
On Progression and Query Evaluation in First-Order
Knowledge Bases with Function Symbols

Vaishak Belle and Gerhard Lakemeyer
Dept. of Computer Science

RWTH Aachen
52056 Aachen

Germany
{belle,gerhard}@cs.rwth-aachen.de

Abstract
In a seminal paper, Lin and Reiter introduced the notion
of progression of basic action theories. Unfortunately,
progression is second-order in general. Recently, Liu
and Lakemeyer improve on earlier results and show that
for the local-effect and normal actions case, progression
is computable but may lead to an exponential blow-up.
Nevertheless, they show that for certain kinds of expres-
sive first-order knowledge bases with disjunctive infor-
mation, called proper+, it is efficient. However, answer-
ing queries about the resulting state is still undecidable.
In this paper, we continue this line of research and extend
proper+ KBs to include functions. We prove that their
progression wrt local-effect, normal actions, and range-
restricted theories, is first-order definable and efficiently
computable. We then provide a new logically sound and
complete decision procedure for certain kinds of queries.

Introduction
A fundamental problem in reasoning about action is projec-
tion, which is to determine if a formula holds after a number
of named actions have occurred, given a logical axiomatiza-
tion of how the world behaves. In the situation calculus [Re-
iter, 2001], a regression operator solves the problem by reduc-
ing entailments about the future to a query about the initial
knowledge base (KB). However, it is generally agreed that
the use of regression is only reasonable on a small number of
actions. In a seminal paper, Lin and Reiter (LR) [1997] de-
veloped the theory of progression, where the idea is to update
the initial KB. There are two clear advantages with progres-
sion: no duplication of effort is needed to answer multiple
queries about the resulting state, and second, one imagines
that an agent, during its idle time, can compute progression
while doing other physical activities.

In practice, progression has three main computational re-
quirements: the new KB must be efficiently computable, its
size must at most be linear in the size of initial KB (to al-
low progression to iterate), and lastly, the query evaluation
problem must at least be decidable. Unfortunately, LR’s def-
inition comes at the cost of second-order (SO) sentences in
the progressed KB. And even if it is first-order (FO), the
new theory may be an infinite one. Recently, Liu and Lake-
meyer [2009] improve on earlier results and show that for a
large class of action theories, called local-effect and normal
actions, progression is FO definable and computable, but may

lead to an exponential blow-up. Nevertheless, they also show
that for certain kinds of FO disjunctive information, called
proper+KBs, progression is efficiently computable. Briefly,
since databases, which are equivalent (under certain assump-
tions) to a maximally consistent set of function-free ground
literals, are too restrictive for KR purposes, proper+KBs
were introduced [Lakemeyer and Levesque, 2002], which
generalize databases and are equivalent to a (possibly) infi-
nite set of consistent (not necessarily maximal) function-free
ground clauses. For example, one can include things like
Graduate(john) ∨ Graduate(mary) or ∀x.(Graduate(x) ⊃
Student(x)). So while the first two requirements of progres-
sion are accounted for (at least under some restrictions) the
third, unfortunately, is not easy to satisfy. Unrestricted first-
order initial theories is clearly asking too much, but deductive
reasoning with proper+KBs, which can be seen as a language
restriction via syntactic normalization, remains undecidable.

There is a well-known tradeoff between the expressiveness
of the representation language and its computational behav-
ior. Over the decades, two main techniques have emerged. In
the first, small domain FO theories are translated into propo-
sitional ones, often augmented with domain dependent infor-
mation [Kautz and Selman, 1992]. In the second, FO features
are not compromised but entailment is weakened, by way of
non-traditional semantics e.g. [Liu et al., 2004]1. That said,
both methods have limited appeal as they are function-free.
This does not always coincide with practice, where in many
standard applications such as moving robots [Levesque and
Lakemeyer, 2001], game playing agents and planners [Re-
iter, 2001], functions are either essential or in the least al-
low for succinct representations. The apparent difficulty is
that even simple clauses such as grade = 4 ∨ grade 6= 2 re-
sult in non-trivial encodings: first, there is the semantic prop-
erty that ground functions obtain unique values, and second,
grade 6= 2 says that there are an infinite number of possible
values other than 2.

In this paper, we continue this line of research, where we
investigate cases of progression that remain practical yet ex-
pressive. We extend proper+KBs to include functions, and
show that progression wrt local-effect and normal actions is

1Liu et al. propose a decidable but incomplete reasoning proce-
dure for (function-free) proper+KBs. However, the conditions under
which reasoning becomes complete is left open.

FO definable and efficiently computable. But they do not
cover range-restricted actions [Vassos et al., 2009] which in-
clude non-local actions such as an exploding bomb that de-
stroys everything in the vicinity. We obtain computability re-
sults for this class as well. Then for a large class of FO queries
we provide a new methodology for sound and complete rea-
soning; one that is inspired by Boolean satisfiability.

In the next section, we introduce the formalism, and then
present results in the order indicated. For space reasons, the
paper contains no proofs. They are presented in [Belle, 2011].

The Logic ESo
We consider a modal reconstruction of the situation cal-
culus called ESo, with epistemic features, including only-
knowing [Levesque and Lakemeyer, 2001], which refers to
all that an agent knows in the sense of having a KB. In recent
work, Lakemeyer and Levesque [2009] show how the seman-
tics below is fully compatible with LR’s idea of progression.
So what we obtain in this paper is a definition of FO progres-
sion in an epistemic setting with regards to actions with non-
trivial sensing results, and where one can analyze beliefs and
non-beliefs as valid sentences.2 We review the main features:

1. Language: It includes fluent functions and rigid func-
tions (for actions only) of every arity,3 rigid SO func-
tions of every arity, FO variables, SO function vari-
ables, distinguished fluents Poss and SF (for sensing),
and closed under connectives: ∧,¬,=,∀, [t],2,B, O.4
We assume there is a countably infinite set of object
names N ; e.g. obj5, desk. Let A be the (infinite) set
{A(m1, . . . ,mk) | A is a rigid function, mj ∈ N}, and
these denote action names; e.g. move(obj5, desk).N∪A
serves as the domain of discourse.5 We also assume that
variables come in both the object and the action sort.

2. Terms: Every FO variable and name is a term. We use
t to denote a vector of terms, and tj to denote a term
in t. If f is a function and R is a SO function variable,
then f(t) and R(t) are terms. By primitive term and
primitive SO term, we mean ones of the form f(m) and
R(m) resp. , where mj ∈ N .

3. Formulas: Let t and t′ be terms. If α and β are formulas,
then so are: t = t′, α∧β,¬α,∀xα, ∀Rα, [t]α,Bα,Oα,
2α. Primitive equalities are formulas of the form
f(m) = n, where mj , n ∈ N . Fluent literals are of
the form f(r) = s, where f is neither Poss nor SF, and
rj and s are either variables or names. A clause is a dis-
junction of such literals. Fluent formulas are those that
only mention fluent literals.6

2While our results also apply to the non-epistemic fragment, we
believe the ability to deal with sensing is an important feature. See
[Lakemeyer and Levesque, 2009] for examples.

3Predicates are not included for simplicity, and can be thought of
as special functions whose values are either (say) name 0 or name 1.

4Symbols such as ∨, ∃, ≡ and ⊃ are understood as usual.
5This allows a substitutional interpretation of quantifiers (re-

specting sorts).
6Formulas with nested functions can be expressed wlog as a flu-

ent formula. For instance, f(g(x)) = h(x) is written equivalently
as ∃z, z′ f(z) = z′ ∧ g(x) = z ∧ h(x) = z′.

We let Z denote all finite sequences of names in A, includ-
ing 〈〉 i.e., empty sequence. We define worlds as functions
from (fluent) primitive terms and Z to N , and from primi-
tive SO terms to N . An epistemic state e ⊆ W is any set of
worlds. While names act as rigid designators, the co-referring
name for an arbitrary term is obtained wrt w and z ∈ Z as:
(a) |t|zw = t if t ∈ N ∪A;
(b) |A(t)|zw = A(m), where mj = |tj |zw and A is an action
function;
(c) |f(t)|zw = w[f(m), z], where f is a fluent, mj = |tj |zw;
(d) |R(t)|zw = w[R(m)], where mj = |tj |zw.

For sensing, we consider a relation w′ 'z w s.t. w′ '〈〉 w
for all w′ and w, and w′ 'z·t w iff w′ 'z w, w′[Poss(t), z] =
1 and w′[SF(t), z] = w[SF(t), z].

To interpret SO variables, we write w′ ∼R w to mean that
w′ and w agree on everything except assignments involving
R. Now, given e, w, z, a semantics is (connectives are under-
stood as usual):
• e, w, z |= t1 = t2 iff n1 and n2 are identical, nj = |tj |zw;
• e, w, z |= [t]α iff e, w, z · σ |= α, where σ = |t|zw;
• e, w, z |= 2α iff e, w, z · z′ |= α for all z′ ∈ Z;
• e, w, z |= ∀xα iff e, w, z |= αxn for every name n of the

right sort;
• e, w, z |= ∀Rα iff e, w′, z |= α for every w′ ∼R w;

A new feature of ESo is that belief is handled by progressing
epistemic states wrt actions. That is, let wz be a world such
thatwz[p, z′] = w[p, z ·z′] for all primitive terms p and action
sequences z′. Further, let ewz = {w′z | w′ ∈ e and w′ 'z w}.
• e, w, z |= Bα iff for all w′ ∈ ewz , ewz , w

′, 〈〉 |= α;
• e, w, z |= Oα iff for all w′, w′ ∈ ewz iff ewz , w

′, 〈〉 |= α.
Models satisfy well-known introspective properties, i.e. that
of weak S5 [Hughes and Cresswell, 1972; Lakemeyer and
Levesque, 2009]. Given a set of sentences Σ , we write Σ |=
α to mean that for every e, w, z if e, w, z |= α′ for all α′ ∈ Σ
then e, w, z |= α. Finally, |= α denotes {} |= α.

The Computability of Progression
We begin by considering the equivalent of basic action theo-
ries (BATs) of the situation calculus [Reiter, 2001].
Definition 1: Given a set of fluents F , a set Σ ⊆ ESo is
called the basic action theory over F iff Σ is the union of:7

1. The initial theory Σ0 is any set of fluent sentences. Σpre

is a sentence of the form 2Poss(v) = 1 ≡ π and Σsense

is a sentence of the form 2SF(v) = y ≡ ψ, where π, ψ
are fluent formulas and Poss represents a predicate.

2. Successor-state axioms (SSAs) Σpost is a set of sen-
tences of the form 2[v]f(x) = y ≡ γ∗f , where γ∗f =

γf (x, y, v) ∨ f(x) = y ∧ ¬∃h γf (x, h, v) one for each
fluent f and γf is a fluent formula.

Denote the initial theory as φ and the rest as 2β. Hereafter,
let t denote a name from A, say A(e). We remark that the
unique name assumption for actions is built into the logic.

Lakemeyer and Levesque [2009] obtain a characterization
of progression in the logic in terms of only-knowing:

7Free variables are (implicitly) universally quantified.

Theorem 1: [Lakemeyer and Levesque, 2009] Let t be a stan-
dard action name, then

|= O(φ ∧2β) ∧ SF(t) = x ⊃ [t]O(Ψ ∧2β),

where, Ψ is the new initial theory defined as
∃R. [(φ ∧ πvt ∧ ψvt)FR ∧

∧
∀x, y.f(x) = y ≡ γ∗f

v

t

F

R
]

s.t. R correspond to SO function variables in that Rj has the
same arity as fj .

We note that, different from LR, progression takes both the
action executed (πvt) and the sensing result (ψvt) into account.

In the sequel, we are interested in efficient progression, and
we realize this by restricting the initial theory to so-called
proper+KBs (but appropriately generalized to functions) and
considering certain classes of syntactically restricted BATs.

Proper+KBs
Let e denote Boolean combinations of formulas of the form
r = s, where r and s are either variables or names, and d
denote clauses. Let ∀α denote the universal closure of α.
Moreover, we call a formula of the form ∀(e ⊃ d) a ∀-clause.

Definition 2: A proper+KB is any finite and satisfiable set of
∀-clauses.

Restrictions on BATs
Local-effects. Actions in many domains have local-effects in
the sense that if a primitive action A(e) affects a fluent atom
f(m), then m is contained in e. They generalize the strictly
context-free class of BATs considered by LR [1997].

Definition 3: A SSA is local-effect if γf (x, y, v) is a disjunc-
tion of formulas of the form ∃u [v = A(z) ∧ µ(z)], where
z contains x ∪ {y}, u are the remaining variables in z and
µ(z) is the context formula.

Given a primitive action A(e), local-effect SSAs can be sim-
plified. That is, it can be shown that γf (x, y, A(e)) is equiv-
alent to disjunctions of the form x = m ∧ y = n ∧ µ(e),
where mj and n are names mentioned in e.

Normal Actions. Certain types of naturally occurring ac-
tions are not local-effect, e.g. moving a briefcase containing
objects. Liu and Lakemeyer [2009] observe that these actions
do not depend on the fluents on which they have non-local ef-
fects. That is, they have local-effects on all fluents mentioned
in γf . For example, moving the briefcase also moves the con-
tained objects without affecting the fluent in.

Definition 3 (cont.): A primitive action A(e) is said to have
a local-effect on a fluent f if γf (x, y, A(e)) simplifies to a
disjunction of formulas of the form x = m ∧ y = n ∧ µ(e).
Let LE(A) ⊆ F be the functions on which A(z) has local-
effect. We call A(z) normal if for each f , all fluents appear-
ing γf (x, y, v) are also in LE(A).

We consider another class of actions, called range-restricted
theories, the treatment of which is deferred to later.

Example 1: To first illustrate the idea of a proper+KB, imag-
ine the following incomplete facts about (stacks of) cards. We
have cards8 c1, c2, . . ., stacks s1, s2, . . . and ranks J,Q, . . .
Each card has a rank and is associated with a value.

8We assume that cards, ranks, values and stacks are names from
N .

Now let φ1 be a proper+KB defined as a conjunction of
rank(c1) = J (rank of c1 is J), rank(c2) = Q ∨ rank(c2) 6=
K, in(c1) = s1 (c1 is inside the stack s1) and ∀.in(x) = s1 ⊃
value(x) = 5 (all cards in s1 are valued at 5).

To illustrate BATs, let Σ0 = {payoff = 0} ∪ φ1, Σpre =
{2Poss(v) = 1} (for simplicity), Σsense = {2SF(readc1) =
y ≡ value(c1) = y}. Consider SSAs:

2[v]payoff = y ≡ ∃x.v = guess(x, y) ∧ value(x) = y ∨
payoff = y ∧ ¬∃h.(v = guess(x, h) ∧ value(x) = h);

2[v]at(x) = y ≡ ∃u. v = move(u, y)∧(u = x∨in(x) = u)∨
at(x) = y∧¬∃u, h(v = move(u, h)∧ (x = u∨ in(x) = u)).

That is, if the agent guesses the value of a card accurately, he
receives a matching payoff. The agent may read card values
(shown for c1) and move stacks between locations. (Note that
the payoff SSA is local-effect and move is a normal action.)

In this paper, we show that under the reasonable assumption
that BATs are quantifier free, the progression of a proper+KB
wrt the defined classes of BATs is efficient.

Definition 4 : A BAT is quantifier free if πvt , ψvt and
γf (x, y, v)

v
t can be simplified to quantifier free formulas.

For instance, Example 1 is clearly quantifier free.
We begin by extending the FO definability results in [Liu

and Lakemeyer, 2009] to a language with function symbols.9
First, we show that progression of local-effect SSAs is ob-
tained by forgetting [Lin and Reiter, 1994] a finite set of prim-
itive equalities. However, different from [Liu and Lakemeyer,
2009], and perhaps of independent technical interest, we will
need to handle the modal operators appearing in the instanti-
ated SSAs. In addition, progression will be characterized as
what the agent comes to only-know after the action, as an ex-
tension to Theorem 1. We then discuss computational costs.
For normal actions, Liu and Lakemeyer [2009] formalize pro-
gression as a special case of Ackermann’s Lemma, which is
a predicate elimination result [Doherty et al., 2001]. We ob-
tain an analogous theorem for function symbols and discuss
the complexity. Lastly, progression wrt range-restricted theo-
ries is also shown to be definable as forgetting a finite set of
equalities. For reasons of space, we only go over the main
aspects. See [Belle, 2011] for more details.

Forgetting
LR [1994] define a notion of forgetting from finite theories,
which we adapt below for a language with functions.10 Fol-
lowing their ideas, it can be shown that while forgetting prim-
itive equalities is FO definable, forgetting functions is SO.

In what follows, let S denote a finite set of primitive equal-
ities. We writeM(S) to mean the set of all truth assignments
to S. Slightly abusing notation, given an equality ρ and func-
tion f , we write w′ ∼ρ w and w′ ∼f w to mean that w′ and
w agree on everything initially, except maybe ρ and (resp.)
the values for equalities mentioning f .

9FO definability results for functional fluents are also mentioned
(but not published) as an extension in [Liu and Lakemeyer, 2009].
Moreover, we differ in the ways discussed above.

10While their definitions are given for standard first-order logic
and Tarskian models, we consider analogous notions for the ESo
semantical framework.

Definition 5: Let λ denote an equality or a function. Given a
fluent formula φ, we say any fluent formula φ′ is the result of
forgetting λ, denoted forget(φ, λ), if for any worldw, w |= φ′

iff there is a w′ s.t. w′ |= φ and w ∼λ w′. Inductively define
forget(φ, {λ1, . . . , λk}) as forget(forget(φ, λ1), . . . , λk).
Definition 6: Suppose θ ∈M(S). Let φ[θ] denote replacing
every occurrence of f(t) = t′ in φ with:∨k
j=1(t = mj ∧ (t′ = nj ∧BOOLj ∨ t′ 6= nj ∧¬BOOLj))∨

(
∧k
j=1 t 6= mj ∧ f(t) = t′)

where, f(mj) = nj appears in S and is replaced by the truth
assignment BOOLj according to θ.11

Theorem 2: (a) |= forget(φ,S) ≡
∨
θ∈M(S) φ[θ].

(b) |= forget(φ, f) ≡ ∃RφfR.

Progression of Local-Effect Theories
We now turn to local-effects. Suppose that we have simpli-
fied γf (x, y, A(e)) to disjunctions of x = m∧y = n∧µ(e)
as discussed. Then define the argument set (wrt f) and char-
acteristic set resp. as follows [Liu and Lakemeyer, 2009]:

1. ∆f = {(m, n)|x = m∧y = n appears in γf (x, y, v)vt }
2. Ω = {f(m) = n | f is a fluent, (m, n) ∈ ∆f}.

Essentially, local-effects affect a finite number of primitive
terms, which are those in Ω, conditioned on context formulas.
Let us denote the instantiated SSAs ([v]f(x) = y ≡ γ∗f)vt as
Fssa. So roughly speaking, progression is the addition of Fssa

to the initial theory, while forgetting the initial values of all
primitive terms specified in Ω.

However, as Fssa mentions modalities, we first convert it to
a fluent formula. Let G be fresh functions s.t. gj has the same
arity as fj . Now, let Fssa[G] denote (f(x) = y ≡ γ∗f

F

G
)
v
t , that

is, we use G to characterize formulas that hold initially.
Theorem 3: For local-effect action theories,

|= O(φ ∧2β) ∧ SF(t) = x ⊃ [t]O(Ψ ∧2β)

where Ψ = forget((φ ∧ πvt ∧ ψvt)FG ∧ Fssa[G],ΩF
G)GF .

Example 1 continued. If t denotes guess(c2, 3) then Fssa

is {value(c2) = 3 ⊃ [t]payoff = 3, value(c2) 6= 3 ⊃
[t]payoff = 0}. Thus, the progressed proper+KB φ′ is
φ1 ∪ {payoff = y ≡ (value(c2) = 3 ∧ y = 3) ∨ y = 0}. Due
to incomplete information O(φ′ ∧2β) 6|= ∃xBpayoff = x.12

Note that Theorem 3 holds for any finite theory but it may not
be efficient while the case of proper+KBs is very efficient.
Theorem 4: Forgetting an equality f(m) = n from a
proper+KB φ takes O(h + (4wl)2) time, where h is the size
of φ, l is the size of ∀-clauses in φ where f appears, and w is
the maximum number of mentions of f in a ∀-clause in φ.
It is reasonable to assume that l, w and Ω are O(1). Then,
progression is linear in the size of φ.

11It is interesting to note, for example, that forgetting f = 1 from
f = 4 is simply true, since f = 4 implies that f 6= 1. That is, for-
getting primitive equalities also results in forgetting primitive terms.

12To see where only-knowing pays off, we can reduce formulas
mentioning B to non-modal ones by means of the representation
theorem [Levesque and Lakemeyer, 2001], which we do not go over
for space reasons.

Progression of Normal Actions
When f ∈ LE(A) for a normal action A(z), then forgetting
is as above. So what is really needed is a method of forgetting
f ∈ F − LE(A).

A predicate elimination (i.e., forgetting) result by Acker-
mann [Doherty et al., 2001] states that given two formulas
∀.P (x) ⊃ α(x) and ∀.β(x), where α does not mention P
and β only mentions P positively i.e. ¬P does not occur in
the NNF of β, eliminating P from the conjunction is equiva-
lent to βP (x)

α(x) . An analogous result holds for functions:

Theorem 5: Let βi, αj and δ denote fluent formulas not men-
tioning f . Forgetting f from
δ ∧ ∀.

∧
(βi(x, y) ⊃ f(x) = y) ∧

∧
(f(x) = y ⊃ αj(x, y))

is equivalent to δ ∧ ∀.
∨
βi(x, y) ⊃

∧
αj(x, y).

That is, in any theory where the occurrence of f is semi-Horn
[Doherty et al., 2001], i.e. either as β ⊃ f or f ⊃ α, for-
getting the function is FO definable. Suppose that functions
appear in a proper+KB in the semi-Horn form. Under the
syntactic restrictions of normal actions, instantiated SSAs for
f ∈ F − LE(A) can be simplified to the semi-Horn form.
Therefore, forgetting f from the conjunction of the initial
proper+KB and the instantiated SSA is FO definable. It can
be shown that computing the result is linear in the size of the-
ory. We skip the only-knowing theorem for space reasons.

Example 1 continued. Suppose stacks are located on desk1

or desk2 and let φ2 = {at(s1) = desk1} ∪φ1. Then, progres-
sion wrt move(s1, desk2) is φ1 with the following instantiated
SSAs: { y = desk2 ∧ (x = s1 ∨ in(x) = s1) ⊃ [t]at(x) = y,
y 6= desk2 ∧ (x = s1 ∨ in(x) = s1) ⊃ ¬[t]at(x) = y }. Fi-
nally, replace all occurrences of [t]f(x) = y with f(x) = y.

Progression of Range-restricted Theories
Non-local actions such as an exploding bomb destroy every-
thing in the vicinity, i.e., these actions do not specify the ob-
jects that they affect. Global effects such as these are believed
to be one of the reasons why progression is SO. But when
the range of nearby objects is restricted, Vassos et al. [2009]
prove FO definability and computability results for certain
types of initial theories which they refer to as a database of
possible closures (DBPC). Roughly speaking, a DBPC corre-
sponds to disjunctions of maximally consistent sets of literals.

To restrict the range of nearby objects, they consider SSAs
where γf (x, y, v) is a disjunction of formulas of the form
∃u[v = A(z) ∧ µ(z,w)], where z contains y, u are the re-
maining variables in z but not in x, w are variables in x but
not in z, and µ(z,w) is the context formula.13 For every
primitive actionA(e), they further assume that the initial the-
ory entails only a finite number of substitutions for the free
variables w in the context formula µ(e,w). It then follows
that only a finite set of fluent atoms are affected after doing
an action. So progression can again be formulated in terms of
forgetting.

However, the account in Vassos et al. is very involved be-
cause progression must be also definable as a DBPC (to al-

13Strictly speaking, Vassos et al. only consider predicates in their
language. We present a functional fluent version of their notions in
order to remain consistent with the rest of the paper.

low for iterated progression). We improve on this by prov-
ing FO definability results for proper+KBs, which differs
from their KBs in the sense that it can express notions like
∀.x 6= c3 ⊃ st(x) 6= broken which says that an infinite num-
ber of objects other than c3 are not broken (but leaving the
status of c3 open). Second, the definition is a simple one via
the concept of forgetting. Therefore, computability results
from above are applicable.

We leave out the formal details, including the assumptions
placed on context formulas, for space reasons (see [Belle,
2011]). We give an example instead:

Example 1 continued. Let φ3 = {∀.near(bomb, y) = 1 ≡
y = c1 ∨ y = c2,∀.x 6= c3 ⊃ st(x) 6= broken} ∪φ1. Include:

2[v]st(x) = y ≡ v = explode ∧ near(bomb, x) = 1 ∧
y = broken ∨ st(x) = y ∧ ¬∃h.γ(x, h, v).

Then progression wrt explode is the removing of the ∀-clause
mentioning st and the adding of {st(c1) = broken, st(c2) =
broken,∀.x 6= c1 ∧ x 6= c2 ∧ x 6= c3 ⊃ st(x) 6= broken}.
Theorem 6: Progression of a proper+KB wrt local-effect,
normal and range-restricted theories is FO definable, effi-
ciently computable (under discussed assumptions), and de-
finable as a proper+KB.

Query Evaluation
The query evaluation procedure we have in mind is a logically
sound and complete decision procedure for certain classes of
queries on proper+KBs. To understand its basic principles,
we begin with the (simpler) case where both the initial theory
φ and query α are quantifier-free (QF) ground fluent formulas
(i.e. no variables), and thus representable as ground clauses.

As hinted earlier, the computation mechanism is inspired
by Boolean satisfiability where entailments are verified via
refutation i.e. checking if S .

= φ ∪ {¬α} is unsatisfiable. We
essentially consider a variant of DPLL [Davis and Putnam,
1960], which first needs the notion of an assignment.

Definition 7: Let θ denote a consistent set of positive primi-
tive equalities, and S is as above. Let [S]θ denote:

1. given f(m) = n ∈ θ, replace every occurrence of
f(m) = n in S with true, and every occurrence of
f(m) 6= n or f(m) = n′ for some n′ 6= n with false;

2. remove all clauses that contain at least one true literal,
and delete all occurrences of false literals in clauses.

Intuitively, like partial assignments in Boolean reasoners
[Gomes et al., 2008], [S]θ reduces S to a simpler formula
which is satisfiable provided S ∧ θ is. The satisfiability pro-
cedure works as follows. It takes as input any set of ground
clauses S and returns either SAT with a satisfying assignment
θ i.e. one that makes [S]θ true, or with UNSAT.

A fundamental step in the classical DPLL is that of choos-
ing a literal from the remaining clauses and considering par-
tial assignments that either sets the literal to true everywhere,
or sets it to false. In our case, the branches are possible as-
signments to primitive terms appearing in the remaining set
of clauses. However, the universe is infinite, and so not all
names can be considered. Instead, we show that it is suffi-
cient to consider names in S, plus an (arbitrary) extra one.

Given a primitive term ρ, let H(S, ρ) be a set of names
{n1, . . . , nk} s.t. ρ ◦ nj appears in S, where ◦ ∈ {=, 6=}. If
SAT is not returned for every assignment ρ = nj , then we
consider ρ = n′, for any n′ ∈ N − H(S, ρ).14

Proposition 1: Let Θ denote the set {ρ = n1, . . . , ρ =
nk, ρ = n′} obtained as above. Then S is satisfiable iff∨
θ∈Θ[S]θ is satisfiable.

Easy arguments show that a DPLL proof has k+1 branches, in
contrast to the binary tree in the Boolean case. Therefore, the
worst-case complexity is O((k+ 1)q), where q is the number
of primitive terms in S and k is the size of H(S, ρ).

Theorem 7: Given any set of ground clauses S, S is unsatis-
fiable (satisfiable) iff DPLL(S, {}) returns UNSAT (SAT).

Algorithm 1: DPLL(S, θ)
Input: set of ground clauses S with θ = {} initially
Output: UNSAT, or a set θ such that [S]θ is true
(S, θ) .= UNIT-PROPOGATE(S, θ);
if S contains false then

return UNSAT;

if S has no clauses left then
output θ and return SAT;

ρ
.
= any primitive term appearing in S and not mentioned in θ;

foreach n ∈ H(S, ρ) do
if DPLL([S]ρ=n, θ ∪ {ρ = n}) = SAT then

return SAT;

ret. DPLL([S]ρ=n′ , θ ∪ {ρ = n′}) for any n′ ∈ N − H(S, ρ);

where, UNIT-PROPOGATE(S, θ) is:
while S does not contain false and has unit clause ρ = n do
S .
= [S]ρ = n and θ .

= θ ∪ {ρ = n};

Beyond Ground Clauses. We extend the scope of the proce-
dure to allow universally quantified queries wrt proper+KBs.
We will need one reasonable assumption. But first, we prove
a result about inferring the validity of a universal by means of
a finite number of substitutions. Below, if H denotes a set of
names, let H+

b denote the union of H and b fresh names.

Theorem 8: Let φ be any set of closed fluent formulas s.t.
there is an infinite number of names not appearing in φ. Let
α be a fluent formula with a single free variable x and let H
be the set of names mentioned in φ and α. Then, φ |= ∀xα iff
φ |= αxm for all m ∈ H+

1 .

Suppose φ is a proper+KB. The idea now will be to obtain
a finite representation for gnd(φ) = {dxm | ∀(e ⊃ d) ∈
φ and |= exm}, which is the (possibly infinite) QF form of φ.
We let gnd(φ)|H+

b denote the restriction to names from H+
b .

Theorem 9: Let α be a closed QF fluent formula, φ be a
proper+KB, and H be as above. Let φ also satisfy: for ev-
ery primitive term f(m) with mj ∈ H, gnd(φ) mentions
only finitely many inequalities of the form f(m) 6= nj or

14To see why the fresh name is needed, let φ be f(1) 6= 1. Clearly,
φ is satisfiable, but only for assignments to f(1) other than 1. Also,
for functions representing relations, the procedure is modified to
only consider 0 or 1 as possible assignments (see footnote 1).

gnd(φ)|H+
1 entails

∨
f(m) = nj , where nj ∈ H.15 Then,

φ |= α iff gnd(φ)|H+
1 |= α.

Here, the ”⇐” direction is immediate. Conversely, it is possi-
ble to show that any w that satisfies gnd(φ)|H+

1 ∧ ¬α can be
extended to a world that satisfies gnd(φ) ∧ ¬α which agrees
with w on {f(m) | mj ∈ H+

1 }. Now, by applying Theorem
8 and then Theorem 9, we are able to obtain:

Corollary 1: Let φ be a proper+KB (restricted as above), α
be a QF fluent formula with a single free variable x and H is
as above. Then φ |= ∀α iff gnd(φ)|C+

1 |= αxm for all m ∈ C,
where C = H+

1 .

Example 2: (a.) If α and β denote ρ 6= K and ρ = Q resp.,
α 6|= ¬β since H(α ∧ β, ρ) = {K,Q}, [α ∧ β]ρ=Q = SAT.
And since [α ∧ ¬β]ρ=n = SAT for any new name n, α 6|= β.

(b.) Consider φ1 from Ex. 1 and let α = {in(c2) = s1}. To
see how φ1 6|= α, let H+

1 = {5, s1, c1, c2, J,Q,K, n} where
n is new. Now consider δ = gnd(φ1)|H+

1 ∧ ¬α. The only
equality mentioning in(c2) in δ is ¬α. Since gnd(φ1)|H+

1 is
sat., let in(c2) = m, m ∈ N − {s1} and we obtain SAT.

(c.) Let α be in(x) = s1 ⊃ value(x) 6= 4. Here, φ1 |= ∀α.
To see this let C be H+

1 from above. Then we obtain UNSAT

with gnd(φ1)|C+
1 ∧ ¬(αxm) for all substitutions m ∈ C.

Conclusions
We have presented the following results. We consider the ex-
pressive proper+KBs, but this time extended to include func-
tions.16 With proper+KBs as initial theories, we show FO de-
finability results for local-effect, normal and range-restricted
theories. These cover all syntactically restricted action theo-
ries studied so far. Second, we prove efficient computability
results for all three cases. Third, we consider the query eval-
uation problem, and show that despite the expressiveness, a
sound and complete decision procedure exists for a large class
of queries. The procedure shares structural properties with
satisfiability solvers, and yet quantification is interpreted over
an infinite universe. Given the success of Boolean reasoners,
we believe these results show promise especially as far as pro-
gression is concerned in expressive settings. We remark that
besides the LR definition, a number of alternate ones appears
in the literature [Lakemeyer and Levesque, 2009].

While the chosen formalism in the paper is the situation
calculus, we do believe our knowledge bases can be used with
others. We think an important direction for future work lies in
identifying classes of action theories for which the regressed
formula [Reiter, 2001] remains in a form that is decidable.

As a concluding remark, reasoning about functions, equal-
ities and constants is certainly not a new effort, and goes back

15To see why such a restriction is needed, let φ = ∀.x 6= n ⊃
f(n) 6= x for some n. While φ entails f(n) = n, gnd(φ)|H+

1 does
not. If we add, say, f(n) = n ∨ f(n) = m to φ then gnd(φ)|H+

1

does entail f(n) = n as required. However, if there are only finitely
many inequalities, then they will also appear in gnd(φ)|H+

1 .
16Proper+KBs with functions are strictly more expressive. For

instance, although formulas of the form ∀.x 6= y ⊃ ¬P (x)∨¬P (y)
simulate the uniqueness of function values, we can not capture the
existence of values, i.e. ∃x.P (x), due to the infinite discourse.

to Ackermann [Badban et al., 2007]. Here too one finds vari-
ants of DPLL for certain QF fragments of FO logic, where
often nesting of functions is allowed and the uniqueness of
constants is not assumed. However, it is the latter property
that allows us to handle quantifiers, both in the query and the
KB, in a decidable manner. We believe the formalism pro-
vides a new insight in terms of finding satisfying assignments
to ground functions. Nonetheless, it remains to be seen if it
is the more practically viable option, and should be favored
to say an encoding of the KB (plus, the uniqueness of names)
input to the many solvers [Badban et al., 2007].

Acknowledgements
We thank anonymous reviewers for helpful suggestions. The
first author is supported by the B-IT Graduate School.

References
[Badban et al., 2007] B. Badban, J. v. de Pol, O. Tveretina, and H.

Zantema. Generalizing DPLL and satisfiability for equalities. Inf.
Comput., 205:1188–1211, 2007.

[Belle, 2011] V. Belle. Ph.D. Dissertation, Dept. of Computer Sci-
ence, RWTH Aachen University, 2011. In Preparation.

[Davis and Putnam, 1960] M. Davis and H. Putnam. A computing
procedure for quantification theory. J. ACM, 1960.

[Doherty et al., 2001] P. Doherty, W. Lukaszewicz, and A. Szalas.
Computing Strongest Necessary and Weakest Sufficient Condi-
tions of First-Order Formulas. In Proc. IJCAI-01, 2001.

[Gomes et al., 2008] C. Gomes, H. Kautz, A. Sabharwal, and
B. Selman. Satisfiability solvers. In Handbook of KR. Elsevier,
2008.

[Hughes and Cresswell, 1972] G. E. Hughes and M. J. Cresswell.
An introduction to modal logic. Methuen London, 1972.

[Kautz and Selman, 1992] H. Kautz and B. Selman. Planning as
satisfiability. In Proc. ECAI-92, 1992.

[Lakemeyer and Levesque, 2002] G. Lakemeyer and H. Levesque.
Evaluation-based reasoning with disjunctive information in first-
order knowledge bases. In Proc. KR, 2002.

[Lakemeyer and Levesque, 2009] G. Lakemeyer and H. Levesque.
A semantical account of progression in the presence of defaults.
Conceptual Modeling: Foundations and Applications, 2009.

[Levesque and Lakemeyer, 2001] H. Levesque and G. Lakemeyer.
The logic of knowledge bases. The MIT Press, 2001.

[Lin and Reiter, 1994] F. Lin and R. Reiter. Forget it. In Working
Notes of AAAI Fall Symposium on Relevance, 1994.

[Lin and Reiter, 1997] F. Lin and R. Reiter. How to progress a
database. Artificial Intelligence, 92(1-2):131–167, 1997.

[Liu and Lakemeyer, 2009] Y. Liu and G. Lakemeyer. On first-
order definability and computability of progression for local-
effect actions and beyond. In Proc. IJCAI, 2009.

[Liu et al., 2004] Y. Liu, G. Lakemeyer, and H. Levesque. A logic
of limited belief for reasoning with disjunctive information. In
Proc. KR, 2004.

[Reiter, 2001] R. Reiter. Knowledge in action: logical foundations
for specifying and implementing dynamical systems. MIT Press,
2001.

[Vassos et al., 2009] S. Vassos, S. Sardina, and H. Levesque. Pro-
gressing basic action theories with non-local effect actions. In
Proc. Commonsense Reasoning, 2009.

