
Fuzzy Representations and Control
for Domestic Service Robots in Golog

Stefan Schiffer, Alexander Ferrein, and Gerhard Lakemeyer

Knowledge Based Systems Group
RWTH Aachen University, Aachen, Germany

{schiffer,ferrein,gerhard}@cs.rwth-aachen.de

Abstract. In the RoboCup@Home domestic service robot competi-
tion, complex tasks such as “get the cup from the kitchen and bring it
to the living room” or “find me this and that object in the apartment”
have to be accomplished. At these competitions the robots may only
be instructed by natural language. As humans use qualitative concepts
such as “near” or “far”, the robot needs to cope with them, too. For
our domestic robot, we use the robot programming and plan language
Readylog, our variant of Golog. In previous work we extended the action
language Golog, which was developed for the high-level control of agents
and robots, with fuzzy concepts and showed how to embed fuzzy con-
trollers in Golog. In this paper, we demonstrate how these notions can be
fruitfully applied to two domestic service robotic scenarios. In the first
application, we demonstrate how qualitative fluents based on a fuzzy set
semantics can be deployed. In the second program, we show an example
of a fuzzy controller for a follow-a-person task.

1 Introduction

Classical applications for approaches to cognitive robotics and reasoning about
actions are delivery tasks, where the robot should deliver a letter or fetch a
cup of coffee. In these domains, it becomes obvious that solving such tasks
deploying reasoning and knowledge representation is superior to, say, reactive
approaches in terms of flexibility and expressiveness. An even more advanced ap-
plication domain is RoboCup@Home [13, 14]. As a distinguished league under
the roof of the RoboCup federation the robots have to fulfil complex tasks such
as “Lost&Found”, “Fetch&Carry”, or “WhoIsWho” in a domestic environment.
In the first tasks the robot has to remember and to detect objects, which are
hidden in an apartment, or has to fetch a cup of coffee from, say, the kitchen and
bring it to the sitting room, while in the latter the robot needs to find persons
and recognise their faces. The outstanding feature of these applications is that
they require integrated solutions for a number of sub-tasks such as safe naviga-
tion, localisation, object recognition, and high-level control (e.g. reasoning). A
particular complication is that the robot may only be instructed by means of
natural interaction, e.g. speech or gestures. Human-robot interaction is hence

2 Stefan Schiffer, Alexander Ferrein, and Gerhard Lakemeyer

largely based on natural language. For example, in the Fetch&Carry task it is
allowed to help the robot with hints like “The teddy is near the TV set”.

Humans make frequent use of qualitative concepts like near or far, as the ex-
ample shows. It would be desirable that the robot could interpret these concepts
and cope with them. When reasoning techniques are deployed to come up with
a problem solution for these domestic tasks, also these mechanisms need to be
able to cope with those qualitative concepts. But even as logic-based reasoning
approaches make inherently use of qualitative concepts, the rest of the complex
robot architecture does not. Hence, one needs to bridge the gap between the
qualitative high-level control and the quantitative robot control system.

In this paper, we show how this gap can be bridged for domestic robot ap-
plications. We extended the logic-based high-level robot programming and plan
language Readylog [4] with so-called qualitative fluents describing properties of
the world based on fuzzy set theory [5] and integrated fuzzy control techniques
into the robot control language [6]. This enables us (1) to map qualitative predi-
cates to quantitative values based on a well-defined semantics, and (2) to combine
fuzzy control and logic-based high-level control. In the sequel, we show how these
concepts can be used beneficially to formulate compact solutions for tasks such
as Fetch&Carry . While we only give a preliminary specification here, for our fu-
ture work we aim at deploying these programs to our domestic robot platform,
which participated successfully at RoboCup@Home competitions in the past.

The rest of this paper is organised as follows. In Section 2, we give a brief
introduction to the robot programming and planning language Readylog and the
situation calculus, which Readylog is based on. We recapitulate previous work
on integrating fuzzy sets and fuzzy control structures into Golog in Section 3,
before we show our qualitative domain description in Section 4. In particular, we
define necessary qualitative predicates for the domestic service robotics domain
and define fuzzy control structures to enable the robot to cope with qualitative
predicates. We conclude with Section 5.

2 The Situation Calculus and Golog

The Situation Calculus [10] is a second order language with equality which allows
for reasoning about actions and their effects. The world evolves from an initial
situation due to primitive actions. Possible world histories are represented by
sequences of actions. The situation calculus distinguishes three different sorts:
actions, situations, and domain dependent objects. A special binary function
symbol do : action × situation → situation exists, with do(a, s) denoting the
situation which arises after performing action a in situation s. The constant S0

denotes the initial situation, i.e. the situation where no actions have yet occurred.
We abbreviate the expression do(an, . . . do(a1, S0) . . .) with do([a1, . . . , an], S0).

The state the world is in is characterized by functions and relations with a
situation as their last argument. They are called functional and relational fluents,
respectively. The third sort of the situation calculus is the sort action. For each
action one has to specify a precondition axiom stating under which conditions it

Fuzzy Representations and Control for Domestic Service Robots in Golog 3

is possible to perform the respective action and effect axioms formulating how the
action changes the world in terms of the specified fluents. An action precondition
axiom has the form Poss(a(x), s) ≡ Φ(x, s) where the binary predicate Poss ⊆
action × situation denotes when an action can be executed, and x stands for
the arguments of action a. After having specified when it is physically possible
to perform an action, it remains to state how the respective action changes the
world. This is done by so-called successor state axioms [11].

Readylog [4] is our variant of Golog [9] and also makes use of Reiter’s
BATs as described above. The aim of designing the language Readylog was to
create a Golog dialect which supports the programming of the high-level control
of agents or robots in dynamic real-time domains such as domestic environments
or robotic soccer. Readylog borrows ideas from [1,3,7–9] and features the fol-
lowing constructs: (1) sequence (a; b), (2) non-deterministic choice between ac-
tions (a|b), (3) solve a Markov Decision Process (MDP) (solve(p, h), p is a Golog
program, h is the MDP’s solution horizon), (4) test actions (?(c)), (5) event-
interrupt (waitFor(c)), (6) conditionals (if (c, a1, a2)), (7) loops (while(c, a1)), (8)
condition-bounded execution (withCtrl(c, a1)), (9) concurrent execution of pro-
grams (pconc(p1, p2)), (10) probabilistic actions (prob(valprob, a1, a2)), (11) prob-
abilistic (offline) projection (pproj (c, a1)), and (12) procedures
(proc(name(parameters), body)). The idea of Golog to combine planning with
programming was accounted for in Readylog by integrating decision-theoretic
planning; only partially specified programs which leave certain decisions open,
which then are taken by the controller based on an optimization theory, are
needed.

A nice feature of Golog and Readylog is that its semantics is based on the
situation calculus. That means that both languages have a formal semantics and
properties of programs can be proved formally. We refer the interested reader
to [4] for the complete formal definition of the language. Golog languages come
with run-time interpreters usually programmed in Prolog. Also, a Readylog
implementation is available in Prolog.

3 Qualitative Fluents and Fuzzy Controllers in Golog

In this section, we briefly go over our previous work on integrating fuzzy fluents
and fuzzy controllers into Golog. For technical details we refer to [5, 6].

3.1 Fuzzy Fluents

The essence of qualitative representations is to find appropriate equivalence
classes for a number of quantitative values and to group them together in these
qualitative classes. Fuzzy set theory seems appealing as it avoids sharp bound-
aries of the classes: a quantitative value can be, for instance, in two classes at
the same time, the transition between two neighbouring classes can be designed
as being smooth. This characteristic can avoid problems every roboticist already

4 Stefan Schiffer, Alexander Ferrein, and Gerhard Lakemeyer

back
back left

left
front left

front
front rightfront right

rightright
back rightback right

backback

θ [rad]

membership

−π − 3π
4

−π
2

−π
4

0 π3π
4

π
2

π
4

0.5

1.0

Fig. 1. Membership function for qualitative orientation at level 3

has experienced: sensor values oscillate between two categories resulting in awk-
ward behaviour of the robot.

Our formalisation of fuzzy fluents is based on the idea to extend ordinary
functional fluents with a degree of membership to a certain qualitative category.
To use these fluents, one simply defines the different categories and membership
values in the domain specification. An example for the orientation fluent is given
in Fig. 1. What is further needed in order to do reasoning with these kinds of
fluents, is a routine that restores a quantitative value from a qualitative category,
that is, to defuzzify a category. In [5], we formalise a centre-of-gravity defuzzifier
in the situation calculus. However, other defuzzifiers known from fuzzy set theory
can easily be used as well.

For illustrating reasoning with qualitative positional information consider the
following simple example. A robot is situated in a one dimensional room with a
length of ten metric units. To keep things simple, we restrict ourselves to integer
values for positions in the following. We have one single action called gorel(d)
denoting the relative movement of d units of the robot in its world. This action is
always possible, i.e. Poss(gorel(d), s) ≡ >. The action has impact on the fluent
pos which denotes the absolute position of the robot in the world. The successor
state axiom of pos is defined as

pos(do(a, s)) = y ≡ a = gorel(d) ∧ y = pos(s) + d ∨ a 6= gorel(d) ∧ y = pos(s).

There is a table in the robot’s world, its position is defined by the macro
postable = p

.
= p = 9. In the initial situation, the robot is located at position 0,

i.e. pos(S0) = 0. We want to evaluate the robot’s position and its distance to
the table. Therefore we define a functional fluent dist which returns the distance
between the robot and the table:

dist(do(a, s)) = d ≡ ∃p1.postable = p1 ∧ ∃p2.pos(do(a, s)) = p2 ∧ d = p1 − p2.

We partition the distance in categories close, medium, and far, and introduce
qualitative categories for the position of the robot as back, middle, and front.
We give the (fuzzy) definition of those categories below, where we use (ui, µi) as
an abbreviation for u = ui ∧ µ = µi. For instance, the fuzzy categories for the

Fuzzy Representations and Control for Domestic Service Robots in Golog 5

Inference
Mechanism

Rule BaseF
u
zz

y
fi
ca

ti
o
n

D
ef

u
zz

y
fi
ca

ti
o
n

P
ro

cess

Ref.
Input
r(t)

Inputs
u(t)

Outputs
y(t)

(a) Generic fuzzy controller

fuzzy controller(

if φ then assign(f, ck); · · · ;

if ψ then assign(g, cl);

default(assign(f, cn); assign(g, cm)))

(b) ReadyLog fuzzy controller

Fig. 2. Generic architecture and ReadyLog statement for a fuzzy controller

position of the robot in the world can be defined as

F(position, u, µu) ≡
(position = back ⊃ (0, 0.25) ∨ (1, 0.75) ∨ (2, 0.75) ∨ (3, 0.25)) ∨
(position = middle ⊃ (3, 0.25) ∨ (4, 0.75) ∨ (5, 0.75) ∨ (6, 0.25)) ∨
(position = front ⊃ (6, 0.25) ∨ (7, 0.75) ∨ (8, 0.75) ∨ (9, 0.5)),

Similary, the orientation relation can be defined. Note that F(c, u, µ) is our first-
order definition of a fuzzy set for a linguistic category c with µu being the
membership value of the quantitative value u denoting to which degree u belongs
to c (see [5] for the complete axiomatization).

The robot can move around in integer steps. Restricting to integers presup-
poses that we need to use an altered version cog′(c) of the centre-of-gravity
defuzzyfier formula: cog′(c)

.
= bcog(c)c.

Suppose now that the robot’s control program contains the action gorel(far)
mentioning the qualitative term far. At which position will the robot end up in
situation s = do(gorel(far), S0)? The qualitative category has to be handled in the
successor state axiom. We need to apply the function cog′(c) to the qualitative
term which yields always a quantitative representative. The extended definition
of the successor state axiom then looks as follows:

pos(do(a, s)) = y ≡
a = gorel(d) ∧ ((∃d′, c, u, µu.F(c, u, µu) ∧ c = d ∧ d′ = cog′(d)) ∨
(¬∃c, u, µu.F(c, u, µu) ∧ d′ = d)) ∧ y = pos(s)+d′ ∨ a 6= gorel(d) ∧ y = pos(s).

Note that we rely on the completeness of the specification of the membership
function here, so that if d is a linguistic term there always is an entry in the mem-
bership function for that d. Otherwise we could end up computing y as the sum
of a real and category. Our formalization yields is(pos(do(gorel(far), S0)), front),
i.e. the robot ends up in the front part of its world after executing gorel(far).
Note that “is” denotes a predicate in our framework to query fuzzy fluent values.
It will be also used in Algorithms 1 and 2.

3.2 Fuzzy Controller in Readylog

Fig. 2 shows a schematic fuzzy controller. The quantitative sensor values y(t),
together with some reference input r(t), which describes the vital state of the

6 Stefan Schiffer, Alexander Ferrein, and Gerhard Lakemeyer

system, need to be fuzzified, i.e. the membership to a certain class needs to be
determined. The Inference Mechanism uses these fuzzified input values together
with a rule base of fuzzy rules to select the appropriate control output. The
output as such uses fuzzy categories and thus must be defuzzified to serve as an
input u(t) for the real world (the control output). The output of the real world
process serves as the sensor input for the next control step.

To map this into Readylog, we introduce a statement fuzzy controller
which takes a rule base as input and returns the control output (cf. also [6]). We
give the general form of this statement in Fig. 2(b).
A fuzzy rule base in Readylog is interpreted as follows. Each matching fuzzy rule
will be replaced by its consequence, i.e. a special assignment statement, while
non-matching ones contribute nil. The assignment statement assign(f, c) used
in the controller is a Readylog action which assigns the qualitative category c to
the fuzzy fluent f. As defuzzifier, we use the centre-of-gravity (cog). Depending
on the assigned output category, control actions can be sent to the actuators.
The condition of a rule can be a complex formula over fuzzy fluents stating for
example: is the object close and very close? Sometimes, it may happen that no
given rule in a controller block matches at all, nevertheless some output would be
required. We therefore define an additional statement default(assign(f, c); . . .),
which is interpreted in case the control output was the nil action after evaluating
the rule base. This gives the basic idea how a rule base is encoded in Readylog.
We left out the formal definition of the construct. It can be found in [6].

4 Applications in a Domestic Service Robotics Domain

In this section we give two examples for using fuzzy fluents and fuzzy controllers
in the domestic robot domain. We start with a brief description of the tasks.
Before we show the example Readylog programs, we define the required distance
and orientation relations.

4.1 A Domestic Service Robotics Domain (RoboCup@Home)

In the RoboCup@Home competition service and assistive robot technology that
is highly relevant for future personal domestic applications should be demon-
strated [12]. In the competition, the robots have to fulfil tasks such as:

– FollowMe! : the robot has to follow a human through the apartment;
– Fetch&Carry : a human names known objects and the robot needs to fetch

them. The human may give hints such as: “The teddy is near the TV”;
– Walk’n’Talk : in a guidance phase, a human instructor leads the robot around

in an apartment and tells it certain landmarks such as “kitchen table”, “TV
set”, or “fridge”. In a second phase the robot is instructed to navigate to
some of these just learnt places.

The rules of the RoboCup@Home competition state that a robot—to be suc-
cessful in the competition—is to be endowed with a certain set of basic abilities,

Fuzzy Representations and Control for Domestic Service Robots in Golog 7

like navigation, person and object recognition, and manipulation. Furthermore,
fast and easy calibration and setup is essential, as the ultimate goal is to have a
robot up and running out of the box. Also, human-robot interaction has to be
achieved in a natural way, i.e. interacting with the robot is allowed only using
natural language (that is by speech) and gesture commands. As mentioned in the
introduction, humans tend to make use of qualitative concepts such as near or
far. With introducing suitable qualitative concepts, we bridge the gap between
human and robot representations of domestic environments.

But not all parts of the solution of a domestic task require deliberation. For
some decisions simple reactive controllers are sufficient. However, these reactive
mechanisms also need to understand qualitative concepts. Here, we can make
use of our embedding of fuzzy controllers in Readylog. In the next sections, we
show some specification examples.

4.2 Qualitative Representations for Domestic Environments

One very important form of interaction between a human and a robot in the
RoboCup@Home domain is to give the robot some hints where objects might be
located. Based on Clementini, Felici, and Hernandez [2], we deploy qualitative
representations for positional and directional information that can be used to
instruct the robot. The position of a primary object is represented by a pair
of distance and orientation relations with respect to a reference object. Both
relations depend on a so-called frame of reference which accounts for several
factors like the size of objects and different points of view.

In the domestic settings we can define different distance relations according
to: (1) external references such as the maximal size of the apartment: “The
plant is at the far end of the corridor”; (2) intrinsic references used in relating
objects to each other such as room or table: “The cup is on the table close to
the plate” vs. “The teddy is close to the TV”; and (3) an appropriate distance
system. In our domestic environment we suggest to make finer distinctions in
the neighbourhood of the reference object than in the periphery. Hence, we can
distinguish the scales dist-scale ∈ {apartment, room, object(o)}, where object o
refers to objects such as table, or bookshelf.

Hence, we must provide a procedure analyseHint , which takes a hint given
by the human instructor and distills the position of the object, the frame of
reference as well as the scale from that hint. For instance: (a) “The plant is far
on the left side of the corridor”; the primary object is the plant, the point of
view is the view point of the robot, the distance scale is set to the size of the
corridor. (b) “The cup is on the table close to the plate”; the primary object is
the cup, the reference object is the plate, the distance scale is set to the size of
the table. No orientation relation is given. (c) “The teddy is close to the TV”;
the primary object is the teddy, the reference object is the TV, the distance
scale should be set to the size of the room where the TV is located. Again, no
orientation relation is given.

With this procedure at hand, we can adopt our fuzzy fluents for the qual-
itative distance and orientation. The membership function for the orientation

8 Stefan Schiffer, Alexander Ferrein, and Gerhard Lakemeyer

fluent was given in Fig. 1. We can define the membership function for distance
in a similar way. In the next section, we give an idea of how these fluents can be
used for programming the robot.

4.3 Qualitative Notions in High-level Programs

Now that we have proposed an initial modelling of qualitative representations
of positional information in a domestic setting we show how we can make use
of these representations within our existing high-level control mechanism. Algo-
rithm 2 shows a slightly abstracted version of a Readylog control program for
the Fetch&Carry task.

The procedure fetch and carry takes the object that should be fetched and
a user hint as input. At first, the action analyseHint is executed. This is a com-
plex action which involves natural language processing. From the user phrase,
the frame of reference for orientation and distance as well as the distance scale is
extracted (as pointed out in the previous section). The action’s effect axioms are
changing fluent values for the fluents describing the orientation’s frame of refer-
ence, the distance system, the distance scale, the distance’s frame of reference
as well as the qualitative position of the reference object. The next statement
in the program is a so-called “pick” statement (π) which is used to instantiate
the free variables in the logical formula in the next test action (denoted by the
“?”). The whole construct can be seen as an existential quantifier, and the ef-
fect is that the variables pos, forθ, fordist are bound. The next step is to call
the search routine with these parameters. The search involves the activation of
decision-theoretic planning (solve) at a position where the object is meant to
be according to the user’s hint. The position is defuzzified, taking the frame of
reference information into account. That is, the position based on the distance
scales and the quantitative orientations given the points of view etc. can now be
calculated. The action lookForObject again is a complex action which actually
tries to seek the object.

4.4 Domestic Golog Fuzzy Controllers

As detailed in Sect. 3.2 we integrated fuzzy controllers in Golog in [6]. If (a
part of) a task does not require high-level decision making (decision-theoretic
planning as used in the previous section), but can instead be solved with a
reactive mechanism it may still be convenient to make use of the qualitative
representations. One example in the domestic setting is the “FollowMe!” test.
The control of the follow behaviour can be modelled quite straight-forwardly.

In the following we show a simple rule base that can be used to solve the
FollowMe! task. The rule base for this test could look like Alg. 1. As we stated
in Sect. 3, a rule base consists of a number of if-then rules where both, the
antecedent and the consequence, mention fuzzy fluents. So, the first rule reads
as follows: “if the distance to the user is close and its speed is slow, then set the
robot speed to slow”, the second rule reads “if the distance to the user is far and
its speed is medium, then set the robot speed to fast”, where user is the person

Fuzzy Representations and Control for Domestic Service Robots in Golog 9

proc follow me rulebase
fuzzy controller(. . . ;

if is?(distuser, close, speeduser, slow) then assign(speedrobot, slow);
if is?(distuser, far, speeduser,medium) then assign(speedrobot, fast);
. . . ; default(speedrobot,medium))) ;/* end fuzzy controller */

applySpeed()
endproc

Algorithm 1: A fuzzy controller for the “FollowMe!” test

proc fetch and carry(object , hint)
analyseHint(hint);
π(pos, forθ, fordist).[ori type(forθ) ∧ dist system(fordist)∧
dist scale(fordist) ∧ dist type(fordist) ∧ object pos(pos)]?;

search(object, pos, forθ, fordist)
endproc
proc search(object, pos, forθ, fordist)

solve(while ¬objectFound do
pickBest(search pos = defuzzify(pos, forθ, fordist));
lookForObjectAt(object , search pos);

endwhile, H) /* end solve with horizon H */
pickup and return(object);

endproc

Algorithm 2: A Readylog program for the “Fetch&Carry” test.

to be followed. The is? predicate is defined in [6] and denotes the conjunction of
the fuzzy fluents distuser and speeduser. If neither condition applies, the default
speed selection is set to medium. Finally, the speedrobot fuzzy fluent has to be
defuzzified, that is, a quantitative value is calculated for the qualitative class.
Then, we can apply the quantitative speed to the robot motors.

By using a fuzzy controller with its simple concept of a set of rules we alleviate
the specification of the control. We can use linguistic terms to describe the
intended behaviour and leave the details on what values to send to the mid- and
low-level modules to our automatic machinery.

5 Conclusions

In this paper, we presented an approach on how high-level robot controllers
could deal with qualitative representations for domestic environments. For robot
competitions such as RoboCup@Home this is useful, as the robot needs to be
instructed by a human operator by natural language. Having qualitative rep-
resentations in place allows for more human-like instructions as humans tend
to use qualitative (spatial) representations such as far or left-of. In our pre-
vious work, we defined qualitative fluents in the situation calculus based on
fuzzy sets. This allows us to define qualitative fluents in a well-founded way.
Particularly, it gives a semantics to derive quantitative values from qualitative
categories and vice versa. Further, we proposed a semantics for fuzzy controller

10 Stefan Schiffer, Alexander Ferrein, and Gerhard Lakemeyer

in Golog. Both, the definition of fuzzy fluents and fuzzy controllers, allows us
to write programs mentioning qualitative values in a straight-forward way. For
the RoboCup@Home tasks Fetch&Carry and FollowMe! we showed example
implementations, how qualitative representations and fuzzy controllers could be
beneficially deployed. While these programs only reflect first ideas of deploying
fuzzy fluents and fuzzy controllers in domestic robot applications, we aim at im-
plementing different controllers and programs making use of the fuzzy notions
for our future work on our domestic robot platform.

References

1. Boutilier, C., Reiter, R., Soutchanski, M., Thrun, S.: Decision-theoretic, high-level
agent programming in the situation calculus. In: Proc. 17th Nat’l Conf. on Artificial
Intelligence (AAAI-00). pp. 355–362 (2000)

2. Clementini, E., Felice, P.D., Hernandez, D.: Qualitative representation of positional
information. Artificial Intelligence 95(2), 317–356 (1997)

3. De Giacomo, G., Lésperance, Y., Levesque, H.J.: ConGolog, A concurrent pro-
gramming language based on situation calculus. Artificial Intelligence 121(1–2),
109–169 (2000)

4. Ferrein, A., Lakemeyer, G.: Logic-based robot control in highly dynamic do-
mains. Robotics and Autonomous Systems, Special Issue on Semantic Knowledge
in Robotics 56(11), 980–991 (2008)

5. Ferrein, A., Schiffer, S., Lakemeyer, G.: A fuzzy set semantics for qualitative flu-
ents in the situation calculus. In: Proc. Int’l Conf. on Intelligent Robotics and
Applications (ICIRA’08), vol. 5314, pp. 498–509. Springer (2008)

6. Ferrein, A., Schiffer, S., Lakemeyer, G.: Embedding fuzzy controllers into golog.
In: Proc. IEEE Int’l Conf. on Fuzzy Systems (FUZZ-IEEE-09). pp. 498–509 (2009)

7. Grosskreutz, H.: Probabilistic projection and belief update in the pGOLOG frame-
work. In: Proceedings of the 2nd Cognitive Robotics Workshop (CogRob’00) at the
14th European Conference on Artificial Intelligence (ECAI’2000), pp. 34–41 (2000)

8. Grosskreutz, H., Lakemeyer, G.: cc-Golog – An Action Language with Continuous
Change. Logic Journal of the IGPL 11(2), 179–221 (2003)

9. Levesque, H.J., Reiter, R., Lespérance, Y., Lin, F., Scherl, R.B.: Golog: A logic
programming language for dynamic domains. J. Logic Program. 31(1-3), 59–84
(1997)

10. McCarthy, J.: Situations, actions and causal laws. TR, Stanford University (1963)
11. Reiter, R.: Knowledge in Action. Logical Foundations for Specifying and Imple-

menting Dynamical Systems. MIT Press (2001)
12. Wisspeintner, T., van der Zant, T., Iocchi, L., Schiffer, S.: Robocup@home: Sci-

entific Competition and Benchmarking for Domestic Service Robots. Interaction
Studies. Special Issue on Robots in the Wild 10(3), 392–426 (2009)

13. van der Zant, T., Wisspeintner, T.: Robocup x: A proposal for a new league where
robocup goes real world. In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y.
(eds.) RoboCup. LNCS, vol. 4020, pp. 166–172. Springer (2005)

14. van der Zant, T., Wisspeintner, T.: Robotic Soccer, chap. RoboCup@Home: Creat-
ing and Benchmarking Tomorrows Service Robot Applications, pp. 521–528. I-Tech
Education and Publishing (2007)

