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Abstract—When a robot interacts with its environment to per-
form tasks, it often faces unexpected situations which render its
actions unsuccessful despite perfect functioning of its components.
These situations occur as deviations of properties of the objects
(manipulated by the robot) from their acceptable values. Hence,
they are experienced by the robot as external faults. In this work,
we propose a simulation-based approach for avoiding the external
faults that occur during the manipulation actions of a robot which
involve releasing of objects. With the help of a single example
simulation, that shows the behavior of the manipulated object
for successful completion of the action, the proposed approach
constructs different examples of the object’s behavior and labels
them as ‘desired’ or ‘undesired’. These labelled examples are
used by an algorithm, which we refer as N-Bins, to suggest a
releasing state of the object that avoids the occurrence of external
faults. Once exposed to the labelled examples, N-Bins can also
be used for predicting the occurrence of external faults for a
given releasing state of the object. These abilities of N-Bins are
used by the approach to modify the releasing action of the robot
for avoiding external faults. We present the approach as a four-
step scheme that performs the above mentioned tasks completely
autonomously.

I. INTRODUCTION

A robot that manipulates its environment to accomplish its
tasks, often faces unexpected situations which prohibit it from
achieving its goals despite perfect functioning of its internal
components (e.g. sensors and actuators). During an action of a
robot, these situations occur in its environment as unpermitted
deviations of properties of objects (manipulated by the robot)
from their desired/acceptable values and they result in an
instant failure of the robot’s action. Therefore, they are termed
as external faults [1], [24]. These faults occur very commonly
in the tasks performed by robots like mobile manipulators and
humanoid robots. Fig. 1 shows an example of occurrence of
an external fault when a robot performs the task of placing a
die on a table (i.e. the cube). In the shown situation, the die is
released by the robot in an undesired orientation which causes
it to roll on its own and immediately fall on the floor. This
renders completion of the robot’s task unsuccessful.

Occurrences of external faults are reported very frequently
in the robotics literature. For instance, Okada et al. [3] reports

Fig. 1. Occurrence of an external fault while a robot places a die on a table.
During the releasing action of the robot the orientation of the die causes the
die to fall on the floor instead of staying on the table.

slipping of a bottle from the hand of HRP2JSK humanoid
robot despite utilization of robust software and hardware.
Similarly, in his survey on faults of robots [4] Steinbauer
mentions occurrences of external faults by referring to them as
interaction faults and unfavorable environment conditions. In
[5], [6] and [7], the authors use the terms unforeseen events,
exogenous events and errors to refer to external faults.

Despite their frequent occurrences, external faults have
mostly eluded their treatment as primary research problems
in robotics literature, especially under much suited perspective
of being faults. This work treats external faults as a primary re-
search problem and it focuses on the most commonly occurring
external faults encountered in the robotic manipulation tasks.
More specifically, it proposes an approach that helps a robot
in avoiding occurrences of external faults encountered in the
action of releasing an object over another object. The proposed
simulation-based approach enables the robot to autonomously
avoid the external fault in the future if its occurrence has been
detected once.

We present the proposed approach as a four-step scheme
that requires the following two inputs: 1) an example simula-
tion and, 2) a definition of the planning operator of the action
that results in a detected external fault. Here, (1) provides an
example of the expected behavior of the object (manipulated
by the robot) for a successful completion of the action, and (2)
is a classical planning operator definition [13] (for a release
action). The presented approach first finds a description of
the behavior of the object in the example simulation. This
description is given as logical expressions which consist of
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conjunctions of ground atomic facts. Each of such atomic fact
represents a different aspect of a given state of the objects
in the simulation. We refer to the atomic facts collectively
as the description vocabulary. The description vocabulary is
derived from the concepts in the area of qualitative spatial
representation [10]. Henceforth, we use the term ’predicate’
instead of ’ground atomic fact’ as a shorthand.

The scheme creates different examples of the behavior
of the object (in simulation) and uses the description of the
example simulation to autonomously label these examples as
desired (i.e. positive) or undesired (i.e. negative). The labelled
examples are utilized by an algorithm, which we call N-Bins, to
find the best releasing state of the object. Releasing the object
in this state avoids the occurrence of external faults. Once the
N-Bins algorithm is exposed to the labelled examples, it can
also be used for predicting the desirability of a releasing state
of the object. We use the abilities of the N-Bins algorithm to
modify the preconditions of the releasing action of the robot.
This modification is done in a way that a releasing state of the
object that satisfies the modified preconditions of the action
would result in the desired behavior of the object. Hence, it
avoids the occurrence of the external faults.

We conduct experiments with the proposed approach us-
ing the simulation environment OpenRAVE [8], which uses
ODE [11] (a physics engine) to simulate the dynamics of
rigid bodies. Results of the experiments show that by using
the proposed approach not only we can calculate a releasing
state of the object that avoids external faults but we can also
explicate the states which result in the undesired behavior of
the object. The results of our experiments also show that for
our settings N-Bins outperforms other popular Machine Learn-
ing (ML) algorithms (e.g. decision trees, k-nearest neighbours)
in its prediction (i.e. classification) ability.

II. RELATED WORK

Fault tolerance and diagnosis is considered a major chal-
lenge in robotics [14], therefore numerous works in robotics
are dedicated to this area. However, most of them deal with
the faults that are caused by a robot’s internal component
failures. For instance, Verma et al. [15] present a real-time
fault detection and diagnosis approach for the faults caused by
a robot’s mechanical component failures. Similarly, researchers
in [16], [17], [22] and [23] present model-based approaches
for identification and diagnosis of faults occurring in robots’
internal components. However, internal component failures and
malfunctioning are not the only sources of faults encountered
in robotics.

Some recent works in robotics have also directed their
attention to external faults. For example, in [1] the authors
propose an approach that uses naive physics knowledge to
explicate the reasons of the occurrence of unknown external
faults encountered in releasing action of a robot. In this work,
the robot applies a qualitative version of physical laws on naive
physics knowledge to hypothesize the causes of occurrence
of unknown external faults. In [18] the authors are interested
in dealing with external faults that occur in the presence of
external agents. To that end, the authors propose to formalize
the understanding of ’normality’ about the behavior of a
robot’s environment in presence of the external agents and
deal with the external faults as deviations in the normality.

In the area of robotic manipulation Jorgensen et al. [19]
and Moll and Erdmann [20] are, in essence, concerned with
avoiding external faults encountered during the robotic action
of releasing objects. Both of these works use simulation data
to generate distributions of the final states of the released
objects and use these distributions to estimate the pose and
drop regions for the object. The approach proposed in [19]
suffers from the issue that it requires very dense sampling of
the distributions in order to succeed. This results in a huge
number of required simulations. On the other hand, [20] only
focuses on achieving particular orientations of objects in their
final state for successful assembly tasks. The main focus of
that work is on developing strategies to orient objects with
minimal sensing and manipulation.

Ueda et al. [7] uses feedback to recover from external
faults1 occurring in presence of external agents. However,
this work focuses recovering from the faults at planning level
and does not deal with avoiding the occurrence of the faults.
Similarly, Gspandl et al. [21] presents a belief management
system to detect and explain inconsistencies in the higher level
beliefs of a robot which are caused by external faults. However,
this work is also not concerned with avoiding the causes of
inconsistencies.

III. SETTINGS & PROBLEM FORMULATION

The approach presented in this work assumes the settings
of a plan-based robotic system. This system detects the oc-
currence of an external fault by monitoring the effects of
the executed actions. That is, if the effects of an action (i.e.
a planning operator) remain unsatisfied after its execution,
then the system detects an external fault and isolates it to
the definition of the planning operator whose effects remain
unsatisfied. In this work we assume that the detected fault is
indeed an external fault. Furthermore, we neglect the presence
of external agents in the environment of the robot and assume
that causes of external faults are limited to natural physical
phenomena (e.g. gravity, friction).

This work focuses on the external faults that occur during
those actions of a robot which involve releasing an object (i.e.
object1) over another object (i.e. object2). Occurrence of
such faults can be described as a problem in which a robot
expects object1 to be in a particular goal state after releasing
it in an initial state, but the object ends up in some final
state that is different from the goal state [2]. This unexpected
behavior of the object, which is governed by physical laws, is
a result of unpermitted deviations of physical properties (e.g.
location, orientation) of the object in its initial state. Thus, a
robot can avoid the occurrence of the external faults by careful
selection of the initial state of the object. This work enables a
robot to make this careful selection in order to perform its
action reliably in the future. This work uses ODE physics
engine as a black box to simulate the dynamics of the object’s
behavior.

IV. APPROACH

Fig. 2 shows the basic schematics of the proposed ap-
proach. The approach is presented as a four-step scheme.
Below we give details of each of these steps.

1External faults are termed as external errors in [7].



Fig. 2. Basic schematics of the proposed approach.

A. Finding simulation description (step 1)

The first step of the scheme takes an example simulation as
an input and finds logical expressions that describe the behav-
ior of the objects in the simulation (i.e. simulation description).
The behavior shown by the objects in the example simulation
is expected to be exhibited by them when the performed action
is completed successfully. The example simulation is passed
as a construct comprising 1) ∆: a list of parameters, 2) µ: a
vector of values of the parameters and 3) CAD models of
the objects involved in the action. Each parameter δ in ∆
corresponds to a physical property of the manipulated object
and the values of these parameters (in µ) define the initial
state of this object. The δs considered in this work are shown
in the last column of table I. In this table x, y, z denote the
coordinates of the geometric center of object1, whereas ρ, θ
and φ denote the roll, yaw and pitch of object1. Other six
parameters denote the components of the linear and angular
velocities of the object.

The example simulation shows a single execution of the
desired behavior of the objects without taking into account
physical constraints of the robot or other objects in the environ-
ment. In order to find the simulation description, step 1 places
markers on the surfaces of the models of the objects. A marker
M = [v, d], where: v is a vector representing coordinates of
a point on the surface of the object and d is a logical symbol
(i.e. a constant) such that d ∈ D, where: D = {top, bottom,
right, left, front, back, none}. For the case of object1 the
point represented by v is a random point on the surface of the
object, whereas for object2 this point lies on the boundary
of the concerned surface (e.g. top) of the object (see fig. 3 and
4). Using the markers, this step autonomously constructs two
logical expressions, Sinit and Sgoal, which describe the initial
and the goal states of the objects in the example simulation.
A general representation of these expressions is given below.

Ss ≡ P1 ∧ P2 ∧ P3 ∧ P4 ∧ P5.

In the above expression each Pj (where, j∈{1,2,..,5})
is a predicate that represents a particular aspect of a given
state of the objects in the simulation. The second column of
table I shows the aspects represented by each Pj (given in
the first column of the table). We characterize the behavior
of the objects by their states at the start and end of the
simulation. We do so because the dynamics of objects is taken
care of by the physics engine. Thus, Sinit and Sgoal serve
as the description of the behavior of the objects. In these
logical expressions each predicate is selected from a collection
of predicates, which we refer as description vocabulary (see
section V). A predicate gets selected in these expressions from

TABLE I. ASSOCIATION BETWEEN PREDICATES, ASPECTS OF OBJECT
AND OBJECT’S PARAMETERS.

Predicate Aspect of objects δ

P1 Connectedness [9] of the objects x, y, z
P2 object1’s direction relative to object2 x, y
P3 Orientation of object1 ρ, θ, φ
P4 Linear velocity of object1 ẋ, ẏ, ż

P5 Angular velocity of object1 ρ̇, θ̇, φ̇

Fig. 3. Side views of models of object1 with markers (red dots).

the description vocabulary when the given state of the objects
satisfies the (logical) definition of that predicate.

Notice that for object1, using markers enables the ap-
proach to autonomously attach geometric semantics to different
models for object1. Therefore, in our experiments (section
VI) we consider those models for object1 which can be
modeled from a cube, a cylinder, a sphere or any combination
of these. For object2 the markers enable us to experiment
with the objects who’s convex planner top surface can be
constructed from a rectangle, a semi-circle or any combination
of these. Needless to say, using markers instead of complete
models also provide computational advantages in mathematical
calculations.

B. Extracting limits of parameters (step 2)

This step uses the predicates in Sinit to find the limits of the
parameters δs in ∆. These limits correspond to rough estimates
of the extreme values of δs using which the expression Sinit
can be reconstructed. That means, if a vector µnew is created
by selecting values of δs within these limits and Sinitnew is
constructed using µnew, then for some µnew it should be
possible that Sinitnew ≡ Sinit. In order to find such values
we exploit the fact that each parameter δ is associated with
a predicate Pj in Sinit. This association is shown in table
I, where the third column of the table shows the parameters
associated with each Pj in the first column.

Assume that for a given Object1 (e.g. a bot-
tle) P3 ≡ StraightAlong-z(Object1) in Sinit, where
StraightAlong-z/1 is defined to be true if the orientation
of Object1 is straight along the z-axis of a given reference
frame. Then, rotating the object around z-axis (of the same
reference frame) by any angle does not affect the truth value
of StraightAlong-z/1. As we denote such a rotation by
φ, therefore we can say that for this example −π ≤ φ ≤ π.
From these limits we choose a subinterval [−π/4, π/4] as the
limits of φ. Since rotating the object along x or y-axis of
the reference frame can change the value of P3, therefore we
choose limits of the other two orientation parameters (i.e. ρ,
θ) to be defined by the interval [−π/16, π/16]. This interval
is much smaller than that for φ because the value of P3 is
more sensitive to the changes in the values of ρ and θ. The
aforementioned intervals are only rough empirical estimates
of the extreme values of the parameters that are supported
by basic knowledge of mechanics. We also determine the
limits of the other parameters in table I in a similar manner



Fig. 4. Top views of models of object2 with markers (red dots).

and associate them with the corresponding predicates in the
description vocabulary. Further details on finding these limits
and their association with the predicates can be found in [12].

The purpose of finding the limits of the parameters is to
enable the robot to create different examples of the behavior
of the objects in the simulation. Each of these examples is
created by constructing a µnew vector with randomly selected
values of δs within the limits associated with each predicate in
Sinit. Once this vector is created, a simulation is run using this
vector as the initial state of object1. After completion of the
simulation, a description of the final state of the simulation
is found. In this description, if P1 and P3 remain the same
as corresponding predicates in Sgoal, then the behavior of
the object is considered desired otherwise it is considered
undesired 2. Here, we only consider the predicates P1 and
P3 because only they represent the aspects of interest for
the robot’s action that involves a simple release. It should be
noticed that the existence of other predicates is not redundant
as they are used in constraining the initial state of the objects3.
We store the information on each example by creating a row
vector whose first n− 1 elements consists of the elements of
µnew and the nth element is the label of the example. The
value of label is 1 for the desired behavior of object1 in the
simulation and 0 for the undesired behavior. By repeating the
above mentioned procedure a robot can autonomously create
as many labelled examples as required (using only one example
simulation). Henceforth, we refer to such examples as training
instances.

C. Suggest values and limits of parameters (step 3)

Assume that for a given action step 2 generates m training
instances. We store these instances in an m × n matrix I in
which each row represents a single instance. Step 3 divides
I into two matrices C0 and C1, such that C0 consists of
undesired (i.e. negative) instances and C1 consists of desired
(i.e. positive) instances. We evaluate the measures of mean
(µf ), variance (σf ), skewness (skewf ) and kurtosis (kurtf )
of each column4 of C0 and C1 and find the difference between
the corresponding measures of the corresponding columns of
these matrices (i.e. ∆µf ,∆σf ,∆skewf and ∆kurtf ). We
use these differences in calculating the so-called importance
(IMPf ) of each parameter, which is further used in calculating
the weight (Wf ) of each parameter. In above notations and
notations to follow the subscript f denotes ‘feature’. Formulae
for IMPf and Wf are given in line ‘4’ and ‘3’ in fig. 5. In
this figure and the figures to follow, we use the word feature
in place of parameter. Henceforth, we also do the same in the

2On(object1, object2) is an example of P1. This predicate is true
when object1 is on object2.

3The predicates P2, P4 and P5 also remain available for more compli-
cated actions of the robot. For instance, releasing an object to achieve a
particular configuration in its final state.

4Except the nth columns, which contain the labels of the instances.

1. function CALCULATE-FEATURE-WEIGHTS (C0, C1) returns w
2. for each feature, f
3. Wf =

IMPf∑
f
IMPf

, where:

4. IMPf = |∆µf |+ |∆σf |+ |∆skewf |+ |∆kurtf |
5. w = A vector composed of Wf for each feature
6. return w

Fig. 5. Definition of the function CALCULATE-FEATURE-WEIGHT.

textual description in this subsection (because of ML literature
convention).

For any feature, higher value of Wf shows that the final
state of the object in the simulation is more sensitive to the
value of that feature. This step divides the limits (found in step
2) of each feature into smaller bins in a way that features with
larger Wf have more bins. For each feature the number of bins
(NBf ) is calculated using the equation given in line ‘4’ in Fig.
6. In this equation, binMul and augBin are constants whose
values decide the maximum and the minimum number of bins
for the features. For each bin of each feature, its BinStrength
is calculated (see line ‘11 - 15’ in Fig. 6) with the help of p
values of the feature (in the training instances) that fall in the
bin. BinStrength of a bin increases when a value that falls
inside it belongs to a positive (i.e. C1) instance and it decreases
when the value belongs to a negative (i.e. C0) instance. Thus,
for a given bin of a feature, higher values of BinStrength
means that the bin contains more of those values of the feature
which are suitable for the desired behavior of object1.

Algorithms in Fig. 5 and 6 show the functions for calculat-
ing Wf and specifying the bins of each feature. Here, specifica-
tion of the bins implies calculation of NBf , BinStrength and
limits of each bin of each feature. Both of the above mentioned
functions are called by another function given in Fig. 7. This
function utilizes the information on the bins specifications to
suggest values of the features which are most suitable for
achieving the desired behavior of the object manipulated by
the robot. For each feature, the suggestedValue is calculated
as the mean value of the limits of the bin with maximum
BinStrength 5. These values are stored in a vector sVal,
which (as a whole) represents the suggested initial state of the
object. Limits of the bins of the suggestedValues are stored in
a matrix SValLim.

Lines ‘11 - 18’ in Fig. 7 show the procedure of binary
classification in which the algorithm predicts the label of any
unseen instance (i.e. a test instance) as positive (i.e. 1) or
negative (i.e. 0). Here, we pick the values of the features in
the test instance and find the bins for each feature in which
these values fall. Then, the CumulativeStrength of the test
instance is found with the help of the BinStrengths of the
found bins. The formula for CumulativeStrength calculation
is given in line ‘15’ of Fig.7. If the CumulativeStrength
of the instance is greater than 0.0, then the label of the test
instance is predicted to be 1, otherwise it is predicted 0.

D. Modify action’s preconditions (step 4)

Step 3 of the scheme provides us with three important
components. 1) An initial state of the object (sVal) that is most

5We can also calculate the worst values of the features from the bins with
minimum BinStrengths, in a similar manner.



1. function SPECIFY-BINS (C0, C1, w) returns BL, bs, nb
2. Set binMul (a positive real number),

augBin (a positive integer).

3. for each feature, f
4. NBf = floor(

binMul∗(n−1)
Rf

) + augBin, where:
5. Rf = Position of a feature when the features are arranged

in decreasing order of Wf

6. nb = A vector composed of NBf for each feature
7. for each feature, f
8. Divide the range of the feature in equal NBf bins
9. BLf = A matrix containing the limits of each bin
10. for each bin
11. BinStrength =

∑
p
S(Ci) ∗Wf ∗ k(Ci), where:

12. p = Total number of feature values falling in the bin
13. S(Ci) = 0.9 + #of Ci instances

5∗Total instances for i ∈ {0, 1}
14. k(Ci) = 1 for i = 1 and = −#of C1 instances

#of C0 instances for i = 0

15. bsf = A vector composed of BinStrength of each bin
16. BL = A matrix formed by joining BLf of each feature
17. bs = A vector formed by joining bsf of each feature
18. return BL, bs, nb

Fig. 6. Definition of the function SPECIFY-BINS.

1. function N-Bins (I, T)
2. input: I, an m ∗ n matrix composed of labelled instances

T, an r ∗ n matrix composed of test instances

3. C0, C1 ← Split instances according to their labels
4. w ← CALCULATE-FEATURE-WEIGHTS (C0, C1)
5. BL, bs, nb ← SPECIFY-BINS (C0, C1, w)
6. for each feature, f
7. Select the bin from BL corresponding to maximum value in bs
8. suggestedV alue = mean of the limits of the selected bin
9. sVal = Vector formed by suggestedV alues of each feature
10. SValLim = Matrix formed by the corresponding limits of the sel-

ected bins

11. for each test instance t, in T
12. for each feature, f of t
13. Select the bin from BL in which the value of the feature falls
14. Select the corresponding BinStrength from bs
15. CumulativeStrength =

∑
f
BinStrength ∗ NBf∑

f
NBf

16. ifCumulativeStrength > 0.0
17. then predictedLabel = 1
18. else predictedLabel = 0

Fig. 7. N-Bins algorithm.

suitable for achieving the goal state of object1, 2) limits of
the bins of each feature/parameter (SValLim) from which the
suggestedV alues of each parameter is calculated, and 3) the
ability of predicting the desirability of an initial state (given
as a test instance to N-Bins algorithm.). Step 4 of the scheme
uses these components to modify the releasing action of the
robot in a way that the robot can avoid the occurrence of the
detected external fault in the future. This is done by placing
a predicate Allowed/3 in the preconditions of the releasing
action of the robot. This predicate is defined as following:
Allowed(action, object1, object2)⇐⇒
Condition-1 ∨ Condition-2 ∨ Condition-3.

According to the above logical definition, the predicate
Allowed/3 is evaluated true only if the action involving
object1 and object2 satisfies at least one of the following
three Conditions:
Condition-1: The initial state of object1 is same as the

state suggested by N-Bins algorithm as sVal.
Condition-2: Values of all the parameters in the initial state
object1 are chosen within the limits of the corresponding
bins, given in SValLim.
Condition-3: A test instance representing the initial state of
object1 is predicted positive’ by the N-Bins algorithm.

The Allowed/3 predicate is placed in the preconditions of
the planning operator of the releasing action. Definition of this
operator is received as an input to the scheme, as shown in Fig.
2 in section IV. If a robot releases the object1 in an initial
state that satisfies the new preconditions then it can avoid
the occurrence of the external faults. The above mentioned
Condition-1, 2 and 3 are stated in ’strict to relax’ order,
with 1 being the most strict. This is also the order of preference
for a robot to satisfy these conditions. That is, a robot must
first attempt to satisfy Condition-1, and if it is not possible
then it must attempt to satisfy Condition-2, and so on.

V. DESCRIPTION VOCABULARY

The approach uses description vocabulary to find the
simulation description in step 1 and to autonomously label the
training instances in step 3 of the approach. The description
vocabulary consists of 67 predicates which represent the
concepts related to five aspects (shown in table I) of the objects
involved in the simulation. We formalize the definition of
each concept (i.e. the predicate) as a logical expression that
evaluates to true when the concept is true in a given state
of the simulated objects. For instance, the expression given
below defines a predicate Over/2 (related to connectedness
of the objects) that is true only when the simulation shows
that an object1 is over an object2.
Over(object1, object2)⇐⇒
(z-coord(lowest(object1)) > height(object2))
∧ NTPP(xy-proj(object1), xy-proj(object2)).

In the above expression z-coord/1 is a function that refers
to the z-coordinate of the point in its argument. Similarly,
lowest/1 refers to the lowest point of the object in its
argument, height/1 refers to the height of the object in its
argument and xy-proj/1 refers to the xy-plane projection of
the markers on the object in its argument. NTPP(pp1, pp2)
is a predicate that evaluates to true when the convex hull of
the points in the set of points pp1 is a non-tangential proper
part [9] of the convex hull of the points in set pp2.

Over/2 is only one of the 67 predicates of the description
vocabulary. We formalize the definitions of all the predicates
in a similar manner. We also formalize the functions (e.g.
z-coord/1) used by these definitions. All the predicates in
the description vocabulary and the functions used by these
predicates have been created systematically within the scope of
this work. It is not possible to discuss all the details about the
description vocabulary in this paper because of the limitations
of the space. Complete details on this topic can be found in
chapter 6 of [12].

VI. RESULTS AND DISCUSSION

A. Results

We performed various experiments with the proposed ap-
proach in which different objects were released over other
objects. Here, we present results of three of these experiments.



(a) Front view (b) Top view

Fig. 8. Suggested initial state of the die for experiment 1.

(a) Front view (b) Top view

Fig. 9. Estimated worst initial state of the die for experiment 1.

1) Experiment 1 (release a die over a table): In this
experiment the example simulation shows that a die is dropped
on a table. From this single simulation the approach calculates
the (approximate) safest initial state (i.e. sVal) of the die.
This state is shown in Fig. 8. In Fig. 9 we also show the
(approximate) worst initial state of the die calculated by
the approach. For a plan-based robotic system the qualitative
descriptions of both the shown states are the same (i.e. the
die is being dropped on the table). However, the proposed
approach is clearly able to distinguish the desirability of the
two states for a successful completion of the action. Similarity
between the initial states of the die shown in Fig. 9 and
Fig. 1 is also noticeable. In our experiments, we also test the
prediction ability of N-Bins algorithm. We do this by creating
1000 unseen test instances which comprise 500 positive and
500 negative instances. We test how accurately the algorithm
predicts the labels of these test instances after it is exposed to
different numbers of training instances. Results of these tests,
for this experiment, are shown in Fig. 10. This figure also
shows the prediction accuracy of other popular ML algorithms
with the same training and test instances. Models for these
algorithms were selected using five folds cross validation.
Further details on the model selection procedure and working
principles of the algorithms can be found in [12]. We do not
discuss these details here because they are not directly relevant
to the main focus of this work. Discussion on the reasons for
better performance of N-Bins is also deferred to section VI-B.

2) Experiment 2 (release a carton over a table): As men-
tioned in section I, the proposed approach expects example
simulation to demonstrate the desired behavior of the objects
for a given action. Therefore, the example simulation is ex-
pected to be created at the time when the planning operator for
the action is first defined. Hence, the models of the objects in
the example simulation can become outdated by later changes
in the robot’s environment. For example, the model of the
table in the experiment 1 changes if some other objects are
later placed on the table. At first, it may appear that such
changes will break up the approach because of its dependence
on the example simulation. However, this is not true. This fact

Fig. 10. Comparison of prediction accuracies of learning algorithms for
experiment 1.

(a) Front view (b) Top view

Fig. 11. Suggested initial state of the carton for experiment 2.

is illustrated in this experiment.

For this experiment the example simulation shows that a
carton is dropped over the center of an empty table such that
it stands tall on the table. However, before generating the
training instances we update this model by placing different
solid objects on the table (see the models of the table in Fig.
11 or Fig. 12). This update corresponds to the later changes
in the robot’s environment 6. We simply let the approach to
generate the training instances using the updated models. This
automatically adjusts the results according to the update. This
fact is visible in Fig. 11 and Fig. 12, which respectively show
the best and the worst initial states calculated by the approach
for this experiment.

The approach is able to find the correct results despite
outdated models of the objects in the example simulation
because it was able to correctly label the training instances.
The correct labeling of the training instances, in turn, is made
possible by the fact that the approach uses only qualitative
information in the simulation description of the example
simulation. This information (encoded as predicates in the
simulation description) remains unaffected by the quantitative
changes caused by the updates in the models of the objects.
Hence, the approach is able to find the correct results.

3) Experiment 3 (throw a ball into a basket): In this
experiment the example simulation shows that a ball is thrown
towards an empty basket, such that it falls and stays inside the
basket. Similar to the case of experiment (2), we update the
model of the basket in this experiment. The approach generates

6It is assumed that the updated models of the objects are available to the
robot.



(a) Front view (b) Top view

Fig. 12. Estimated worst initial state of the carton for experiment 2.

the instances of throwing the ball using this updated model
which contains different solid objects inside the basket. Based
on these instances, the approach calculates the best way of
throwing the ball into the updated model of the basket. The
motion of the ball, according to its initial state, suggested by
the approach, is shown in Fig. 13. Considering the fact that
under the given conditions the final state of the ball can vary
dramatically with slight changes in the location and/or velocity
components of the ball in its initial state, this result shows how
well the approach performs for such a complex action.

B. Discussion

In the results reported above, the initial states of different
objects (shown in the figures) are calculated using 3000 train-
ing instances in each experiment7. These instances comprise
different numbers of positive and negative instances. For exam-
ple, in experiment (1) among 3000 training instances 2,771 are
positive and 229 are negative. Notice, here negative instances
represent the case of ‘die falling from the table despite being
released over the table’, therefore in the simulation process
the frequency of its occurrence is very low. This results in
highly skewed training data set. Our experiments suggest that
this is true in general. Usually, a classification algorithm’s
prediction accuracy is not seriously affected by the skewness of
the training data if it is tested over a data set with similar dis-
tribution. However in our settings we can not assume that the
test instances will have same skewed distribution as training
instances. There are two major reasons behind that. First, in a
real world application the values of features in a test instance
are governed by the physical constraints of the environment
and the robot. Under different circumstance this can result in
distributions of test instances which can be different from the
distribution of the training instances autonomously generated
by the simulator. Second, in our settings a robot generates
a test instance once its action had previously failed because
of unexpected or unforeseen situation. Thus, we should not
assume that the robot posses any a priori knowledge about the
distribution of the test instances.

Based on the reasons stated in the previous paragraph we
tested the accuracy of N-Bins on the test data with equal
number of positive and negative instances and compared it with
other popular classification algorithms. Results of experiment
(1) and further experiments (not reported here) show that
under such conditions N-Bins generally shows better prediction
accuracies than the other learning algorithms found in the

7With the help of parallelization on a 48-core PC (4 × AMD
OpteronTM6174 12-core 2.2 GHz) 3000 instances per experiment are generated
in an average time of less than 0.7 seconds.

(a) Frame 1 (b) Frame 2 (c) Frame 3

Fig. 13. Motion of the ball, for experiment 3, when it is thrown according
to the initial state suggested by the approach.

legend in Fig. 10 8. Complete details of these experiments can
be found in [12]. For some of the experiments in [12] artificial
neural networks (ANNs) show better accuracies, however N-
Bins also shows comparable accuracies in those experiments.
In the experiments reported here we choose binMul = 1.8
and augBin = 4 in line ’2’ in Fig. 6. These values divide
the limits of each parameter of object1 into 5 to 25 bins
(depending upon the importance of the parameter).

From the results of the experiments it is clear that releasing
an object1 in the initial state suggested by the approach al-
ways results in its desired behavior. Thus, if a robot releases an
object1 in a state that satisfies Condition-1 of Allowed/3
(in section IV-D) then it can avoid the occurrence of external
faults. To test Condition-2 of Allowed/3 we created 100
initial states (for one experiment) that satisfy Condition-2
and simulated them to see the behavior of the objects. We did
this for five different experiments. In all these simulations the
objects showed the desired behaviors. In the nine experiments
in [12] (including above three) the mean of N-Bins’ prediction
accuracy is 75.11% with standard deviation of 5.36 (ANNs
are second best with mean = 70.5% and std. dev. = 13.88).
This shows how Condition-3 (the most relaxed condition)
of Allowed/3 increases the chances of avoiding the external
faults in an action.

VII. CONCLUSION AND FUTURE WORK

In this paper we proposed a simulation-based approach for
avoiding external faults which occur in the releasing action
of robotic manipulation tasks. The proposed approach enables
a robot to estimate the safest releasing state of an object for
successful completion of its action. It also enables the robot
to predict the behavior of an object for a given releasing state.
This ability of the approach comes from an algorithm, referred
as N-Bins, that uses labelled instances of simulated behavior of
the manipulated object. These instances are labelled with the
help of an example simulation that shows the desired behavior
of the object for the performed action. The labeling process
is made autonomous by capturing qualitative description of
objects’ behavior in the example simulation and using it for
labeling the instances. We performed different experiments
with the proposed approach in a simulation environment.
Results of these experiments clearly show that with the help
of the approach proposed in this work, a robot can not only
avoid external faults by selecting a safe releasing state for the

8Accuracies of other algorithms improve if the test instances has distribution
similar to that of training instances. For such cases the accuracy of N-Bins
also improves and remains comparable to other algorithms.



object but it can also predict desirability of a given releasing
state of the object with considerable accuracy.

Broadly speaking, the main idea behind the proposed
approach for avoiding external faults can be summarized as,
give a robot an example of the action to be executed and let
it find the safest way to do it. This paper presented the tools
(e.g. N-Bins, description vocabulary) that realized this idea for
the robotic action of releasing objects. With promising results
shown by the proposed approach, obvious future direction is to
extend this work for other robotic actions (e.g. picking objects).
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