Lessons Learnt from Developing the Embodied
AI Platform CAESAR for Domestic Service Robotics

Alexander Ferrein

Electrical Engineering Department
FH Aachen, Aachen, Germany
ferrein@fh-aachen.de

Abstract

In this paper we outline the development of CAESAR, a do-
mestic service robot with which we participated in the robot
competition RoboCup@Home for many years. We sketch the
system components, in particular the parts relevant to the
high-level reasoning system, that make CAESAR an intelli-
gent robot. We report on the development and discuss the
lessons we learnt over the years designing, developing and
maintaining an intelligent service robot. From our perspective
of having participated in RoboCup@Home for a long time,
we answer the core questions of the workshop about plat-
forms, challenges and the evaluation of integrative research.

Introduction

The key questions in the area of designing intelligent robots
raised at the 2013 AAAI Spring Symposium on Designing
Intelligent Robots: Reintegrating Al II as stated on the Sym-
posium’s website are:

Q1: How do we evaluate integrative research?
Q2: What are good challenges and benchmark problems?
Q3: What are good platforms and frameworks for this work?

In this paper, we give an overview of our work on the
domestic service robot CAESAR, which successfully partic-
ipated in RoboCup@Home competitions over several years;
we will give answers to the central questions of the Sympo-
sium from our perspective of designing, running, and main-
taining such a robot for over more than seven years. We will
report on the lessons we learnt (w.r.t. these questions) and
give an outlook on possible future developments.

The basic hardware platform was developed more than ten
years ago with the initial goal of participating in RoboCup
soccer competitions, which we did until 2006. However, we
did not want to build a platform that is totally specific to soc-
cer. The software as well as the hardware design we had cho-
sen was kind of conservative. It was what we knew about de-
signing an autonomous robot system along the lines of ser-
vice robots known in the Cognitive Robotics scene. We de-
signed a well-powered differentially driven robot with focus
on the software development and high-level reasoning. Fac-
ing complications with the rule changes over the years (no

Copyright (© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Tim Niemueller, Stefan Schiffer
and Gerhard Lakemeyer

Knowledge-based Systems Group
RWTH Aachen University, Aachen, Germany

{niemueller, schiffer, qerhard}@cs .rwth—aachen.de

walls around the playing field to make localization harder,
faster and more light-weight opponents), we designed multi-
robot coordination approaches and applied sensor fusion to
compensate for our disadvantages. What was unique to our
going about in robotic soccer was our approach to apply
(and extend) the situation calculus-based language GOLOG
for the high-level control of our soccer robots (Ferrein and
Lakemeyer 2008). We used this language also to try and for-
malise (to some extent) robotic (and human) soccer (Dylla
et al. 2008).

In 2006, the RoboCup@Home competitions were started
with the goal to foster the development of socially assis-
tive robots for domestic environments. Part of the idea of
this RoboCup league is to award teams to show ready-to-run
solutions which are closer to some product stage (i.e. less
duct tape on the robot). With all our software development
in place, we then decided to join this effort; in 2006 our robot
design was better suited for domestic service robots than for
soccer competitions and we made the transition to this new
domain (Schiffer, Ferrein, and Lakemeyer 2006). To meet
the demands of this new application area we had to extend
our hard- and software quite a bit. In this process we touched
a broad range of problems; with many of them not being in
our research focus.

In the rest of the paper we will give a rough overview of
CAESAR. Many details have already been published else-
where and we give pointers for the interested reader to get
some more detailed information. In the next section, we
will briefly review the domestic service robot domain and
RoboCup@Home competitions. Then we overview CAE-
SAR’s hardware design and its software components also
w.r.t. crucial design decisions that we took, before we sum-
marise the lessons we learnt during this long period of de-
veloping, maintaining, and re-designing the system. We con-
clude with a summary of our answers to the introductory
questions and an outlook on what, in our eyes, is important
for a future (version of our) system.

The Domestic Service Robot Domain
and the RoboCup@Home Competitions
The evolution of our robot platform CAESAR over the years

is shown in Fig. 1. It is iteratively re-designed and re-built to
operate in human-populated environments, where it should

(a) 2006

(b) 2007 (c) 2009 (d) 2011

Figure 1: The Evolution of CAESAR

be helpful around the house, ultimately assisting elderly or
disabled people with their daily activities.

Apart from the requirements commonly set for an au-
tonomous mobile robot in general, its application in domes-
tic service robotics (DSR) scenarios with humans around
places additional demands. Two important issues in this
regard are flexible and robust intelligent behaviour and
human-robot interaction (HRI). When a robot and humans
share the same habitat and are working together, the need for
HRI is a given and the robot must exhibit some form of intel-
ligent behaviour to be helpful and to work for extended pe-
riods of time. At the same time it needs to be robust against
various types of variations and errors in its environment, not
only those caused by the humans. As an example for the
former kind of variations consider that humans are messy
(from a robot’s perspective) and tend to leave things in dif-
ferent places. They move around items frequently so that the
environment is not as predictable as, say, with industrial set-
tings. For the latter kind of variations and errors, recall that a
robotic system for complex tasks is a complex system itself.
Modules might crash and components might get stuck in cer-
tain situations. Robustness against those problems allows for
enduring autonomy which is crucial when the robot needs to
assist a person over extended periods of time. A domestic
service robot has to meet the cognitive demands that arise
in daily chores, where complex problems sometimes require
deliberation. Strictly pre-defined behaviours are prone to er-
rors and tend to fail since they cannot account for more or
less subtle variations and the uncertainty inherent in real-
world scenarios all the time. From a human-robot interaction
perspective, robots need to be operable by laymen and they
need to account for imprecision and fallibility of humans, in
general, and of elderly people, in particular.

RoboCup@Home. There are various efforts for bench-
marking in domestic service robotics. One of them is the
RoboCup@Home competition which particularly focuses
on the technologies and techniques for domestic service
robots. In annual competitions, researchers from all over the

Figure 2: CAESAR performing the WholsWho test looking
for people in the RoboCup@Home arena (2008).

world gather to showcase their latest developments in a num-
ber of preset challenges, which become more and more com-
plex from year to year. Since 2006, the RoboCup @home ini-
tiative fosters research in artificial intelligence, robotics, and
related fields under the roof of RoboCup. It specifically tar-
gets the application of autonomous mobile robots as assis-
tive technology in socially relevant tasks in home environ-
ments. It is designed to be both, a scientific competition and
a benchmark for domestic service robots (Wisspeintner et
al. 2009). The general idea in the @ Home competition is to
let robots perform a set of tasks in home-like scenarios that
are as realistic as possible. An example of such a scenario
is depicted in Fig. 2, which shows a scene where the robot
is driving around in the apartment with the goal to find and
to recognise people. The tasks are oriented towards real-life
applications of domestic service robotics.

The tests in DSR, in general, and in RoboCup@Home, in
particular, require working solutions to specific (sub)tasks
such as localization, navigation, face recognition and oth-
ers. What is even more important, a successful system has
to fully integrate those capabilities to a complete system
that also has means of deliberation to purposefully work
towards achieving a particular mission in a home-like sce-
nario. Our team participated quite successfully in these com-
petitions since they were established. We were able to win
the world championship in 2006 and 2007, and became sec-
ond in 2008. We also won the RoboCup German Open com-
petition in the @Home league in 2007 and 2008.

The Robot CAESAR

Our robot CAESAR is based on a platform initially designed
to compete in the RoboCup soccer competitions. Over the
years it evolved to a capable robot for domestic service
robotics. The changes over the years are depicted in Fig. 1.
The base platform has a size of 40 cm x 40 cm X 60 cm,
CAESAR’s total height is 180 cm. Its main sensor for navi-
gation and localization is a laser range finder. In its current
state it features an RGB-D camera on a pan-tilt unit as a sec-
ond main sensor for perception. A 5 DOF anthropomorphic

arm allows for manipulating things in the world.

Some Features of our Intelligent Robot

To call a robot intelligent, it needs to be equipped with a
number of software modules to exhibit somewhat flexible
and intelligent behaviour. Among the basic tasks an intelli-
gent robot in a domestic environment (and beyond) has to
accomplish is to localize itself in the apartment, to navigate
safely around the furniture and to avoid bumping into peo-
ple. However, this does not yet make a robot appear intelli-
gent. On top of that it needs to be able to communicate in an
as natural way as possible with the humans around it and it
also needs to take intelligent decisions.

The Al methods used on the different levels of our system
which make for a successful domestic robot are:

e base components: localization, collision avoidance, path
planning, manipulation

e human-machine interaction: face detection, gesture detec-
tion, natural language processing, sound localization

e high-level control: (qualitative) reasoning with the robot
programming and plan language READYLOG interfacing
the base components through the Behavior Engine.

Base Components

We start our report with the base components and with a de-
scription of the robot middleware Fawkes which is the glue
between all these components.

Robot Software Framework Fawkes. We are using
Fawkes (Niemueller et al. 2010) for most of our compo-
nents. Fawkes is an Open Source software framework pro-
viding a communication middleware, libraries, and com-
ponents for typical robot applications.! It follows the
component-based software design paradigm. Each func-
tional entity in Fawkes is a component, implemented as a
plugin (consisting of one or more threads) that can be loaded
at run-time. Threads have aspects to access functionality
(like configuration or logging) asserted and maintained by
the framework. Information is exchanged via a hybrid black-
board with transaction semantics for accessing data struc-
tures. It can also be accessed over the network and features
data introspection. Fawkes comes with a number of useful
plugins for tasks like performance evaluation, platform sup-
port, and functional components for perception and actua-
tion.

Collision Avoidance. A mobile robot, especially when op-
erating in human-populated environments, needs to avoid
collisions with furniture or humans and it has to be safe
in this regard. On CAESAR, we deployed a method for lo-
cal navigation and collision avoidance that is safe and re-
active. A local map is derived from the laser range finder’s
readings. In this map, a collision-free path to the given tar-
get point is sought for by making use of an A* search ap-
proach. A* search is then also used to find a realisation of
this path by means of feasible motion trajectories. The col-
lision avoidance module runs with a frequency of 20 Hz. It

'Find Fawkes at http://www.fawkesrobotics.org/

recomputes the path and the motion commands every cy-
cle. We deployed this approach for many years in robotics
competitions both in robotic soccer as well as in domestic
service robotics settings. It was a key to succeed in the do-
mestic robot competition RoboCup@Home several years.

Localization. An intelligent robot has to know where it is
located in its environment. Our self-localization implements
a Monte Carlo Localization following (Thrun et al. 2001).
It approximates the position estimation by a set of weighted
samples. Each sample represents one hypothesis for the pose
of the robot. To be able to localize robustly based on laser
data, we modified the Monte Carlo approach. To allow for
the integration of a whole sweep from the LRF, we use a
heuristic perception model. With this we are able to localize
with high accuracy both in the ROBOCUP environment as
well as in home and larger scale office environments.

Path planning. On top of the metrical map used for local-
ization, we additionally keep a topological map that stores
information about the positions of and the connections be-
tween semantic places like a room or a door. To plan a
path from one place to another we perform an A*-search on
the topological graph. This yields a list of way-points along
which the robot is to navigate to the target place. The local
navigation between those way-points is then performed by
our collision avoidance method described above.

Mobile Manipulation. For physical interaction with the
world CAESAR cannot only move around, but it can also
manipulate objects with its robotic arm. To do so, it per-
ceives its surrounding with an RGB-D camera. From the
depth information a local model of the scene is generated
that is used in the motion planning for the arm. We use
OpenRAVE (Diankov and Kuffner 2008) to plan collision-
free motion trajectories for the manipulator to pickup objects
and to place them somewhere else. To plan such trajectories,
e.g. for picking up a cup from a table with multiple objects
on it, takes in the order of a few seconds.

Human-Machine Interaction

Apart from the base components mentioned so far, we also
needed to add components to increase the interaction capa-
bilities of CAESAR.

Face Detection, Recognition, and Learning. We employ
an AdaBoost-based method for face detection (Viola and
Jones 2001; Lienhart and Maydt 2002) which is readily
available in OpenCV. Further, we have developed an in-
tegrated approach for face detection and recognition using
random forests (Breiman 2001) where face recognition can
also be used separately. The recognition framework is able
to integrate new identities to its database on the fly. We use
Haar features similar to those used in the boosted face de-
tection cascade by Viola and Jones (Viola and Jones 2001).
They allow for fast evaluation and they are known to be good
features for face detection and recognition. We grow random
trees for recognition iteratively by selecting one test from a
set of L candidates that were randomly generated. The best
test is chosen by maximising the entropy gain (similarly as
in decision tree learning) and the left and right branches are
appended to the existing node; the procedure continues until

the leaf nodes maintain training data of only a single class.
The training is very fast and the recognition performance
of the resulting random forests is usually sufficient for our
target scenarios. For example, it takes only about 7.5 ms to
create a random forest consisting of ten random trees, each
grown up to a 1000 nodes on a training collection of 464 face
images and six identities to yield a recognition accuracy of
over 85 %.

Speech Recognition. Spoken commands can be given to
our robot CAESAR conveniently using natural language. We
use the SPHINX speech recognition software system from
Carnegie Mellon University (CMU). It is based on Hidden
Markov Models (HMM). An overview of an early version
of SPHINX is given in (Huang et al. 1993). We have built
a robust speech recognition system on top by first segment-
ing closed utterances potentially directed to the robot. These
are decoded with two different decoders which run in paral-
lel. One decoder uses a finite state grammar (FSG), the other
one is a TriGram decoder. Applying both in parallel, we seek
to eliminate each decoder’s drawbacks retaining its bene-
fits. We can look for similarities between the FSG’s output
and the N-best list of the TriGram decoder. This allows for
highly accurate recognition in domains which can be cap-
tured with a limited vocabulary and grammar. At the same
time, false positives, which are immanent in the noisy envi-
ronments one is confronted with at ROBOCUP competitions,
can be filtered out reliably.

Sound Localization. As a valuable input cue in HRI we
use a biologically inspired sound source localization. In or-
der to obtain reliable directional information two micro-
phones are used. Although the task would be easier with
more microphones, we deliberately chose to restrict our-
selves to two because the processing of only two signals is
computationally less expensive and standard, off-the-shelf
hardware can be used. Furthermore, two microphones are
easier to fit on a mobile robotic platform than a larger ar-
ray. We investigated the combination of our existing sound
localization system with the robot’s knowledge about its en-
vironment, especially the knowledge about dynamic objects.
By combining several sensor modalities, sound sources can
be matched to objects, thus enhancing the accuracy and reli-
ability of sound localization. (Calmes et al. 2007)

Gesture Recognition. Speech recognition provides an in-
tuitive means to control and interact with a robot. However,
a huge part of meaning in communication is also trans-
ferred via non-verbal signals. An important mode of this
non-verbal communication are gestures, in particular in in-
teraction with a domestic service robot, since controlling the
robot often relates to entities in the world such as objects and
places or directions. References to objects can conveniently
be made by pointing gestures while other, dynamic gestures
can be used to indicate directions or commands. In CAE-
SAR’s gesture recognition system, we implement a modular
architecture where the overall process is decomposed into
sub-tasks orchestrated in a multi-step system. We start with
a hand detection followed by a hand posture classification.
Then we track the position of the hand over time to recog-
nise dynamic gestures. While we use data from the RGB-D

sensor for hand detection, the gesture recognition is based
on a modified version of the approach presented in (Wob-
brock, Wilson, and Li 2007). The system performs reliably
well in our target scenarios with an accuracy of up to 90 %.

Deploying CAESAR in Complex Missions

So far, we sketched control modules and the respective un-
derlying methods on the lower level of CAESAR’s software
architecture and described its human-machine interaction
modules. While these modules are inevitable for exhibiting
intelligent behaviour of a domestic robot, high-level control
entities are necessary for composing the overall behaviour
and making the robot act purposefully and goal-directed
over longer periods of time without a human operator.

Behavior Engine. There is a large gap between low-level
robot control (real-time control and data processing) and
high-level task coordination (mission planning, execution
monitoring). In our system we bridge this gap using the
Lua-based Behavior Engine (BE). It provides skills to the
high-level system. Skills are the only means by which the
high-level instructs the low-level system and they appear as
a basic action to the task planner and encapsulate parame-
ter estimation, communication, concurrency, and failure re-
silience. They only make local decisions, e.g. whether the
object to grasp from the table is reachable, but not global
ones like moving to another place to be able to reach it. This
is the task of the high-level control. While the skills can
become complex, their limitation to local decisions make
them easy to handle and re-use as they encode fewer as-
sumptions. Reactive behaviours are modelled as hybrid state
machines and are described in detail in (Niemueller, Ferrein,
and Lakemeyer 2010). Skills can call other skills hierarchi-
cally, allowing to create increasingly complex skills. Skills
have also been used to compose simple agent programs, i.e.
macro actions that actually do make some global decisions.
This has been done for one as a performance comparison for
plans from the high-level system. For another, it decreases
the number of actions that need to be considered during
task planning and therefore reduces the computational bur-
den. These features in particular—hiding low-level details
from the high-level system in skills, hierarchical composi-
tion, and local failure resilience on the mid-level—make the
BE a powerful foundation for our high-level control system.

High-Level Control. For encoding our high-level mis-
sions, we developed the robot programming and plan lan-
guage READYLOG (Ferrein and Lakemeyer 2008). READY-
LOG is an extension of the well-known action programming
language GOLOG (Levesque et al. 1997) which is based on
the situation calculus (McCarthy 1963). The situation cal-
culus is a second order logic for reasoning about actions
and change. Roughly, the user has to specify a basic ac-
tion theory (BAT) which describes what properties of the
world can be changed by which action, the precondition and
effects of these actions and how the world looks like ini-
tially. Having a BAT in place, properties of the world can
be formally proven. This is in particular useful for plan-
ning robot missions. The semantics of READYLOG is de-
fined as situation calculus formulas, as is GOLOG’s. Now,

READYLOG integrates features such as dealing with contin-
uous change or probabilistically projecting robot programs
into the future among others, which were developed in other
GOLOG dialects. In particular, we made use of an exten-
sion which integrated decision-theoretic planning. Defin-
ing an optimisation theory in addition to the BAT together
with non-deterministic choices of actions allows to let the
robot plan and evaluate different action alternatives by it-
self. This way, encoding the behaviour of the robot becomes
particularly natural for the programmer. For qualitative flu-
ents, we introduced a semantics based on fuzzy sets, to be
able to express and interpret qualitative statements such as
“left at the far end of the room”. To make READYLOG
an effective tool, its system architecture comes with exe-
cution monitoring facilities and, for run-time reasons, pos-
sibilities to progress the database holding the initial facts.
As we only want to overview our system here, we leave
aside the details referring to (Ferrein and Lakemeyer 2008;
Schiffer, Ferrein, and Lakemeyer 2012b; 2012a).

Lessons Learnt

As the tasks for a domestic robot are manifold, the software
architecture used on the robot should allow for integrating
third-party software easily. This is especially useful for mod-
ules that are out of the scope of one’s own research but which
are still needed for the whole system to work. Many research
software packages in robotics are Open Source. Therefore,
it is, in principle, possible to integrate them into one’s own
robot software. However, there are several issues that make
this unnecessarily hard. For one, often such packages cannot
be seen as black boxes as they require in-depth knowledge
to use them efficiently. Also, integrating new software ver-
sions of a third-party module is cumbersome. For another,
different levels of abstraction or missing data and informa-
tion yields incompatibility with the existing infrastructure
and makes it hard or even impossible to use foreign com-
ponents with justifiable effort. Besides that, certain funda-
mental design decisions may prohibit mixing software from
different frameworks. When developing software modules,
one should have portability in mind.

After several re-design phases of our own middleware and
functional components, we ended up in a hybrid system,
where parts of the old software were ported to the new ar-
chitecture, some routines relied on the old middleware, some
on the new one. This made it in particular hard to keep the
software system consistent. Of course, the field of software
engineering offers proper approaches to circumvent this, but
it is a matter of time and man-power to bring these concepts
to life. Often, the available resources are restricted and hence
quick hacks that were made under pressure stay in the soft-
ware. This is surely not a new insight. Most of the time goes
into software integration. Moreover, it is frustrating enough
having to write software that is not in one’s research focus,
let alone spending much effort in beautifying or just main-
taining those sideline components.

As a consequence, we identified a flexible middleware
and software framework as a key concern, as it has major
influence on system integration. While integration always
takes time, a bad framework can drastically increase that

very time, or even cause it to fail. Flexible means that it
provides features that foster re-use of existing components.
But it also means, that components developed for a differ-
ent middleware and framework can be used. It turns out that
more often than not, we ended up using more than one such
framework. Robot platforms like the Nao or Robotino come
with their own framework that must be used to communicate
with the underlying hardware. Sometimes software compo-
nents can be so closely intertwined with a particular mid-
dleware that it is harder to decouple function and communi-
cation rather than to integrate two different types of middle-
ware. On CAESAR, the high-level system is integrated on top
of Fawkes. But underlying, some components and visualisa-
tion tools are used from ROS (Quigley et al. 2009), a widely
used middleware and framework that gained a lot of atten-
tion in the recent years. While we do think that our software
provides certain benefits, in particular when it comes to an
embodied Al system, we must embrace the rich ecosystem
that has evolved around ROS to benefit from it. Hence, close
integration of Fawkes and ROS is a major concern.

Integration works both ways. Not only do we want to ben-
efit from the wealth of software that exists. But we also want
to share our code and take it to the ROS market place. There-
fore, we ported some of our components to ROS, e.g. the
Behavior Engine to use it on CMU’s HERB (Srinivasa et al.
2012). We gained valuable insights, especially when bring-
ing back changes from the ROS port to our own system. It is
now much easier to share code among implementations.

As described earlier, we created our own implementation
of a Monte Carlo localization. After years of successful use,
we eventually decided to replace it with another one based
on the same methods, but implemented—and maintained—
by the ROS community. Even though it initially meant inte-
gration work and learning about its use, in the long term it
promises to save precious resources for primary research.

The overall performance of the system depends not only
on the performance of the individual components, but how
well they are integrated, if they can efficiently communi-
cate, and if they fit ones overall goals and paradigms, like
deliberative high-level control making use of data introspec-
tion features—reasons for which we started some of our re-
designs. However, working on a new software framework
did not come for free and the transition from one framework
to another tied resources and did not always go as smooth as
planned.

Apart from evaluating and testing the single components
of our system individually it is very important to assess
the complete system also. All in all, developing a sys-
tem for a complex target scenario like it is aimed for in
RoboCup@Home proves to be a workable approach. Nat-
uralistic settings with tests oriented at real-life situations
where laymen operate the robot foster flexible and robust
solutions. This is required for the resulting system to be ap-
plicable in real-world settings later on.

Discussion

With the experiences made over the years and in light of the
lessons learnt that we sketched in this paper we now try to
answer the key questions raised at the Symposium.

Q1: How do we evaluate integrative research? We think
that a competition-based benchmark initiative such as
RoboCup@Home is a good way to evaluate integrative re-
search and the resulting complex systems. However, devel-
oping every part of such a complex system is cumbersome
and a very lengthy process (given only bounded resources).
This hinders progress in the overall field. If there would be
more exchange and proper interface definitions for exchange
on various levels, i.e. ranging from data to sub-components,
every group could focus on their particular field of expertise.

Q2: What are good challenges and benchmark problems?
We believe it is a good idea to target complex, only loosely
specified scenarios to force the solutions to be flexible and
robust. The final target, i.e. the real world, will very likely
not follow any of the simplifying assumptions made at de-
velopment time. Thus aiming at realistic or at least naturalis-
tic scenarios like in RoboCup@Home for the Domestic Ser-
vice Robotics domain enforces systems that are more likely
to work in real-world scenarios also.

Q3: What are good platforms and frameworks for this work?
Apart from looking for other systems that follow similar
principles as one would have opted for oneself it is not to
be underestimated to follow the de facto standard, if only
for practical reasons. Sometimes for specific applications,
it might still be a good option to use a custom framework,
like we opted for a blackboard-driven approach with data
introspection for better integration with the high-level sys-
tem. Working and integrating with a common framework has
benefits for both sides of the mutual relationship: module
providers get evaluation from the outside (i.e. other groups)
and are forced to make their component more robust and
flexible, working on a broader ranger of hardware. The com-
ponent user can save effort in development by using existing
(and if mature enough also well-tested) software for prob-
lems he/she does not want to care about.

As a conclusion, for the future we plan to increase the
compatibility of Fawkes and ROS as the most prominent
framework in robotics and the de facto standard. This means
integrating ROS components where this is useful, but also
to provide means to share our work more easily with the
ROS community. Portability among platforms and frame-
works should be a key concern for new components. Turn-
key packages are an important factor to successfully partici-
pate in the domestic service robotics community.

References
Breiman, L. 2001. Random forests. Machine Learning
45(1):5-32.
Calmes, L.; Wagner, H.; Schiffer, S.; and Lakemeyer, G.
2007. Combining sound localization and laser-based object
recognition. In Proc. AAAI-SS 2007, 1-6.
Diankov, R., and Kuffner, J. 2008. Openrave: A planning ar-
chitecture for autonomous robotics. Technical Report CMU-
RI-TR-08-34, Carnegie Mellon University.
Dylla, F.; Ferrein, A.; Lakemeyer, G.; Murray, J.; Obst, O.;
Rofer, T.; Schiffer, S.; Stolzenburg, F.; Visser, U.; and Wag-
ner, T. 2008. Approaching a formal soccer theory from be-

haviour specifications in robotic soccer. In Dabnicki, P., and
Baca, A., eds., Computer Science and Sports. WIT Press.

Ferrein, A., and Lakemeyer, G. 2008. Logic-based robot
control in highly dynamic domains. Robotics and Au-
tonomous Systems 56(11):980-991.

Huang, X.; Alleva, F.; Hon, H.-W.; Hwang, M.-Y.; and
Rosenfeld, R. 1993. The SPHINX-II speech recognition
system: an overview. Comput Speech Lang 7(2):137-148.
Levesque, H.; Reiter, R.; Lésperance, Y.; Lin, E.; and Scherl,
R. 1997. GOLOG: A logic programming language for dy-
namic domains. J Logic Program 31(1-3):59-83.

Lienhart, R., and Maydt, J. 2002. An extended set of haar-
like features for rapid object detection. In Proc. ICIIP-02,
900-903. IEEE Press.

McCarthy, J. 1963. Situations, Actions and Causal Laws.
Technical report, Stanford University.

Niemueller, T.; Ferrein, A.; Beck, D.; and Lakemeyer, G.
2010. Design Principles of the Component-Based Robot
Software Framework Fawkes. In Proc. SIMPAR-10, 300—
311. Springer.

Niemueller, T.; Ferrein, A.; and Lakemeyer, G. 2010. A
Lua-based Behavior Engine for Controlling the Humanoid
Robot Nao. In RoboCup 2009: Robot Soccer World Cup
XIII, 240-251. Springer.

Quigley, M.; Conley, K.; Gerkey, B. P.; Faust, J.; Foote,
T.; Leibs, J.; Wheeler, R.; and Ng, A. Y. 2009. ROS: an
open-source Robot Operating System. In ICRA Workshop
on Open Source Software.

Schiffer, S.; Ferrein, A.; and Lakemeyer, G. 2006. Football
is coming home. In Proc. PCAR-06, 39-50.

Schiffer, S.; Ferrein, A.; and Lakemeyer, G. 2012a. Caesar:
An Intelligent Domestic Service Robot. Journal of Intelli-
gent Service Robotics 5(4):259-273.

Schiffer, S.; Ferrein, A.; and Lakemeyer, G. 2012b. Rea-
soning with qualitative positional information for domestic
domains in the situation calculus. Journal of Intelligent &
Robotic Systems 66(1-2):273-300.

Srinivasa, S. S.; Berenson, D.; Cakmak, M.; Collet, A.;
Dogar, M. R.; Dragan, A. D.; Knepper, R. A.; Niemueller,
T.; Strabala, K.; Vande Weghe, M.; and Ziegler, J. 2012.
HERB 2.0: Lessons Learned From Developing a Mobile
Manipulator for the Home. Proceedings of the IEEE 100(8).
Thrun, S.; Fox, D.; Burgard, W.; and Dellaert, F. 2001. Ro-
bust Monte Carlo localization for mobile robots. Artif. Intell.
128(1-2):99-141.

Viola, P. A., and Jones, M. J. 2001. Rapid Object Detec-
tion using a Boosted Cascade of Simple Features. In Proc.
CVPR, 511-518.

Wisspeintner, T.; van der Zant, T.; Iocchi, L.; and Schiffer, S.
2009. RoboCup@Home: Scientific Competition and Bench-
marking for Domestic Service Robots. Interaction Studies
10(3):392-426.

Wobbrock, J. O.; Wilson, A. D.; and Li, Y. 2007. Ges-
tures without libraries, toolkits or training: a $1 recognizer
for user interface prototypes. In Proc. UIST-07, 159-168.

