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Abstract
Robots interacting in complex and clut-
tered environments may face unex-
pected situations referred to as exter-
nal faults which prohibit the success-
ful completion of their tasks. In order
to function in a more robust manner,
robots need to recognise these faults
and learn how to deal with them in the
future. We present a simulation-based
technique to avoid external faults occur-
ring during execusion releasing actions
of a robot. Our technique utilizes sim-
ulation to generate a set of labeled ex-
amples which are used by a histogram
algorithm to compute a safe region. A
safe region consists of a set of releas-
ing states of an object that correspond to
successful performances of the action.
This technique also suggests a general
solution to avoid the occurrence of ex-
ternal faults for not only the current, ob-
servable object but also for any other
object of the same shape but different
size.

1 Introduction
Service robots have to perform common house-
hold tasks effectively in dynamic and partially
known environments. To be truly robust, such
robots must to be able to accomplish their ac-
tions in a satisfactory manner without supervision.
Their performance can be degraded either by in-
ternal hardware and software faults or by unex-
pected external faults. Such external faults can
occur instantaneously, are sporadic in nature and
are largely unforeseeable at the design stage. As

it is impossible to fully supply the robots with
knowledge of all possible unexpected situations
a priori, the robots must determine the causes of
external faults on their own to avoid their occur-
rence in the future.

Figure 1 illustrates two typical external fault
scenarios. In scenario 1, a service robot Care-O-
Bot III 1, has to place an object (the green crisp
can) on a table. If the robot were to release the can
in its current position it would likely fall over. In
scenario 2, the Care-O-Bot III successfully drops
an object into a box. However, the robot may
fail if the box were already full of other objects.
Our following presents a technique that increases

(a) Scenario 1 (b) Scenario 2

Figure 1: Examples of external faults

the ability of service robots to overcome external
faults. This technique focuses on the actions of
manipulator involved in the release of an object.
It suggests the safest state space for the release of
not only a particular object, but also for any scaled
object of the same shape. Releasing the object in
a state from this safest state space avoids the oc-
currence of external faults. To do so we collect
three training sets from experiments. One set of
samples consists of experiments with a given ob-

1http://www.care-o-bot-research.org



ject. The next set contains experiments with an
object of the same shape but scaled down to the
smallest possible size which the robot is able to
grasp. The third set contains experiments with the
largest graspable object of the same shape. The
algorithm’s task is to maintain a good estimation,
namely state space, of the positive outcomes (suc-
cessful execution of the releasing action) within
each of the three training sets and to find the com-
mon intersection of these three state spaces. The
algorithm assumes that by monitoring the post-
conditions of an executed action external faults
are detected. We also assume availability of a sim-
ulation that shows an example of the expected be-
haviour of the manipulated object for the case of
successful completion of the executed action.

2 Related Work
Methods for detection, identification and handling
of faults are frequently discussed in robotics lit-
erature. In his survey on execution monitor-
ing Pettersson [7] groups the existing approaches
into three classes: analytical, data-driven and
knowledge-based. In robotics the terms fault
diagnosis and fault detection and isolation are
used as synonyms for execution monitoring [7].
Fault diagnosis techniques deal mostly with inter-
nal faults. These methods focus on model-based
monitors, where the models of possible faults are
available a priori. Although it is impossible to de-
scribe all interaction faults in dynamic environ-
ments, the model-based techniques allow the de-
tection of unexpected situations by comparing the
nominal/desired behaviour of a robot with its ob-
servations. Pettersson et al. and Mendoza et al.
[6] [5] present work, in which external faults are
detected from the robot’s behaviour, rather than
from a predictive model. We present an alterna-
tive technique which utilizes simulation in order
to find a general solution for external faults during
releasing actions. The inspiration for using sim-
ulation to handle external faults comes from the
PhD work of Zickler [8] PhD in which a physics
engine is used as a black-box to compute a robot
motion planning in a complex environment. In an-
other study Jorgensen et al. [4] use a simulator to
address the problem of stable placement of objects
onto both plane and complex surfaces. Similar to
our approach, the authors use a simulation to pro-
duce a set of labeled samples. To compute an op-
timal drop pose, they suggest two methods. In the
first method they fit the largest enclosed ellipsoid
to the positive samples. In the second they apply

kernel density estimation to estimate probability
of each pose. The optimal pose corresponds to
the pose with the largest success probability. The
methods of Jorgensen et al. assume only two rele-
vant parameters. However, for our scenarios (1,2)
we need more than two parameters because of di-
mensional space. Jiang et al. [2] propose a learn-
ing approach for placing various objects in differ-
ent places. The authors use a simulator to gener-
ate training and test datasets. The created data sets
are then labeled manually and used as inputs for
supervised learning algorithms to predict the op-
timal areas for a stable placement. Johnston and
Williams [3] present the architecture Comirit for
common sense reasoning, in which they combine
3D simulation with formal logic. Their frame-
work generalizes the method of analytic tableaux
to allow both logical terms and simulation ob-
jects within a single search structure. The authors
represent each object as an annotated, connected
set of vertices, where annotations are used to de-
scribe the local physical properties of the object.
Such representation requires complex modelling
for each single object.

3 Approach
This work is the updated version of our previous
simulation based approach using example simula-
tion (SBAES)[1]. The previous technique enabled
the robot to suggest the safest releasing state of an
object for successful performance of its action or
to predict the behaviour of an object for a given
releasing state.

Previous work
The SBAES approach was presented as a three
step scheme, that requires two inputs: 1) an exam-
ple simulation that showed the desired behaviour
of the object for a given action and, 2) a defini-
tion of the planning operator of the action that re-
sults in a detected external fault. In its first step,
the scheme used the example simulation to find
a logical description of the expected behaviour of
the released object. The description consists of
two logical sentences, namely states of the ob-
ject at the start and at the end of the simulation.
In its second step, the approach found the limits
of parameters of the object using this description.
Each parameter corresponds to a physical prop-
erty of the manipulated object and the values of
these parameters define the releasing state of this
object. The approach utilized them to create dif-
ferent examples of the releasing state of the ob-
ject. With the help of the description vocabulary



and the description of the sample behaviour the
approach labelled these examples as either desired
or undesired. In step three, these labelled exam-
ples were exploited by a learning algorithm which
we referred as N-Bins, to suggest a safest releasing
state. The results of the learning algorithm were
used by the SBAES to modify the releasing action
of the robot.

The main objective of the current approach is
not only to find a safe releasing state of the cur-
rent manipulated object but also to generate a so-
lution for other objects with the same geometri-
cal shape but variations in scale. This problem
can not be solved using our previous approach (as
described above), because N-Bins algorithm only
suggests one optimal releasing state instead of a
space of safe states. The other disadvantage of the
SBAES approach is that it assumes the parameters
are completely independent of each other. This
assumption leads to loss connection between the
parameters whereas the closer the released object
is to the edge of the table, the lower the value of
the releasing height should be.

Approach
This approach mainly focuses on the improve-
ment of Step 2 of the SBAES technique, find-
ing safe space for parameters’ values to avoid the
occurrence of faults. Similar to SBAES the cur-
rent approach assumes the settings of plan based
robotic systems, in which a robot is able to detect
the occurrence of a fault at the planning level by
monitoring the postconditions of an executed ac-
tion. It also assumes that the causes of the external
faults are limited to natural physical phenomena
(there is no external agent involved in the occur-
rence of faults).

Additionally our technique expects three in-
puts: 1) a model of the domestic environment,
2) an example simulation of the actual action (the
technique only needs the emulation of a given ac-
tion, the release of any object over any surface)
and 3) postconditions to be checked for successful
completion of the action. Before applying our al-
gorithm to compute safe regions, we need to per-
form necessary preparations. First, the given sim-
ulation of a domestic environment has to be up-
dated by the later changes in the robot’s current
environment. For instance, the model of the ta-
ble in the simulation has to be changed if some
other objects are later placed on the table. The
next preparation is to get the limits of parameters
to generate the training set. In this work we con-
sider six parameters which correspond to location

and orientation of the object. To define the ini-
tial limits we can use the SBAES approach. The
main disadvantage is its strong dependence on a
given example simulation which is modelled for a
particular released object and a specific surface.
But originally a service robot is equipped with
knowledge about the sizes of the objects in its en-
vironment, own position, dextrous workspace of
the manipulator, desirable final state of the object
etc. This knowledge can be applied to estimate the
limits of each parameter. Later during the simula-
tion these limits are used to randomly select val-
ues of the parameters to generate training exam-
ples. Each simulated instance is labeled based on
given postconditions. We generate three sets of
examples for three objects of different size. One
set of samples consists of experiments with the
current object. The next set includes those experi-
ments with an object of the same shape but scaled
down to the smallest possible graspable size. Sim-
ilarly, the third set contains experiments with the
largest graspable object of the same shape. To en-
sure the ability of the manipulator to grasp of an
object we use a bounding box as rough estimation
of its size. Below we introduce a notation and il-
lustrate details of the technique.

Assume that for a given action we gener-
ated m training instances. These instances are
stored as a m × (n + 2) matrix AllSamples.
AllSamples={(Statei, Labeli, ExpSizei), i =
1, 2, . . . ,m}, where Statei ∈ Rn are in-
put values of the parameters of an object (i.e.
its releasing state) and n is the total number
of parameters (in our example they correspond
to x, y, z, ρ, θ, φ, where ρ, θ, φ are respectively
roll, pitch, yaw). Labeli ∈ {−1, 1} are negative
and positive outputs of experiments. ExpSizei ∈
{small,midium, large} are different categories
of experiments which correspond to the exper-
iments with objects of the actual, smallest and
largest graspable sizes. threshold is a scalar
which shows the desired probability of a posi-
tive outcome of the experiment for the safe state
space of the parameters. Algorithm 1 shows
the pseudocode for finding the common safe
state space for givenAllSamples and threshold.
The FIND-SAFE-STATE-SPACE algorithm starts
with computing the safe regions SRsize for the
training set of each experiment category size ∈
{small,middle, large}. Then in line ’9’ it cal-
culates the intersection of these safe regions. This
intersection consists of the limits of the param-
eters where the current action can be performed



Algorithm 1 FIND-SAFE-STATE-SPACE
Input: AllSamples, threshold
Output: SR

1: for all size ∈ {small,middle, large} do
2: AllSamplessize ← Select instances ac-

cording to experiment category size
3: (PosSamplessize,NegSamplessize) ←

Split instances according to their labels
4: Weights ← WEIGHT-INDEXES

(PosSamplessize, NegSamplessize)
5: HyperGrid ← Partition the space of

AllSamplessize
6: Fsize,{HRsize}←FIND-HIST(Weights,

PosSamplessize,HyperGrid,threshold)
7: SRsize ← Extract HR: F > threshold
8: end for
9: SR=SRsmall

⋂
SRmiddle

⋂
SRlarge

safely.
To find SRsize the FIND-SAFE-STATE-

SPACE algorithm splits the corresponding
training set AllSamplessize into two matri-
ces PosSamplessize and NegSamplessize
based on the labels of the samples, where
PosSamplessize contains only the positive
instances and NegSamplessize contains only the
negative instances.

These matrices are used by the WEIGHT-
INDEXES algorithm to calculate the importance
of each parameter in the behaviour of the ob-
jects. This algorithm is based on the procedure
described in [1], p. 36. The main difference is
that WEIGHT-INDEXES uses the Kolmogorov-
Smirnov test (KS-test) to exclude parameters
which are not important for the outcome of an
experiment. (line ’3’ in Algorithm 2). The
remaining weight indexes are calculated using
the measures of the first four statistical moments
(i.e. mean µp, variance σp, skewness skewp and
kurtosis kurtp) of the distributions of the val-
ues of each parameter. The differences (∆µp,
∆σp, ∆skewp and ∆kurtp) between statistic mo-
ments of corresponding columns of PosSamples
and NegSamples are used in calculating the
so-called importance IMPp of each parameter.
IMPp is further utilized for computing the weight
of the parameter (see line ’2’ Algorithm 2). For
any parameter, higher value of Wp shows that the
final state of the object in the simulation is more
sensitive to the value of that parameter.

We associate the safe regions SRsize of each
experiment categoryAllSamplessize with the in-

Algorithm 2 WEIGHT-INDEXES
Input: PosSamples, NegSamples
Output: Weights← A vector composed of Wp

for each parameter
1: for each parameter, p ∈ 1, 2, . . . , n do
2: Wp =

IMPp∑n
i=1 IMPi

where:
3: IMPp ← 0 if KS-test(PosSamplesp)>0
4: else IMPp←|∆µp|+|∆σp|+|∆skewp|+

|∆kurtp|
5: end for

tervals on the parameter space (x, y, z, ρ, θ, φ),
where the amount of positively labeled instances
reaches the given threshold. To find such re-
gions we decompose the given parameter space
into hyper-rectangles and count the number of
positive instances that fall into each of the hype-
rectangles. A hyper-rectangle is defined as the
Cartesian product of partitions. A well-known
way to build a set of hyper-rectangles with corre-
sponding counts is a multidimensional histogram.

The FIND-HIST function shown in Algo-
rithm 3 presents a pseudocode to compute multi-
dimensional histogram where the counts of pos-
itive samples occurring in certain ranges of pa-
rameters’s values are equal or higher than the
threshold. The weight vector Weights, the
matrix PosSamples (positive instances of the
one of the experiment’s category e.g. small,
middle or large), the partition of the space of
AllSamples of the current category in hyper-
rectangles HyperGrid and threshold are the in-
put arguments to the algorithm. In this algorithm
the multidimensional histogram is specified as a
set of hyper-rectangles {HRj , j = 1, . . . , h}, and
multi-dimensional array F showing how many in-
stances fit within a certain hyper-rectangle.

The FIND-HIST algorithm finds the index/-es
of the parameters corresponding to the first largest
weight values from the weight vector Weights
and returns the MostImportantDims vector
in line ’3’. Then it selects the CurrentData
sub-matrix of the PosSamples matrix consist-
ing of the MostImportantDims columns and
the CurrentDim sub-set of the HyperGrid.
CurrentDim consists of partitions (bins) which
correspond to the MostImportantDims dimen-
sions. Using CurrentDim and CurrentData
the Algorithm 3 in line ’6’ computes the counts
F and the hyper-rectangles {HR}. If the ter-
mination criteria in line ’2’ is satisfied, the cur-
rent F and {HR} are the solutions. Otherwise



the algorithm extends theMostImportantDims
vector with the index of next parameter accord-
ing to the next highest weight, constructs a new
CurrentData matrix and CurrentDim array
and computes a new F and {HR}.

The output of the FIND-HIST algorithm (F ,
{HR}) is used in FIND-SAFE-STATE-SPACE
to extract the safe region SRsize for the cur-
rent training set. By repeating the described pro-
cedure for the training set of every experiment,
we get a collection of safe regions {SRsmall,
SRmiddle, SRlarge}. In general, the intersection
of these safe regions SR=SRsmall

⋂
SRmiddle⋂

SRlarge is the particular solution for comput-
ing limits of the parameters in which the current
action can be performed safely with the desired
probability for any graspable object of the given
shape.

Algorithm 3 FIND-HIST
Input: Weights, PosSamples,HyperGrid,
threshold
Output: F - counts on relevant dimensions in to-
tal parameter space, HR - Cartesian product of
partitions

1: dimF ← 1, maxCount← 0
2: whilemaxCount6 threshold and dimF 6

number of non-zero entries of Weights do
3: MostImportantDims ← Indexes of the

first dimF -th elements with the largest
weights from Weights array

4: CurrentData← PosSamples projected
to MostImportantDims

5: CurrentDim←HyperGrid projected to
MostImportantDims

6: F , {HR} ← build histogram for
CurrentData, CurrentDim

7: maxCount← maximal value of F
8: Increment dimF by 1
9: end while

The main challenge in the construction of a his-
togram is the selection of HyperGrid, that is an
optimal number of bins or intervals for hyper-
rectangles. According to the FIND-HIST algo-
rithm, it first computes a histogram for one dimen-
sion (one parameter). If the resulting histogram
does not satisfy termination conditions, the algo-
rithm gradually increases the number of dimen-
sions until the desired histogram is found. Hence
the number of dimensions vary from 1 to the total
number of non-zero entries of the Weights vec-
tor. On the other hand the probability distribution

of a given training set based on a random sample
is uniform. The histogram constructed from them
should have in each bin/hyper-rectangle about the
same number of elements in average. By exper-
imentation we show that for a successful perfor-
mance the histogram of the highest dimension,
which is the number of all parameters, should
have a minimum 50 instances in average. This
value is used to compute the number of bins for
each parameter.

4 Results
In this section we report the results of applying
the described algorithm on three experiments in
which different objects were released over other
objects or over an open container. The releas-
ing states of different objects are calculated using
47·106 instances for each experiment category2.

Experiment 1 (release a die on a table):
The example simulation shows a die being
dropped on a table. From its knowledge the robot
extracts the specifications of these objects3. Using
these specifications we create three training sets
for the releasing action. Each instance of these
sets is labelled using postconditions’ constrains4.

Figure 2: Safe regions of the die for experiment 1

Figure 2 shows the estimated safe regions
(red areas) for each experiment category.
WEIGHT-INDEX algorithm estimates the fol-
lowing importance order of the parameters:
x, y, z, pitch, yaw, roll, where the weight of
roll=0 because according to KS-test roll does not
have an impact on the outcome of the experiment
(roll, pitch, yaw correspond to ρ, θ, φ). The
termination conditions are satisfied for the two

2With the help of parallelization on 48-core PC (4
× AMD OpteronTM6174 12-core 2.2 GHz) the average
time per instance is less then 0.8ms

3Table’s dimensions: 0.47m(h)×0.6m(l)×0.6m(w),
die’s dimensions: small 0.005m×0.005m×0.005m,
middle 0.01m×0.01m×0.01m,
large 0.015m×0.015m×0.015m

4The experiment performed successfully if the die
lies on the table: Xdiefinal∈[-0.3,0.3], Y diefinal∈[-
0.3,0.3] and Zdiefinal≈ 0.74



Figure 3: Safe regions of the die for experiment 2

dimensional histogram built for x and y param-
eters. The intersection of these safe regions is
the safe region for releasing the die of the largest
size.

Experiment 2 (release a die on an inclined
table):
The experiment set up is similar to experiment 1,
the only difference is the top of the table tilted at
45 degree. The safe region for the small die con-
sists of two (x, z) parameters, but the safe regions
for the middle and large objects include three di-
mensions (x, y, z), see Figure 3.

Experiment 3 (release a pencil into a box):
The example simulation shows a pencil being
placed into an empty container. If the initial in-
puts for generating the training set are spread
too far like in the previous experiments, where
ρ, θ, φ ∈ [−π, π], the algorithm requires more in-
stances to cover all possible behaviours of the ob-
ject. Hence, it may be necessary to refine them us-
ing additional techniques. For example by know-
ing the object’s symmetry groups we can utilize
the Euclidian transformation to reduce the limits
of ρ, θ, φ to [0, π2 ] interval. Taking into considera-
tion the information about the final orientation of
the object (it should stand in the container) we can
restrict ρ, θ even more. With the new parameters
the algorithm is able to find six dimension safe
space.

5 Conclusions and Future Work
The main contribution of this work is to enable a
robot using an example of its action to learn how
to execute this action in the safest way. We also
show that a robot estimates safe performance of
an action not only for the given object but also for
any graspable object of the same shape in general.
There still remain several issues for improving the

generalization process, e.g. extending the given
algorithm to different objects of similar shape cat-
egories. It is obvious that objects from the same
category often share similar placing patterns. For
example, two cylindrical objects (e.g. a crisp can
and a big ketchup bottle) will probably have simi-
lar safe regions. It is important to consider a stable
release with respect to other objects as well. The
object should be placed in its preferred location
and orientation in such a way that the other ob-
jects on the table will stay at the same positions.
If the robot learns the safest placement once, it
can still be able to perform this action success-
fully if the number of objects or their positions on
the table are changed. In our algorithm we select
a number of bins to compute a histogram empiri-
cally, but a more efficient way of such a selection
is required. The next step is to extend this work
for other robotic actions.
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