
Life-long Learning Perception using Cloud Database Technology

Tim Niemueller Stefan Schiffer Gerhard Lakemeyer
Knowledge-based Systems Group

RWTH Aachen University (Aachen, Germany)
(niemueller,schiffer,lakemeyer)@kbsg.rwth-aachen.de

Safoura Rezapour Lakani
Intelligent and Interactive Systems

University of Innsbruck (Innsbruck, Austria)
safoura.rezapour@uibk.ac.at

Abstract— Autonomous mobile robots in household environ-
ments have to cope with many different kinds of objects which
they must detect, recognize, and manipulate. Over their lifetime,
the robots must adapt to new objects and incorporate new per-
ception methods. In this paper we present a system for life-long
learning of training data and perception method parameters
using a document-oriented, schema-less database technology
that is typically used in cloud computing applications. Not
only can a single robot extend and increase its data volume
continuously over time, but it can also potentially share this
very dataset with multiple other robots through the cloud.

I. INTRODUCTION

Service robots tasked with helping humans in household
habitats must deal with a wide variety of objects. These
objects depend on the particular environment (e.g. living
room, kitchen), the human which is supported (e.g. elderly
person, or a person with an impairment), and simply on the
time of operation (e.g. objects are replaced for functional or
design reasons). It is virtually impossible to prepare the robot
on or before deployment with all possible objects. Equally
important is the high pace of development in the robotics
domain. New methods for perception are being developed
and eventually integrated into the robotic system. It would
be too much of an effort to require the user to go through a
training procedure for all objects that the robot had already
learned about.

Therefore, the robot must be able to learn new objects
and to adapt to new perception methods. It is essential that
the robot must be able to have a persistent training data
set, which it can expand over time for objects it learns, and
which can then be used to train new methods as they are
added. Robots in the same or even separate environments
could benefit from exchanging such data. In this paper, we
will focus on the former aspect of persistent storage and give
pointers how the second goal can be achieved in future work.

To accomplish the goal of a life-long learning percep-
tion system for an autonomous mobile service robot, we
propose the employment of the document-oriented, schema-
less database MongoDB. We describe how these properties
help in creating a persistent data storage for training and
perception input data (like feature vectors or descriptors)
which can be extended over time with new objects and
perception methods.

We have developed [1] an extensible perception system
that allows to tag learned objects with attributes like color,
shape, or its function. Then, in a training phase, the system
extracts relevant information like feature descriptors to detect

a particular object in a scene. This very instance of an object
is described by a set of attributes. All of this information
is stored in a database. At run-time, given an arbitrary
query for a set of attributes a cascade of classifiers is
generated automatically by which a previously unknown
object described by the query can be detected.

In this paper, we focus on the aspect of storing the raw
training data of different sensor modalities and varying types
of data associated with the wide variety of recognition meth-
ods the system supports. We discuss why cloud techniques
provide a robust base for this system and how this can be
leveraged in the future to share the very data and information
among multiple robots. To show the applicability we utilized
the developed storage system for training classifiers for a
combination of attributes and for efficiently querying the
relevant data. The evaluation results for training a set of
descriptors show the feasibility of our approach.

The rest of the paper is structured as follows. First,
we give an overview and describe some background of
the system in Section II before we revisit some related
work in Section III. In Section IV we describe the cloud
storage system for the life-long learning perception system.
Afterwards, in Section V we discuss experiments conducted
and show performance data showing the feasibility of the
approach. Finally we conclude in Section VI.

II. BACKGROUND AND SYSTEM OVERVIEW

The overall object perception and management system of
our robot works as follows. The robot is equipped with a set
of sensors (e.g. cameras, RGB-D sensor, laser range finder)
to acquire data from its environment. To detect and recognize
objects, it uses different methods like color classification
or feature descriptors like SIFT or SURF. Since detecting
and recognizing different objects requires different methods
and it might be done using different sensors not every
information is available for every object. In this work, we
restrict ourselves to vision as the only perceptual input. That
is, we always work on 2D images and, if the robot has 3D
capabilities, we also use 3D point clouds.

The characterization of objects commonly works with
classifying them. Instead of assigning an object just to one
particular of a limited set of specialized classes, we choose
to describe objects with a set of attributes. That is, we label
the object with all the attributes that apply to it, e.g. its color
(red), its type (apple), a category (fruit), its form (round),
or even properties (edible). This gives us an advantage

Base-
Classifiers

Attribute-
Classifiers

Meta-
Classifier

Objects

Descriptors

Attributes

Queries

. . .

SURF
Color · · · Haar

VFH
Shape

pepper color:red color:yellow apple . . .

Query: {color : red, apple}

Fig. 1. Hierarchical composition of classifiers for object recognition.
Base-classifiers are built for every descriptor, attribute-classifiers for every
attribute, and meta-classifiers are built for certain queries. Some connections
have been left out for legibility.

in our object recognition as it allows for a more flexible
specification of classes by combining these attributes. For
example, we could make the robot look for red round objects
that are edible even though the robot does not have an explicit
class for that very combination of attributes.

The general idea of our object recognition system now is to
work in a hierarchical fashion. For every specific object and
its attributes we build a base-classifier for every applicable
classification method given the available data. Then, we
construct a so-called single-attribute-classifier from all these
base-classifiers (for multiple different objects) which share a
specific single attribute. Finally, to obtain a classifier for a
specific query, we again combine single-attribute classifiers
to form a so-called meta-classifier for exactly those attributes
that appear in the query. The means by which we combine
classifiers at each stage is beyond the scope of this paper
and is instead discussed in [1] and [2]. An overview of the
hierarchical architecture of our system is given in Figure 1.

With the above system we construct meta-classifiers for
specific queries. The meta-classifiers are essentially cascades
of the attributes used in the query. A query such as Q =
{color : red, apple} could yield a cascade that uses the
attribute-classifiers which were trained for the apple and the
color:red attribute. The use of that cascade is illustrated in
Figure 2. The query is separated into two steps, for which
single-attribute classifiers are queried. Only if an object is
recognized by all classifiers along the cascade it is accepted
as a result object. While cascades for frequent queries are
built offline, we can also construct cascades for answering
ad-hoc queries online.

III. RELATED WORK

Life-long learning has been identified as a key ability for
service robots earlier. While some research investigates the
means of cumulative learning in those settings like [3] in
this work we focus on storing and accessing the information
needed for such a system.

Using non-relational databases to store large amounts of
data is becoming increasingly popular with cloud computing
in general, and in robotics in particular. As an example, in [4]
a generic robot database is proposed using MongoDB for

Candidates

apple color:red
Yes Yes

No Matches? No Result

Fig. 2. A discrimination cascade for Q = {color : red, apple}

recording any and all data generated during robot operation.
They focus on utilizing this data to analyze faults that
occurred and to evaluate a robot’s performance.

Mason et al. [5] developed a system for long-term change
detection and semantic querying based on the perceived data
from the robot. Their system uses RGB-D data. From each
object in a particular captured scene, they extract a set of
semantic attributes like color, shape and its real coordinate,
which are later used to figure out whether a specific object
is still in field of view at a particular position or not. They
use MongoDB to store and retrieve the data and attributes.

Dayoub et al. [6] introduce a long-term updating mecha-
nism inspired by human memory model. The robot in their
application is supposed to track the location of a group of
objects and to suggest the most likely location for those
objects. They mention that in this way, the robot is able
to maintain its knowledge of a changing environment.

Klank et al. [7] implemented an object recognition system
which does not store any training data in the system but
obtains 3D models of objects from the Internet when needed.
In our system however, instead of re-training each time with
a new set of training data, we store the raw data objects. This
way, our system can also integrate new and other descriptors
when they become available, not only 3D ones.

In [8] a long-term human-robot interaction is discussed.
The authors investigate interaction design strategies such that
it reinforces a positive long-term relationship between people
and a robot. We share the goal of long-term robot operation.

As mentioned, in our system we describe objects by a
set of attributes and we aim to find a classifier for any
arbitrary combination of these attributes. Similar efforts
have been done before. Farhadi et al. [9] used attributes to
describe different parts of a particular object. Later on, they
trained a classifier for each of these part-based attributes,
just considering this part in the object and not the whole
object. Then they trained classifiers for a combination of
these attributes for answering a particular query.

IV. LONG-TERM PERCEPTION DATA STORAGE

Typically, if a particular perception method is trained, the
raw data is kept in a file system and only minimal meta
data is used. Often either implicit assumptions in the loading
procedure are made or it is stored in plain text files. In our
application though, we need to accommodate a wide variety
of methods and data input sources. We also want to maintain
raw data in a way that we can attach arbitrary meta data

{ // raw data document for particular object
"_id" : "apple_1_1_10_c",
"data" : {
"image" : "apple_1_1_10_c_object.png",
"mask" : "apple_1_1_10_c_mask.png",
"pointcloud" : "apple_1_1_10_c_object3d.pcd"

}
"scene_id" : "apple_1_1_10",
"uploadDate" : ISODate("2013-02-01T14:34:25Z")

}

{ // associated point cloud file document
"_id" : ObjectId("51c04f1f11f8890f15ed4688"),
"filename" : "apple_1_1_10_c_object3d.pcd",
"chunkSize" : 4194304,
"uploadDate" : ISODate("[...]"),
"md5" : "6e3c6dca2f5231604c82ad2002c22229",
"length" : 453774

}

Fig. 3. Documents containing info about one particular object in a scene
(top) and an associated point cloud file (bottom)

to allow aggregating and re-using this data over extended
periods of time as new methods are added to the system.

Likewise, the various training and pre-processing proce-
dures of the implemented perception methods produce output
of various forms, for example SIFT descriptors or VFH
models. We need a unified way to store these outputs of
differing form.

Additionally, we want to be able to share and transfer
data among multiple systems. This allows to bootstrap a
new system easily with existing training data and a robot
to identify an object without having seen it before by
downloading the required information from another robot.

With these observations in mind we have identified re-
quirements for a storage system to accomplish the envisioned
task of a long-term extensible perception on a mobile robot:

Flexible data structures: varying and evolving data struc-
tures for different perception methods and input formats
Data management: a unified storage architecture, the abil-
ity to replicate data easily, and backup and restore facilities
Flexible and efficient retrieval: queries for specific data;
fast and low-overhead retrieval of diverse and large data.

We found that the document-oriented, schema-less
database MongoDB [10] fulfills these criteria and that it
provides us with the flexibility and efficiency required. At the
same time, due to its origin in cloud computing applications,
it supports the desired replication among multiple robots. We
have also found that it integrates nicely with typical robot
middlewares allowing for a seamless integration and provides
the necessary performance [4].

MongoDB as the Basis for a Generic Perception Database

MongoDB stores data in documents, entities of grouped
key-value pairs (fields). Values are of basic types like num-
bers or text, but can also contain nested documents allowing
for hierarchical structures. In Figure 3 and Figure 4 are
example documents which we will explain in more detail
below in the section on the Perception System Database.

Documents in MongoDB are schema-less. This means
that there is no particular a-priory declared or at run-time

{ // attributes/classifiers for specific object
"_id" : ObjectId("50e55f3d5d67ed3fa35f1f7e"),
"data_id" : "apple_1_1_10_c"
"scene_id" : "apple_1_1_10"
"attribs" : {
"apple" : true,
"color" : "red"

}
"classifiers" :
["SIFT", "SURF", "Gabor", "Haar", "Color",
"Shape", "VFH", "Cylinder", "Sphere"]

}

{ // classifier info excerpt for attribute doc
"_id" : ObjectId("5203268982544e4fe703d654"),
"data_id" : "apple_1_1_10_c"
"SURF" : {
"param_file" : "apple_1_1_10_c_SURF.png",
"extract_time" : 12

},
"VFH" : {
"model_file" : "apple_1_1_10_c_vfh.txt"
"extract_time" : 20

},
// [...]

}

Fig. 4. Documents assigning attributes and classifiers to an object (top)
and classifier parameterization for that object (bottom)

enforced structure. At a first glance this might seem to con-
tradict typical properties of databases, in particular from the
perspective or relational database management systems. In
MongoDB however, documents tend to have structure which
is derived from the stored data and for which the schema
is implicitly and dynamically defined by the application.
For instance, our perception system uses several types of
data input. While data of the same type (e.g. images) will
share the same structure, other data (e.g. point cloud) differs,
even though when of the same logical kind (input). The
variety of implemented perception methods come with an
even wider variety of data structures. The possibility to group
them together and jointly iterate through all of them proves
convenient and efficient, e.g. for training procedures.

Documents in MongoDB can be grouped into collections.
Typically, collections host data of the same or similar struc-
ture, at least of the meta data, and the same logical identifi-
cation, e.g. input data or perception parameters. Collections
provide a first frame of reference of what to expect from
retrieved documents. In the case of classifier training for
a particular method, this allows us to query for all input
document matching certain criteria, e.g. the availability of
an image or a point cloud.

Raw data items in particular contain large and input-
specific data structures, for example point clouds are stored
in Point Cloud Data (PCD) format specified by the Point
Cloud Library [11]. To store these binary large objects we
use GridFS, a file system built on top of MongoDB. It allows
to store arbitrarily large files by splitting the data into chunks
and maintaining information that allows to combine the data
later again. We use GridFS to store raw input data like images
or point clouds and classifier training output like descriptors.
Additional meta data, for example certain thresholds are
stored in the database directly. This allows to easily inspect
the meta data and also pose queries based on it.

Data
Sharing

Scenes Objects Raw Data

Classifiers

Attributes

Scene

Soda

Apple

Cup

Image, Point Cloud, ...

SIFT, VFH, ...

attr: apple, color:red
classifiers: sift, vfh, ...

Perception Cascade

apple

color:red

Yes

Yes

No

No

Fig. 5. Database structure and usage patterns: data is prepared from left to right by extracting raw data for objects from a scene, processing descriptors
to train classifiers and assigning attributes; cascade is built querying for the desired attributes and its associated classifiers (documents in green, collections
in orange, blue for outer system, some connections have only been indicated for reasons of legibility).

Documents in different collections can be linked using
references. A reference allows to store an identifier of a
document including its location (collection name). During
retrieval the programming support library then provides tools
to easily retrieve these additional documents. We make use
of references to link an object with its associated raw and
scene data, attributes, and classifier data.

As a technology developed for cloud computing environ-
ments a particular benefit is the simplicity of replication. It
allows multiple robots to use the same database and keep it
up to date jointly. A robot can also replicate a database once
for initial bootstrapping and then keep it to itself and augment
it with additional specific objects in its environment. While
this is not done at the moment, it provides an interesting alley
for future extensions to the system and fully integrating the
system into a cloud computing infrastructure.

The schema-less document data model in particular fulfills
our requirement of flexible data structures. MongoDB pro-
vides us with a unified storage model, backup and restore
facilities, and the ability to replicate data among multiple
robots, fulfilling our second criterion. For the third concern
we will now look into MongoDB’s query capabilities.

Perception System Database
The perception system requires the database for long-

term data storage, data exchange, and to query for classifiers
given an attribute set. The overall structure is depicted in
Figure 5. The brown cylinder represents the database to
which the data is stored. To the left you see the abbreviated
database structures that are used to organize the required
data. Orange borders separate collections in the database,
to which documents (green boxes) of similar content are
stored. Scenes are the basic input data like images or point
clouds for a particular scene. From a scene, a number of
objects can be extracted automatically or manually. An object
is associated with some raw data, that is clipped images
or cutout point clouds with only the part of the particular
object. For these objects feature descriptors or parameters
are extracted which are used by a base-classifier to recognize
that specific object. In the attributes collection, an object is
assigned a set of attributes and the classifiers which have
been trained for the given attribute set and the objects base-
classifiers. All of these separate documents are connected via

a document describing a specific object in a particular scene.
Only later processing steps create the single-attribute and
meta-classifiers. The data associated with these classifiers is
stored in separate collections not depicted in the figure.

The structure of the documents in a collection are similar,
but not the same. For instance, consider the example raw data
document in Figure 3. It describes the apple in the particular
scene. For this specific object we have image data with an
associated mask and point cloud data available, but no depth
image, which might be available for other objects (e.g. if
contributed by another robot with a stereo camera). The
document might also contain pointers to pre-processed data,
e.g. integral images if they were used for multiple classifiers.
The document can also be easily extended for data modes
which are not available at this time. The object references
the scene from which the object was extracted. The second
document in this figure is a document describing the point
cloud data file. It is stored in a separate collection and part
of the GridFS storage structures. The attribute document in
Figure 4 shows how attributes are bound to an object. An
object within a scene is referenced and a map with arbitrary
attributes is specified. The classifiers are filled if they have
been trained for this object and attribute set. Below is an
excerpt from the base classifier information document. It
contains references to a parameter document or anything
required to run the classifier, but also meta information like
the time that was required to extract the parameters. The
system may later prefer one classifier over another during
meta-classifier training based on this time, for instance.

The database is often used in cloud computing environ-
ments. Its abilities of replication and sharding (distributing
documents among multiple hosts based on the identifier)
allows to easily exchange data among multiple robots. In a
more involved scenario, we envision that information about
specific attributes can be passed among robots, automatically
determining which raw or classifier data must be transferred
with it to be useful to another system. A next step would
be to replicate the data onto multiple hosts which are used
for distributed (re-)training of classifiers and for generating
meta-classifiers for typical queries off-line.

The right blue section summarizes our perception system
that uses the database. Based on a query for a set of attributes,

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 500 1000 1500 2000

T
im

e
[m

s]

of iterations on objects (boxes in background distinguish classifier training periods)

DB write

DB read

SIFT

SURF

Gabor

Shape

Color

VFH

Cylinder

Sphere

Fig. 6. Elapsed time (ms) during feature extraction; the light blue and dark red amounts of time account for the storage operations, the remaining time is
required to perform the feature extraction. The variation is caused by differing size of the input object’s data (reading) and database maintenance (writing).
The training was performed sequentially one classifier at a time (in manual but arbitrary ordering) and hence the seemingly horizontal splitting by classifier.
One particular benefit of a cloud database is that this can later be easily distributed over multiple hosts and thus parallelized.

the system accesses the database, in particular the attributes
collection, to determine the proper classifiers to use. We will
now describe this process in more detail.

Queries for Cascaded Perception

One of the particular benefits of using a database compared
to storing data in the file system are the powerful query
capabilities. MongoDB uses a query language based on
JavaScript. Queries are posed to retrieve a specific subset of
documents from a collection. They can filter, sort, and order
the returned documents given certain criteria based on the
fields in the document. In addition, MongoDB supports the
map-reduce paradigm [12] to run parallelized calculations.

The overall goal is to identify a set of objects (often only a
single one) matching a specific set of attributes. For example,
to react to a command “get my cup, it’s the red one” we need
to find an object which is shaped like a cup and of red color.
Considering the task at hand – to build a cascaded classifier
out of basic classifiers for a set of attributes as depicted in
Figure 2 – we will step through the query procedure. Let’s
assume we have two criteria, one specifying an object color
and another indicating that the object is a cup. Looking for
red cups then leads to the (perception) query

Q = {color : red, cup}
For each element of the query q ∈ Q we query the set classi-
fiers CD

q for each document D ∈ AC (attributes collection)
which list the query element as one of the attributes.

CD
q =

{
D.classifiers, if q ∈ D.attributes

∅, otherwise

This maps directly to queries for the database. For each
element of the query, we query for all documents in the
attributes collection which contain the attribute of interest

with the same value. Then, the set of classifiers Cq for a
single query element q is given by

Cq =
⋂

D∈AC,CD
q 6=∅

CD
q

For each query element q we run the classifier set Cq based
on the classifier parameterization stored in the database to
discriminate the objects Oq . The detected objects are then
the objects classified to conform with the given attribute for
each of the query elements:

O =
⋂
q∈Q

Oq

Being able to rely on database query features vastly sim-
plifies the generation of classifier cascades, in particular for
sets of object attributes which had not been queried before.

V. EXPERIMENTS

The storage system has been evaluated using objects from
the Washington University RGB-D dataset [13]. From the
300 objects in the dataset we have selected 10 instances
of each object. Additionally we have added a few of our
own objects. In total the database contains 2962 scenes. For
each scene image information is available, point clouds are
available for 2946 scenes. Out of the total number of scenes,
3117 objects have been extracted as raw data items (from
some scenes more than one object has been used). For each
object exists a document describing the parameterization
of the base classifiers and one describing the object’s set
of attributes and trained classifiers. The overall database
comprises about 43 GB of data in about 130000 documents.

To evaluate the system, feature extraction and descriptor
generation has been performed which is the most I/O inten-
sive task of the perception system. For images we used SIFT,
SURF, and Gabor descriptors and edge-based shape detec-
tion and color parameters. From point clouds we extracted

11:00 11:10 11:20 11:30 11:40 11:50 12:00 12:10
 0

 10

 20

 30

 40

Op
s/
se
c

MongoDB Op Counters (Averages)

 Inserts 1.35 Queries 3.72 Updates 1.19
 Deletes 0.00 Getmores 224.10 u Commands 1.36

Fig. 7. Database operations during classifier training

VFH [14] descriptors and parameters for RANSAC-based
cylinder and sphere detection. The extraction process has
been implemented mostly relying on OpenCV [15] for image
data and the Point Cloud Library [11] for 3D features. For the
experiments, all data was erased and raw data elements re-
processed. After the training, queries can be posed to built
discrimination cascades. The evaluation of the recognition
step is described in [2]. The experiments were conducted
on a desktop machine with an Intel Core2 Duo E6750 at
2.66 GHz with 4 GB of RAM and a 1 TB Western Digital
Caviar Green (WD10EZRX) spinning disk hard drive.

We separated the overall process in three categories for
time tracking: reading from and writing to the database
and the actual feature extraction. The results are shown in
Figure 6. On the horizontal axis you see the training runs, one
per object and extractor (starting with image and followed
by point cloud extractors). The time taken per step is on
the vertical axis (in milliseconds) where the three times
are stacked on top of each other to see their proportions.
The light blue part at the bottom is the time taken for
reading from the database (images, point clouds) and the
dark red part at the top is writing to the database (descriptors,
parameters). The other colors denote the different extractors.
It is clearly visible that for images the reading and writing
times are negligible compared to the actual extraction. For
point clouds, where the input data is large and in the range
of several megabytes the reading times increase noticeably,
but still remain on a level comparable to raw file reading.
Writing remains negligible. Figure 7 shows the database
average operations per second during training. Note that the
horizontal scale is the actual time now, not individual training
samples. The test machine can handle about 15000 inserts
per second for very small documents if there is no other I/O
and CPU load. Compared to this theoretical maximum the
number of operations on the database remains low. For the
case where many operations are performed during the image-
based training we see that the database can easily handle the
higher workload even though other operations are performed
on the host. The database is therefore not the limiting factor,
but the image and point cloud processing time is.

VI. CONCLUSION AND OUTLOOK

In this paper we presented a database storage for a life-
long extensible perception system. We employ MongoDB, a
document-oriented schema-less database often used in cloud
computing environments. It is used to store raw input data
like images and point clouds, classifier parameterization
like descriptors, and attributes to label objects. The flexible

storage system allows to accommodate different kinds of
information easily in a unified way and allows for future
extensions by adding new objects or perception methods.
The database is the basis for a dynamic hierarchical object
detection system. It depends on the advanced query features
of the database to build discrimination cascades based on
object attributes on- and off-line.

We have argued that the proposed system meets the
requirements of flexible data structures, data management
capabilities, and flexible and efficient data retrieval that we
determined. Our evaluation results suggest that the system is
feasible for the task and efficient providing these services.
In particular, when performing classifier training (the most
I/O intensive task) the incurred overhead is negligible.

Being based on cloud technology the system is prepared
for replicating data to multiple robots, for example for
bootstrapping or to share information about new objects.

ACKNOWLEDGMENTS
T. Niemueller was supported by the German National Science Foun-
dation (DFG) research unit FOR 1513 on Hybrid Reasoning for In-
telligent Systems (http://www.hybrid-reasoning.org).

REFERENCES

[1] S. R. Lakani, “A Flexible Object Management and Recognition System
on a Domestic Service Mobile Robot,” Master’s thesis, Knowledge-
based Systems Group, RWTH Aachen University, July 2013.

[2] S. Schiffer, T. Niemueller, S. R. Lakani, and G. Lakemeyer, “A
Flexible Object Recognition System with Hierarchical Classifiers,”
Knowledge-based Systems Group, RWTH Aachen University, Tech.
Rep., 2013, in preparation for publication.

[3] Y. Gatsoulis, C. Burbridge, and T. McGinnity, “Online unsupervised
cumulative learning for life-long robot operation,” in IEEE Interna-
tional Conference on Robotics and Biomimetics (ROBIO), 2011.

[4] T. Niemueller, G. Lakemeyer, and S. S. Srinivasa, “A Generic Robot
Database and its Application in Fault Analysis and Performance Eval-
uation,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2012.

[5] J. Mason and B. Marthi, “An Object-Based Semantic World Model for
Long-Term Change Detection and Semantic Querying,” in IEEE/RSJ
Int. Conference on Intelligent Robots and Systems (IROS), 2012.

[6] F. Dayoub, T. Duckett, and G. Cielniak, “Toward an Object-Based Se-
mantic Memory for Long-Term Operation of Mobile Service Robots,”
in IROS Workshop on Semantic Mapping and Autonomous Knowledge
Acquisition, 2010.

[7] U. Klank, M. Zia, and M. Beetz, “3D model selection from an internet
database for robotic vision,” in IEEE International Conference on
Robotics and Automation (ICRA), 2009.

[8] M. K. Lee, J. Forlizzi, P. E. Rybski, F. Crabbe, W. Chung, J. Finkle,
E. Glaser, and S. Kiesler, “The Snackbot: Documenting the design of
a robot for long-term Human-Robot Interaction,” in 4th ACM/IEEE
International Conference on Human-Robot Interaction (HRI), 2009.

[9] A. Farhadi, I. Endres, D. Hoiem, and D. Forsyth, “Describing objects
by their attributes,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2009.

[10] K. Chodorow and M. Dirolf, MongoDB: The Definitive Guide.
O’Reilly, 2010.

[11] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),”
in IEEE Int. Conference on Robotics and Automation (ICRA), 2011.

[12] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing
on Large Clusters,” Comm. of the ACM, vol. 51, 2008.

[13] K. Lai, L. Bo, X. Ren, and D. Fox, “A Large-Scale Hierarchical Multi-
View RGB-D Object Dataset,” in IEEE International Conference on
Robotics and Automation (ICRA), 2011.

[14] R. B. Rusu, G. R. Bradski, R. Thibaux, and J. Hsu, “Fast 3D
recognition and pose using the Viewpoint Feature Histogram,” in
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2010.

[15] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software
Tools, 2000, http://drdobbs.com/open-source/184404319.

