
Incremental Task-level Reasoning in a Competitive Factory Automation Scenario

Tim Niemueller and Gerhard Lakemeyer
Knowledge-based Systems Group

RWTH Aachen University, Aachen, Germany
{niemueller, gerhard}@cs.rwth-aachen.de

Alexander Ferrein
Electrical Engineering Department

FH Aachen, Aachen, Germany
ferrein@fh-aachen.de

Abstract
Facing the fourth industrial revolution, autonomous mobile
robots are expected to play an important role in the produc-
tion processes of the future. The new Logistics League Spon-
sored by Festo (LLSF) under the RoboCup umbrella focuses
on this aspect of robotics to provide a benchmark testbed on
a common robot platform. We describe certain aspects of the
integrated robot system of our Carologistics RoboCup team,
in particular our reasoning system for the supply chain prob-
lem of the LLSF. We approach the problem by deploying the
CLIPS rules engine for product planning and dealing with the
incomplete knowledge that exists in the domain and show that
it is suitable for computationally limited platforms.

1 Introduction
Today, we are in the middle of another industrial revolution.
It is sometimes called the fourth industrial revolution; the
first came with the invention of the steam engine, the second
came with the invention of the assembly line and the third
came with the computer and the Internet. Now we are facing
the fourth industrial revolution. Production is changing right
now and is going to change dramatically in the near future.
Instead of mass production, customized products will be the
future. This has among others the effect that the designer of
the product will be in closer contact with its manufacturer
and it is believed, for instance, that by 2020 10–30 % of the
products that the USA are importing from China today could
be produced inland (The Economist 2012). The new produc-
tion will be supported by so-called cyber-physical systems
(CPS). These systems combine computation with physical
processes. They include embedded computers and networks
which monitor and control the physical processes and have
a wide range of applications in assisted living, advanced au-
tomotive systems, energy conservation, environmental con-
trol, critical infrastructure control, smart structure or manu-
facturing (Lee 2008). In the new scenario, autonomous mo-
bile robots will play an important role in customizing the
production and logistics processes, demonstrated by the re-
cent acquisition of Kiva Systems, which produce logistics
robots, by Amazon (Kucera 2012).

CPS will challenge the field of mobile robotics and AI.
While robot systems today start to work reliably in the lab

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

over extended periods of time, we are far away from op-
erating our mobile robots as reliably as today’s production
robotic arms soldering car parts. Reasons lie in the much
higher complexity of the environment that these robots have
to operate in and which, moreover, is no longer for their
exclusive use but shared with humans, as well as the more
variable, deliberative tasks that these robots have to fulfill.

In this paper we address a new AI and robotics challenge
that might become a benchmark for the next generation fac-
tory scenario. Under the umbrella of RoboCup, in 2012
the first competition in the Logistics League sponsored by
Festo (LLSF) took place. The idea of this new RoboCup
league is to simulate a production process where an assem-
bly robot has to bring goods to production places to refine
them step by step to a final product. A team of robots has
to explore which machine is producing/refining what semi-
finished products and produce as many products as possible.

As our main contribution to “reintegrating AI”, we
present our reasoning component implemented in the rule-
based system CLIPS (Wygant 1989). Exemplarily, we show
how the domain is encoded, and how rules are structured
to combine sensing and reasoning to learn about the envi-
ronment, and how incremental reasoning is used to handle
incomplete knowledge by providing a next-best action at
any point in time, that is, whenever the robot is idle. We
also demonstrate the suitability of the approach for compu-
tationally limited platforms. In addition we want to discuss
if the LLSF is suited as a benchmark for real-world supply
chain optimization tasks in the future. Quite possibly it may
make new areas like factory automation engineering acces-
sible that are otherwise less receptive to AI methods.

Next we give a brief introduction to the LLSF and
describe the Carologistics RoboCup Team’s enhanced
Robotino platform. In Section 3 we give some background
on CLIPS, which is used for a first solution to the LLSF do-
main. In Section 4, we show how scheduling, planning and
execution are intertwined on our system accounting for the
four different aspects of the high-level system: exploration,
production, execution monitoring, and simulation. Depend-
ing on the world state and phase, the CLIPS rule engine will
schedule which product should be produced next and will
instruct the behavior execution system. We give several ex-
amples of CLIPS world model and production process rules.
We close with a discussion and an outlook to future work.

mailto:niemueller@cs.rwth-aachen.de
mailto:gerhard@cs.rwth-aachen.de
mailto:niemueller@cs.rwth-aachen.de;gerhard@cs.rwth-aachen.de
mailto:ferrein@fh-aachen.de


M1

T1

M2

T2

M3

T1

M4

T2

M5

T3

M6

T3

M7

T2

M8

T1

M9

T1

M10

T3

D1

D2

D3

R1

R2 T

R
ob

ot
In

se
rt

io
n

In
pu

tS
to

ra
ge

Machine Space

D
el

iv
er

y
Zo

ne

Machine
Facing
Direction

NameType

(a) LLSF Competition Area

PT3

S2T2

S1T1S0

S0

S0

S1T1S0

(b) LLSF Production Tree (c) The Carologistics Robotino

Figure 1: The competition area, production sequence tree, and robot used in the RoboCup Logistics League

2 Scenario
RoboCup (Kitano et al. 1997) is an international competition
for academia and industry that serves as a testbed for robot
applications. To address different aspects of mobile robotics
and AI research, RoboCup competitions so far focused on
robotic soccer with different types of robots, disaster and
rescue missions, and domestic service robots. Recently, new
leagues have been established for industrial and logistics ap-
plications. In the following, we describe the new Logistics
League and the robot of our Carologistics RoboCup team.

RoboCup Logistics League
In 2012 the Logistics League Sponsored by Festo (LLSF)
was officially founded. The general intention is to cre-
ate a simplified and abstracted factory automation scenario.
Teams of up to three robots operate in a fenced area of about
5.6m × 5.6m as shown in Figures 1(a) and 2(a). The task is
to complete a production chain by carrying a (semi-finished)
product (a puck in the game) along different machines (sig-
nal lights on the playing field). Points are awarded for inter-
mediate and completed products.

The field contains an input storage containing the “raw
material”, and a delivery zone with gates to which final prod-
ucts must be delivered. Each puck has a programmable radio
frequency identification (RFID) chip with which the differ-
ent product states S0, S1, S2, and P are distinguished. Ini-
tially, all pucks are in state S0. In the enclosed inner field,
ten signals equipped with an RFID device mounted on its
front represent production machines. Each machine is as-
signed a random but defined type out of the types T1–T3,
which is initially unknown to the robots. The type deter-
mines the input and output of a machine. Pucks transition
through their states by being processed by machines. The
complete production tree is shown in Figure 1(b). Circular
nodes indicate a puck’s state and rectangular nodes show the
respective machine type. For example, the T1 machine in
the upper branch takes an S0 puck as input with an S1 puck
as output. If a machine, like T2, requires multiple inputs,
these can be presented to the machine in any order. How-
ever, until the machine cycle completes, all involved pucks
must remain in the machine space. The last input puck will

be converted to the output puck, all others become junk and
must be recycled.

The machines indicate their state after processing a puck
using light signals. A green signal means that the particu-
lar machine production cycle has been completed, i.e., all
required input products have been presented one after an-
other, and now the puck has been transformed to the ma-
chines respective output, for example, after a T1 machine
transformed a puck from state S0 to S1. An orange light
indicates partial success (more pucks are required).

Besides typical robotics tasks such as motion planning
or self-localization, the robot needs to plan an efficient se-
quence of actions to produce as many products as possible in
a fixed amount of time. Moreover, the robot has to deal with
incomplete knowledge as it is not known in advance what
machine has which type. Thus, the robots need to combine
sensing and reasoning to incrementally update their beliefs
about the world. Based on the knowledge gained, it has to
to find a strategy to maximize its production output, ideally
minimizing costs such as travel distance.

The Carologistics Robotino Robots
As the company Festo is sponsoring this exciting new
RoboCup league, one condition is to enter the competi-
tion with Robotino robots, a small mobile robot platform
designed for educational purposes by Festo Didactic.1 It
employs omni-directional locomotion, features twelve in-
frared distance sensors and bumpers mounted around the
base, a CruizCore gyroscope, and a webcam facing for-
ward. The Carologistics Robotinos have an additional
omni-directional camera system, taken from the Allemani-
ACs’ former middle-size league soccer robots (Beck and
Niemueller 2009), which allows for a 360◦ view around the
robot. It is used to detect pucks around the robot. The web-
cam is used for recognizing the signal lights of the produc-
tion machines. An additional 2D Hokuyo URG laser scanner
provides data for collision avoidance and self-localization.
Our robot is shown in Figure 1(c). The major draw-back of
the current Robotino platform is its limited computing power

1Information is available at http://www.robotino.de

http://www.robotino.de


(a) LLSF Scenario

CLIPS Agent

Sim World

Perception Input

(b) External Interface

Vision · · ·

AMCL Motion Components
Actuator/Sensor proc.
Localization, etc.

Behavior Engine Reactive Behaviors
Skill execution/monitoring

CLIPS Agent Deliberation
Decision making/planning

(c) Behavior Layer Separation

Figure 2: LLSF scenario in-game photo, the equality of simulation and real-world input, and the behavior layer separation

with an AMD LX800 processor at 500MHz and 256MB of
RAM. This is barely enough for typical robot software com-
ponents, let alone a state-of-the-art reasoning system. This
makes it particularly challenging to solve the LLSF task.
In 2012 no extension in terms of computing power was al-
lowed, a restriction no longer present in 2013.

The software system of the Carologistics robots combines
two different middlewares, Fawkes (Niemueller et al. 2010)
and ROS (Quigley et al. 2009). This allows us to use soft-
ware components from both systems. The overall system,
however, is integrated using Fawkes. Adapter plugins con-
nect ROS and Fawkes, for example to use ROS’ naviga-
tion and 3D visualization capabilities. Most of the func-
tional components are implemented in Fawkes. For self-
localization we use the Adaptive Monte Carlo Localization.
Two image processing plugins were created, one for the
omni-directional and one for the directed camera. The for-
mer is used to detect pucks around the robot. The directed
camera is used to recognize the light signals. From ROS we
use the locomotion package (move base) which implements
a dynamic window approach for local motion and collision
avoidance and a Dijkstra search for a global path. The be-
havior components have been developed on top of Fawkes,
but could easily be used in ROS. Since the computing power
is rather limited on the Robotino, the behavior components
need to coordinate activation and deactivation of the lower
level components to solve computing resource conflicts. The
behavior components are described in more detail in Sec-
tion 4. Next, we briefly introduce the CLIPS rule engine.

3 CLIPS Rules Engine
CLIPS is a rule-based production system using forward
chaining inference based on the Rete algorithm (Forgy
1982). The CLIPS rule engine (Wygant 1989) has been de-
veloped and used since 1985 and is thus mature and stable.
It was designed to integrate well with the C programming
language2, which specifically helps to integrate with robot
software like Fawkes or ROS. Its syntax is based on LISP.

CLIPS has three building blocks (Giarratano 2007): a fact
base or working memory, the knowledge base, and an infer-
ence engine. Facts are basic forms representing pieces of in-
formation which have been placed in the fact base. They are
the fundamental unit of data used by rules. Facts can adhere
to a specified template. It is established with a certain set of

2And C++ using clipsmm, see http://clipsmm.sf.net

slots, properties with a name which take on values of various
types. The knowledge base comprises heuristic knowledge
in the form of rules, and procedural knowledge in the form
of functions. Rules are a core part of the production system.
They are composed of an antecedent and consequent. The
antecedent is a set of conditions, typically patterns which
are a set of restrictions that determine which facts satisfy the
condition. If all conditions are satisfied based on the exis-
tence, non-existence, or content of facts in the fact base the
rule is activated and added to the agenda. The consequent
is a series of actions which are executed for the currently
selected rule on the agenda, for example to modify the fact
base. Functions carry procedural knowledge and may have
side effects. They can also be implemented in C++. In our
framework, we use them to utilize the underlying robot soft-
ware, for instance to communicate with the reactive behav-
ior layer described below. CLIPS’ inference engine com-
bines working memory and knowledge base. Fact updates,
rule activation, and agenda execution are performed until
stability is reached and no more rules are activated. Mod-
ifications of the fact base are evaluated if they activate (or
deactivate) rules from the knowledge base. Activated rules
are put onto the agenda. As there might be multiple active
rules at a time, a conflict resolution strategy is required to
decide which rule’s actions to execute first. In our case, we
order rules by their salience, a numeric value where higher
value means higher priority. If rules with the same salience
are active at a time, they are executed in the order of their
activation, and thus in the order of their specification. The
execution of the selected rule might itself trigger changes to
the working memory, causing a repetition of the cycle.

4 Behavior Components for the LLSF
In the described scenario, tasks that the high-level reasoning
component of the robot should fulfill are:
Exploration: Gather information about the machine types

by sensing and reasoning to gain more knowledge, e.g.,
the signal lights’ response to certain types of pucks.

Production: Complete the production chains as often as
possible dealing with incomplete knowledge.

Execution Monitoring: Instruct and monitor the reactive
mid-level behavior engine.

Simulation: Simulate the perception inputs of the high-
level system’s decisions for an arbitrary world situation
to perform offline spot tests of the agent program.

http://clipsmm.sf.net


Naturally, these steps are intertwined. While the robot
explores the machine types, it already takes steps in the pro-
duction chain, and needs to execute and monitor behaviors.
Especially this entanglement of tasks calls for an incremen-
tal reasoning approach. As facts become known, the robot
needs to adjust its plan. The simulation allows to perform
offline tests evaluating the agent with a particular machine
type assignment replacing real world input with simulated
data. An additional requirement, due to the constrained plat-
form, is the need for a computationally frugal approach.

Behavior Components
In previous work we have developed the Lua-based Behav-
ior Engine (BE) (Niemueller, Ferrein, and Lakemeyer 2009).
It mandates a separation of the behavior in three layers, as
depicted in Figure 2(c), the low-level processing for percep-
tion and actuation, a mid-level reactive layer, and a high-
level reasoning layer. The layers are combined following an
adapted hybrid deliberative-reactive coordination paradigm
with the BE serving as the reactive interfacing layer.

The BE is based on hybrid state machines (HSM). They
can be depicted as a directed graph with nodes representing
states for action execution, and/or monitoring of actuation,
perception, and internal state. Edges denote jump conditions
implemented as Boolean functions. For the active state of a
state machine, all outgoing jump conditions are evaluated,
typically at about 15Hz. If a jump condition fires, the ac-
tive state is changed to the target node of the edge. A table
of variables intrinsic to an HSM holds information like the
world model, for example storing numeric values for object
positions or strings describing its properties. It remedies typ-
ical problems of state machines like fast growing number of
states or variable data passing from one state to another.

In systems like HERB (Srinivasa et al. 2012) we have pre-
viously used an HSM to serve as overall task state machine
on top of the reactive middle layer. This works nicely if
only execution parameters depend on the world situation,
but the action sequence is (mostly) static and not to be re-
planned depending on the perceived environment. However,
in the LLSF domain the action sequence is variable and de-
pends on employing sensing and reasoning to learn about the
world. If the HSM mechanism is used in this situation it de-
grades. For example, a world model is typically built in the
variable table, and rather than states representing the action
flow, a large number of transitions among the states capture
the incompleteness and make the HSM hard to follow.

Therefore, coming back to the layer separation, we de-
cided to have an incremental reasoning agent program on
the top-most layer. It relies on basic actions provided by the
BE. To simplify the rules for exploration and production,
most of the error handling capabilities are provided by the
BE, and only critical failures are propagated.

Incremental Reasoning Agent
The problem at hand with its intertwined exploration, world
model updating and execution and production phases natu-
rally lends itself to a representation as a fact base with up-
date rules for the exploration phase, and triggering behavior
for certain beliefs. We have chosen the CLIPS rules engine,

(defrule s0-t23-s1

(state IDLE) (holding S0)

(machine (mtype ?mt&T2_3) (name ?n)

(loaded-with $?l&:(contains$ S1 ?l)) )

?g <- (goto (machines $?ms&˜:(contains$ ?n ?ms))

(min-prio ?mp&:(<= ?mp (m-prio ?mt))))

=>

(modify ?g (machines (merge ?mp (m-prio ?mt) ?ms ?n))

(min-prio (m-prio ?mt)))

)

Figure 3: CLIPS Production Process Rule

because using incremental reasoning the robot can take the
next best action at any point in time, that is whenever the
robot is idle, without costly re-planning (as with approaches
using classical planners) and it allows us to cope with in-
complete knowledge about the world, required in the LLSF
scenario. Additionally, it is computationally inexpensive.

The CLIPS rules are roughly structured using a fact
named state whose value determines which subset of the
rules is applicable at any given time. For example, the robot
can be idle and ready to start a new sub-task, or it may be
busy moving to another location. Rules involved with phys-
ical interaction typically depend on this state, while world
model belief updates often do not. The state is also required
to commit to a certain action and avoid switching to another
one if new information, e.g., contributed by other robots on
the field, becomes available. While it may be better in the
current situation to pursue another goal, aborting an action
already started usually incurs much higher costs.

The rules explained in the following demonstrate what we
mean by incremental reasoning. The fact base is updated
as the robot gains more knowledge or commits to certain
actions. This can also be triggered by information about the
world published by other robots. The robot does not create a
full-fledged plan at a certain point in time and then executes
it until this fails. Rather, when idle it commits to the then-
best action. As soon as the action is completed and based on
its knowledge, the next best action is chosen.

The rule base is structured in four areas: world modeling,
production process execution, simulation, and utilities.

In Figure 3 we show a rule handling the production pro-
cess. The robot is currently idle and just got raw material
from the input storage: (state IDLE)(holding S0).
For this example, we assume to only know a T1 machine
and another one that could be either of type T2 or T3, which
is denoted by (mtype ?mt&T2_3). This knowledge was
acquired earlier bringing an S1 puck to the machine, af-
ter which it signaled with an orange light that production
is still in progress. In this situation, as the rule suggests, it
is best to take the S0 puck to this machine. Afterwards, the
type of the machine will have been determined. The rule
matches a goto fact which holds a list of potential targets to
move to in the machines slot. The additional condition in
this rule, (min-prio ?mp&:(<= ?mp (m-prio ?mt))),
makes sure that only a higher or same priority target com-
pared to the current best target is considered. With the fol-
lowing action the rule updates the potential targets and up-
dates the new minimum priority:



(modify ?g (machines (merge ?mp (m-prio ?mt) ?ms ?n))

(min-prio (m-prio ?mt)))

Machine priorities are ordered by the type of the machine,
e.g., a T2 machine has a higher value than a T1 machine.
This is to prefer the completion of higher valued sub-goals.
For example, if the robot was holding an S0 puck, and it
knew a T1 machine, and a T2 which was already loaded
with an S1 puck, it makes sense to prefer the T2 machine,
because it can complete a production step to produce an S2

puck, which scores more points in the competition than an-
other S1. The priority is also required to avoid getting stuck
in local minima, e.g., producing lots of S1 pucks but not
completing the higher value goals.

The production process rules guide the robot to commit to
the highest value action that can be taken, similar to a reward
function. In our environment this has two particular benefits.
First, aborting an action is expensive on the existing robot.
The computational bounds and low-frequent control loops
prohibit high motion speeds. Second the low memory and
computational requirements make it suitable for the limited
platform. The incurred overhead is virtually negligible.

The world model holds facts about the (partly) known or
unknown machine types, what kind of puck the robot is cur-
rently holding (if any) and the motion state of the robot. Two
examples for world model updates are shown in Figure 4.
The rules are invoked after the action from the production
rule presented above was successfully completed, i.e., an S0

puck was taken to a machine of a yet undetermined type T2
or T3. The first rule shows the inference of the output puck
type given a machine’s reaction, the second handles a world
model update based on this new.

In the first rule, the conditions
(state GOTO-FINAL) (goto-target ?name)

denote that the robot finished going to a machine. Its name
is bound to the variable ?name.

The type of this machine, as known from the world model
by matching a machine fact with the same name, was not yet
determined as explained above. There was a single puck in
this machine’s area, matched by the following pattern. First,
the list of loaded pucks is assigned to the list $?w, then it is
constrained to have a length of one by the condition

(loaded-with $?w&:(= (length$ ?w) 1))

Further, the light turned green. This means that the produc-
tion cycle has been completed and the robot now knows to
be holding an S2 puck. We retract the light fact and update
the holding fact (by retracting and asserting it).

The second rule shows the inference of a machine type in
that situation. A world model evaluation is triggered after
a transportation step has been completed. Like before, the
robot was at a machine of type T2 or T3. It held an S0

or S1 puck when it got there, and afterwards an S2 puck.
The robot can now be certain that the machine is of type
T2 (in accordance with the known production tree as shown
in Figure 1(b)) and it can update its belief. The following
action resets the loaded pucks and increases the junk count
by the number of puck in the machine area, fixes the type to
T2, and increases the production count.
(modify ?m (mtype T2) (loaded-with)

(junk (+ ?junk (length$ ?lw))) (productions (+ ?p 1)))

(defrule wm-holding-t23-one-green-s2

(declare (salience ?*PRIORITY_WM*))

(state GOTO-FINAL) (goto-target ?name)

?h <- (holding ?any)

(machine (name ?name) (mtype T2_3)

(loaded-with $?lw&:(= (length$ ?lw) 1)))

?l <- (light green)

=>

(retract ?l ?h)

(assert (holding S2))

)

(defrule wm-determine-t23-s0-or-s1-now-s2

(declare (salience ?*PRIORITY_WM*))

?w <- (wm-eval (machine ?name) (junk ?junk)

(was-holding S0|S1) (now-holding S2))

?m <- (machine (name ?name) (mtype T2_3)

(loaded-with $?lw) (productions ?p))

=>

(retract ?w)

(modify ?m (mtype T2) (loaded-with)

(junk (+ ?junk (length$ ?lw)))

(productions (+ ?p 1)))

)

Figure 4: CLIPS World Model Update Rules

The world model and the robot’s beliefs can also be com-
municated from and to other robots, in particular regarding
which pucks a machine is currently loaded with.

System Integration
The overall system consists of an initial fact base contain-
ing about two dozen facts, for example holding information
about the machines (we know that there will be 10 machines
on the playing field, but we do not know their type assign-
ments). The rule base comprises a total of 74 rules, 38 are
used for processing and publishing world model updates,
24 are concerned with the production process, 7 serve for
the simulation and 5 for house keeping. So we see that the
system requires only a small number of rules to maintain a
world model and exhibit the behavior for the logistics sce-
nario in 2012. It already handles communication and will
extend to a more dynamic production scenario.

The simulation is used to perform spot tests for the agent
program. When setting up a robot system for a new task,
many software components on all levels need to be devel-
oped and integrated at the same time. The more a compo-
nent can be tested independently of the others, the easier its
integration into the full system typically gets. The agent sim-
ulation operates by disconnecting the agent from the actual
robot system. It creates ground-truth data — either manu-
ally defined or randomized — for a particular scenario, i.e.,
a machine type assignment. Then, all actions that the robot
executes, like fetching a puck or moving with it to a ma-
chine, are assumed to be successful. Then, perception in-
put like a signal light response is generated based on the
input and ground-truth information. Hence, the game can
be played rapidly and often. The excellent tracing features
of rule activation allow to verify the sequence of actions,



detect planning dead ends, and optimize the sequence of ac-
tions. This makes simulation a valuable tool for debugging.
Also, if an error is encountered, particular scenarios can be
replayed. Figure 2(b) shows how the perception input can be
provided either by the simulation, or by real world percep-
tion. The interface of the agent towards the input remains
the same for either simulation or perception.

Actions do fail sooner or later when operating on the real
robot, of course. For example, the puck might be lost when
taking it to another machine. The error handling is done
on the reactive layer as much as possible, e.g., the puck is
constantly observed during transport and if lost a behav-
ior is triggered to recover it. If at some point the reactive
layer must conclude that it cannot recover the agent is noti-
fied. For example, recovering a puck could endanger another
puck in a machine area. The CLIPS agent in that case aborts
the action, updates its belief about the world, e.g., that it is
no longer holding a puck, and goes to the idle state from
where it can commit again to the next best action.

5 Discussion
In this paper we presented our CLIPS-based approach to
a supply chain optimization (SCO) problem in the LLSF.
Rules encoding certain situations guide the robot for the
next best action to take. This can be exploration by tak-
ing pucks to yet unknown machines, sensing its reactions
and reasoning about the actual type of the machine, or to
continue in the production process. This incremental plan-
ning is required to cope with the incomplete knowledge in
the domain, the result of an initially unknown machine type
assignment. Priorities prefer the completion of higher val-
ued goals — in the sense of winning points in the game.
The system requires only a small number of rules to com-
plete the task and has been implemented on a computation-
ally limited platform, showing the feasibility and efficiency
of the approach. We have experienced the LLSF as an in-
teresting testbed and robotic competition for benchmarking
our high-level system for the robotic SCO problem.

For our future work, we plan to describe the LLSF domain
in the Planning Domain Definition Language (PDDL) to
gain more flexibility. The current rule-based implementation
will serve as a baseline system for comparison. An example
for using state-of-the-art PDDL planner for SCO problems
is (Radzi, Fox, and Long 2007). There, the authors compare
SGPlan, LPG-d and CRICKEY on a number of SCO prob-
lems with the result that none of the algorithms could handle
all features of the domain. While the presented optimiza-
tion problem is more complex than what we have to deal
with in our domain, their results show that solving complex
SCO problems is challenging and not easily done off-the-
shelf. Using a PDDL description would also allow for try-
ing out planners that combine task level planning with geo-
metric planning such as (Cambon, Gravot, and Alami 2004;
Kaelbling and Lozano-Perez 2011). Another option is
to employ continual planning (Keller, Eyerich, and Nebel
2010), which allows for incremental reasoning in a more
sophisticated way. Other areas to work on are multi-robot
coordination, task optimization strategies, and handling of
uncertainty. Additionally, the increasing complexity of the

league in the future poses further challenges to be addressed.
Our software has been released as Open Source software.3

Acknowledgments
We thank the Carologistics RoboCup Team for their tremen-
dous effort to develop a system on which the presented work
could base. This work was supported by the German Na-
tional Science Foundation (DFG) with grants GL747/9-5
and LA747/18-1. We thank the anonymous reviewers.

References
Beck, D., and Niemueller, T. 2009. AllemaniACs 2009 Team De-
scription. Technical report, KBSG, RWTH Aachen University.
Cambon, S.; Gravot, F.; and Alami, R. 2004. A robot task planer
that merges symbolic and geometric reasoning. In Proc. of the 16th
Eu. Conf. on Artificial Intelligence (ECAI-04), 895–899.
Forgy, C. L. 1982. Rete: A fast algorithm for the many pattern/-
many object pattern match problem. Artificial Intelligence 19(1).
Giarratano, J. C. 2007. CLIPS Reference Manuals.
http://clipsrules.sf.net/OnlineDocs.html.
Kaelbling, L. P., and Lozano-Perez, T. 2011. Hierarchical planning
in the now. In IEEE Int. Conf. on Robotics and Automation (ICRA).
Keller, T.; Eyerich, P.; and Nebel, B. 2010. Task Planning for
an Autonomous Service Robot. In 33rd German Conference on
Artificial Intelligence (KI 2010).
Kitano, H.; Asada, M.; Kuniyoshi, Y.; Noda, I.; and Osawa, E.
1997. RoboCup: The Robot World Cup Initiative. In Proceedings
of the 1st Int. Conf. on Autonomous Agents.
Kucera, D. 2012. Amazon Acquires Kiva Systems in Second-
Biggest Takeover. Available at http://bloom.bg/Gzo6GU.
Lee, E. 2008. Cyber Physical Systems: Design Challenges. In
11th IEEE Int. Symp. on Object Oriented Real-Time Distributed
Computing (ISORC), 363–369.
Niemueller, T.; Ferrein, A.; Beck, D.; and Lakemeyer, G. 2010.
Design Principles of the Component-Based Robot Software Frame-
work Fawkes. In International Conference on Simulation, Model-
ing, and Programming for Autonomous Robots (SIMPAR).
Niemueller, T.; Ferrein, A.; and Lakemeyer, G. 2009. A Lua-
based Behavior Engine for Controlling the Humanoid Robot Nao.
In RoboCup Symposium 2009.
Quigley, M.; Conley, K.; Gerkey, B. P.; Faust, J.; Foote, T.; Leibs,
J.; Wheeler, R.; and Ng, A. Y. 2009. ROS: an open-source Robot
Operating System. In ICRA Workshop on Open Source Software.
Radzi, N. H. M.; Fox, M.; and Long, D. 2007. Planning in supply
chain optimization problem. In Proc. of the 26th Workshop of the
UK Planning and Scheduling Special Interest Group (PlanSIG-07).
Srinivasa, S. S.; Berenson, D.; Cakmak, M.; Collet, A.; Dogar,
M. R.; Dragan, A. D.; Knepper, R. A.; Niemueller, T.; Strabala,
K.; Vande Weghe, M.; and Ziegler, J. 2012. HERB 2.0: Lessons
Learned From Developing a Mobile Manipulator for the Home.
Proceedings of the IEEE 100(8).
The Economist. 2012. The third industrial revolution. Vol. 12(16).
http://www.economist.com/node/21553017.
Wygant, R. M. 1989. CLIPS: A powerful development and delivery
expert system tool. Computers & Industrial Engineering 17(1–4).

3Find code, documentation, and videos of the robot in action at
http://www.fawkesrobotics.org/p/clips-agent

http://clipsrules.sf.net/OnlineDocs.html
http://bloom.bg/Gzo6GU
http://www.economist.com/node/21553017
http://www.fawkesrobotics.org/p/clips-agent

