

10: L′ := L;
11: L := L′ OR (LABEL[Gδ, ϕ1] AND PRE[Gδ, L′]);
12: end while
13: return INITLABEL[G, L]

The algorithm is sound in the following sense:

Theorem 12 ([Claßen and Lakemeyer, 2008]). Let Σ be a
BAT, δ a program and ϕ a fluent sentence. Then if the com-
putation of C[ϕ] terminates, it is a fluent sentence and
Σ |= ϕ iff Σ0 |= C[ϕ].

4 Decidability
The algorithms presented in the previous section cannot be
guaranteed to terminate for two reasons. On the one hand,
equivalence checks over first-order formulas as applied in the
conditions of the while loops are in general undecidable. On
the other hand, even if all equivalence checks terminate, the
fixpoint approximation loops may never converge.

As for the first source of non-termination, we can exploit
results by Gu and Soutchanski [2010] who present a two-
variable fragment of the Situation Calculus for which the pro-
jection problem (solved by means of regression) is decidable.
Here we capture this fragment as a subset of the situation for-
mulas of ESG. We refer to this sublanguage as ES2.

Definition 13. ES2 is the subset of situation formulas accord-
ing to Definition 1 that do not contain any [[·]] operators and
where [t] operators are restricted to action terms t. In addition
the following constraints are satisfied:

• there are no object terms other than the variables x and
y or rigid constant symbols;

• all action function symbols have at most two arguments;

• fluents have at most two arguments.

In ES2 a regressable formula has to be bounded and its action
terms have to be ground. Furthermore, the regression opera-
torR is modified such that by means of appropriate substitu-
tions, no new variable is introduced in the process of regres-
sion. For details, the interested reader is referred to Gu and
Soutchanski’s article [2010]. We then have that projection is
decidable in ES2:

Theorem 14. Let α be a regressable sentence of ES2 with-
out standard names and Σ a BAT in ES2. Then Σ |= α is
decidable.

Proof. (Sketch) The proof idea for this theorem is to map
ES2 to the decidable fragment LDLSC introduced by Gu and
Soutchanski. We use a similar reduction as Lakemeyer and
Levesque [2010] who embed ES in the original Situation Cal-
culus. Thus, because LDLSC is decidable, ES2 is decidable
too.

Resorting to a decidable base logic is unfortunately not suffi-
cient to also eliminate the second source of non-termination
of the verification algorithms. To see why, consider a simple
BAT with the single fluent F whose successor state axiom is
�[a]F (x) ≡ ∃y.F (y) ∧ S(x, y) (where S is rigid). Let δ be
the program loop : t for some ground action t and 〈〈δ〉〉GF (c)
the sentence to verify, for some constant c. The characteristic
graph of δ has only one node v0 and one edge from v0 to v0
with the label t. Applying Procedure 1, we get the following
label sets L in subsequent iterations:

L0 = {〈v0, F (c)〉},
L1 = {〈v0, F (c) ∧ ∃y.F (y) ∧ S(c, y)〉},
L2 = {〈v0, F (c) ∧ [∃y.F (y) ∧ S(c, y)] ∧

∃y.∃x.F (x) ∧ S(y, x) ∧ S(c, y)〉},
L3 = {〈v0, F (c) ∧ [∃y.F (y) ∧ S(c, y)] ∧

∃y.∃x.F (x) ∧ S(y, x) ∧ S(c, y)

∃y.∃x.[∃y.F (y) ∧ S(x, y)] ∧ S(y, x) ∧ S(c, y)〉},
. . .

Obviously, none of the formulas in this sequence is equivalent
to its predecessor, and hence the algorithm never converges.
Note also that we remain within ES2 due to re-using the two
variable symbols x and y.

5 Decidability with context-free BATs
The first possibility is to restrict oneself to BATs with context-
free SSAs:

Definition 15 (Context-free Successor State Axioms [Lin and
Reiter, 1997]). A successor state axiom is context-free if its
effect conditions, γ+F (~x, a) and γ−F (~x, a), contain no fluents
(but maybe rigids). A BAT is context-free if each successor
state axiom is context-free.

In order to ensure our prerequisite that formulas to be re-
gressed only contain ground terms, we prohibit the usage of
the non-deterministic pick operator π. Note that this is not
such a harsh restriction as this still allows to use a “pseudo-
pick” that quantifies over a finite domain of constants:

πx : {c1, . . . , ck}.δ
def
= δxc1 | · · · |δ

x
ck
.

We then have the following theorem:

Theorem 16. If Σ is a context-free BAT and δ a program
without pick operators, Procedures 1 and 2 will terminate.

Proof. (Sketch) The central property for the proof of this the-
orem is the following:

R
[
[ti]R

[
[tn] . . . [ti] . . . [t1]ϕ

]]
≡ R

[
[tn] . . . [ti] . . . [t1]ϕ]

]
.

That is, regressing ϕ through the same ground action multiple
times produces an equivalent result as only regressing once
through that action. Because the program (and thus the char-
acteristic graph) has only finitely many actions all of which
are ground, there are ony finitely many such sequences of ac-
tions to consider. We then exploit the fact that the bodies of
all loops in the procedures are monotone, i.e. they either al-
ways produce a subsumer of the previous label formula, or a
subsumed one. Hence, eventually the label set converges.

6 Decidability with local-effect BATs
The other option to ensure termination is to restrict ourselves
to BATs whose SSAs are local-effect:

Definition 17 (Local-effect Successor State Axioms [Liu and
Levesque, 2005]). A successor state axiom is local-effect if
both γ+F (~x, a) and γ−F (~x, a) are disjunctions of formulas of
the form ∃~z[a = A(~y)∧φ(~y)], whereA is an action function,
~y contains ~x, ~z is the remaining variables of ~y. φ is called a
context formula and contains no quantifiers. A BAT is local-
effect if each successor state axiom is local-effect.

Then we have:

Theorem 18. If Σ is a local-effect BAT and δ a program with-
out pick operators, Procedures 1 and 2 will terminate.

Proof. (Sketch) The proof of this theorem relies on the fact
that we have only finitely many action terms in the graph (all
of which are ground) and only finitely many fluents in the
action theory. Furthermore, instantiating a successor state ax-
iom by a ground action during regression yields a quantifier-
free formula. Since there are only finitely many such instanti-
ations and only finitely many edge condition formulas in the
graph, we get finitely many equivalence classes of possible
label formulas. Using the monotonicity argument again, ter-
mination is guaranteed.

Example 19. Recapitulating the example from the begin-
ning, we show here a verification run for a local-effect BAT.
Fortunately, the example is already in the two-variable frag-
ment. We only need to change the program slightly by replac-
ing the pick operators by the pseudo-picks. Then we have the

following successor state axioms:

�[a]DirtyDish(x, y) ≡ a = requestDDR(x, y) ∨
DirtyDish(x, y) ∧ ¬[a = load(x, y)]

�[a]OnRobot(x) ≡ ∃y. a = load(x, y) ∨
OnRobot(x) ∧ ¬[a = unload(x)].

We omit other fluents like the location of the robot for sim-
plicity. Additionally, we have the following precondition ax-
iom:

�Poss(a) ≡ [∃x, y. a = requestDDR(x, y)] ∨
[∃x, y. a = load(x, y)] ∨ [∃x. a = unload(x)].

The only exogenous actions axiom is

�Exo(a) ≡ ∃x, y. a = requestDDR(x, y).

Finally, the following is the GOLOG program δ′robot with
pseudo-picks, where di is a constant for a dish and ri for a
room:

loop : while (∃x.OnRobot(x)) do
πx : {d1, d2, d3}.unload(x)

endWhile;
πy : {r1, r2}.goToRoom(y);
while (∃x.DirtyDish(x, y)) do

πx : {d1, d2, d3}.load(x, y)
endWhile;
goToKitchen

We now want to verify the following formula ϕ for δ′robot :
¬∃x, y.〈〈δ′robot〉〉GDirtyDish(x, y). This means there cannot
be any infinite run of δ′robot where some dish in some room
remains dirty forever. The algorithm starts with C[ϕ] resulting
in ¬∃x, y.CHECKEG[δ′robot ,DirtyDish(x, y)]. Then Proce-
dure 1 starts with the following label set:

L0 = {〈v0,DirtyDish(x, y)〉, 〈v1,DirtyDish(x, y)〉}

PRE[v0, L0]

≡ R[(¬∃x.OnRobot(x)) ∧
[goToRoom(r1)]DirtyDish(x, y)] ∨
R[(¬∃x.OnRobot(x))∧

[goToRoom(r2)]DirtyDish(x, y)] ∨
R[[requestDDR(d1, r1)]DirtyDish(x, y)] ∨
R[[requestDDR(d2, r1)]DirtyDish(x, y)] ∨
R[[requestDDR(d3, r1)]DirtyDish(x, y)] ∨
R[[requestDDR(d1, r2)]DirtyDish(x, y)] ∨
R[[requestDDR(d2, r2)]DirtyDish(x, y)] ∨
R[[requestDDR(d3, r2)]DirtyDish(x, y)] ∨
R[(∃x.OnRobot(x))∧[unload(d1)]DirtyDish(x, y)]∨
R[(∃x.OnRobot(x))∧[unload(d2)]DirtyDish(x, y)]∨
R[(∃x.OnRobot(x))∧[unload(d3)]DirtyDish(x, y)]

≡ (¬∃x.OnRobot(x)) ∧DirtyDish(x, y) ∨
x = d1 ∧ y = r1 ∨DirtyDish(x, y) ∨
x = d2 ∧ y = r1 ∨DirtyDish(x, y) ∨

x = d3 ∧ y = r1 ∨DirtyDish(x, y) ∨
x = d1 ∧ y = r2 ∨DirtyDish(x, y) ∨
x = d2 ∧ y = r2 ∨DirtyDish(x, y) ∨
x = d3 ∧ y = r2 ∨DirtyDish(x, y) ∨
(∃x.OnRobot(x)) ∧DirtyDish(x, y)

≡ x = d1 ∧ y = r1 ∨ x = d2 ∧ y = r1 ∨
x = d3 ∧ y = r1 ∨ x = d1 ∧ y = r2 ∨
x = d2 ∧ y = r2 ∨ x = d3 ∧ y = r2 ∨
DirtyDish(x, y)

PRE[v1, L0]

≡ R[(¬∃x.DirtyDish(x, r1)) ∧
[goToKitchen]DirtyDish(x, y)] ∨

R[(¬∃x.DirtyDish(x, r2)) ∧
[goToKitchen]DirtyDish(x, y)] ∨

R[[requestDDR(d1, r1)]DirtyDish(x, y)] ∨
R[[requestDDR(d2, r1)]DirtyDish(x, y)] ∨
R[[requestDDR(d3, r1)]DirtyDish(x, y)] ∨
R[[requestDDR(d1, r2)]DirtyDish(x, y)] ∨
R[[requestDDR(d2, r2)]DirtyDish(x, y)] ∨
R[[requestDDR(d3, r2)]DirtyDish(x, y)] ∨
R[(∃x.DirtyDish(x, r1))∧[load(d1, r1)]DirtyDish(x, y)]∨
R[(∃x.DirtyDish(x, r1))∧[load(d2, r1)]DirtyDish(x, y)]∨
R[(∃x.DirtyDish(x, r1))∧[load(d3, r1)]DirtyDish(x, y)]∨
R[(∃x.DirtyDish(x, r2))∧[load(d1, r2)]DirtyDish(x, y)]∨
R[(∃x.DirtyDish(x, r2))∧[load(d2, r2)]DirtyDish(x, y)]∨
R[(∃x.DirtyDish(x, r2))∧[load(d3, r2)]DirtyDish(x, y)]

≡ x = d1∧y = r1 ∨ x = d2∧y = r1 ∨ x = d3∧y = r1 ∨
x = d1∧y = r2 ∨ x = d2∧y = r2 ∨ x = d3∧y = r2 ∨
DirtyDish(x, y)

L1 = L0 AND PRE[Gδ, L0]

= {〈v0,DirtyDish(x, y)〉, 〈v1,DirtyDish(x, y)〉}

Now, L0 ≡ L1, i.e. the algorithm terminates and returns
¬∃x, y.DirtyDish(x, y). Thus, there is no run with some
dish forever remaining dirty in some room iff there is no dirty
dish initially. Intuitively, this is correct because Gφ means
that φ persists to hold during the entire run, including the
initial situation. Therefore, only if a dish is dirty initially it
may happen that it never gets cleaned, namely when the robot
never visits the corresponding room. Note that excluding this
from happening would still allow the case where a dirty dish
occurs at a later time of the run (due to some requestDDR
action) and never gets cleaned from that moment on.

7 Related Work
The verification of non-terminating GOLOG programs was
first discussed by De Giacomo, Ternovska and Reiter [1997],
but only in the form of manual, meta-theoretic proofs, where
properties were expressed using µ-calculus fixpoint formulas
instead of temporal modalities. The ESG language and the

automated verification methods used in this paper were intro-
duced by Claßen and Lakemeyer [2008] and later extended
to a larger subset [2010]. However, they proved their algo-
rithms only to be sound, but could not give a general termina-
tion guarantee. De Giacomo, Lespérance and Pearce [2010]
applied the idea of verifying GOLOG programs through itera-
tive fixpoint approximations using characteristic graphs in the
context of games and multi-agent systems, where properties
are expressed in Alternating-Time Temporal Logic. De Gi-
acomo, Lespérance and Patrizi [2012] define the class of
bounded action theories, for which they show that the veri-
fication of a certain class of first-order µ-calculus temporal
properties is decidable.

8 Conclusion
In this paper, we showed that the problem of verifying non-
terminating GOLOG programs is indeed decidable for a rele-
vant subset of the formalism, which was achieved by means
of three restrictions. First, we used the ES variant of a decid-
able two-variable fragment of the Situation Calculus as intro-
duced by Gu and Soutchanski. Second, we have to restrict the
GOLOG program to contain ground action only. Finally, we
considered special classes of successor state axioms, namely
the context-free ones and those that only admit local effects.
Interesting lines of future work would be to come up with a
solution for re-introducing the original pick operator and to
obtain complexity results for our approach.

References
[Baader et al., 2003] Franz Baader, Diego Calvanese, Deb-

orah L. McGuinness, Daniele Nardi, and Peter F. Patel-
Schneider, editors. The Description Logic Handbook:
Theory, Implementation, and Applications. Cambridge
University Press, 2003.

[Baader et al., 2005] Franz Baader, Carsten Lutz, Maja
Miličić, Ulrike Sattler, and Frank Wolter. Integrating de-
scription logics and action formalisms: First results. In
Proc. AAAI 2005, pages 572–577. AAAI Press, 2005.

[Baader et al., 2008] Franz Baader, Silvio Ghilardi, and
Carsten Lutz. LTL over description logic axioms. In
Proc. KR 2008, pages 684–694. AAAI Press, 2008.

[Baader et al., 2010] Franz Baader, Hongkai Liu, and Anees
ul Mehdi. Verifying properties of infinite sequences of de-
scription logic actions. In Proc. ECAI 2010, pages 53–58.
IOS Press, 2010.

[Burgard et al., 1999] Wolfram Burgard, Armin B. Cremers,
Dieter Fox, Dirk Hähnel, Gerhard Lakemeyer, Dirk
Schulz, Walter Steiner, and Sebastian Thrun. Experiences
with an interactive museum tour-guide robot. Artificial In-
telligence, 114(1–2):3–55, 1999.

[Claßen and Lakemeyer, 2008] Jens Claßen and Gerhard
Lakemeyer. A logic for non-terminating Golog programs.
In Proc. KR 2008, pages 589–599. AAAI Press, 2008.

[Claßen and Lakemeyer, 2010] Jens Claßen and Gerhard
Lakemeyer. On the verification of very expressive tem-
poral properties of non-terminating Golog programs. In
Proc. ECAI 2010, pages 887–892. IOS Press, 2010.

[De Giacomo et al., 1997] Giuseppe De Giacomo, Evgenia
Ternovska, and Raymond Reiter. Non-terminating pro-
cesses in the situation calculus. In Working Notes of
“Robots, Softbots, Immobots: Theories of Action, Plan-
ning and Control”, AAAI’97 Workshop, 1997.

[De Giacomo et al., 2000] Giuseppe De Giacomo, Yves
Lespérance, and Hector J. Levesque. ConGolog, a con-
current programming language based on the situation cal-
culus. Artificial Intelligence, 121(1–2):109–169, 2000.

[De Giacomo et al., 2010] Giuseppe De Giacomo, Yves
Lespérance, and Adrian R. Pearce. Situation calculus
based programs for representing and reasoning about game
structures. In Proc. KR 2010, pages 445–455. AAAI Press,
2010.

[De Giacomo et al., 2012] Giuseppe De Giacomo, Yves
Lespérance, and Fabio Patrizi. Bounded situation calcu-
lus action theories and decidable verification. In Proc. KR
2012. AAAI Press, 2012.

[Gu and Soutchanski, 2010] Yilan Gu and Mikhail
Soutchanski. A description logic based situation calcu-
lus. Annals of Mathematics and Artificial Intelligence,
58(1–2):3–83, 2010.

[Lakemeyer and Levesque, 2010] Gerhard Lakemeyer and
Hector J. Levesque. A semantic characterization of a use-
ful fragment of the situation calculus with knowledge. Ar-
tificial Intelligence, 175(1):142–164, 2010.

[Levesque et al., 1997] Hector J. Levesque, Raymond Re-
iter, Yves Lespérance, Fangzhen Lin, and Richard B.
Scherl. GOLOG: A logic programming language for dy-
namic domains. Journal of Logic Programming, 31(1–
3):59–83, 1997.

[Lin and Reiter, 1997] Fangzhen Lin and Raymond Reiter.
How to progress a database. Artificial Intelligence, 92(1–
2):131–167, 1997.

[Liu and Levesque, 2005] Yongmei Liu and Hector J.
Levesque. Tractable reasoning with incomplete first-order
knowledge in dynamic systems with context-dependent
actions. In Proc. IJCAI 2005, pages 522–527. Professional
Book Center, 2005.

[McCarthy and Hayes, 1969] John McCarthy and Patrick
Hayes. Some philosophical problems from the standpoint
of artificial intelligence. In B. Meltzer and D. Michie, ed-
itors, Machine Intelligence 4, pages 463–502. American
Elsevier, New York, 1969.

[Reiter, 2001] Raymond Reiter. Knowledge in Action: Logi-
cal Foundations for Specifying and Implementing Dynam-
ical Systems. MIT Press, 2001.

