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Abstract. Collecting ground truth-data for real-world applications is
a non-trivial but very important task. In order to evaluate new algo-
rithmic approaches or to benchmark system performance, they are in-
evitable. This is particularly true for robotics applications. In this paper
we present our data collection for the biped humanoid robot Nao. Re-
flective markers were attached to Nao’s body, and the positions and
orientation of its body and head were tracked in 6D with an accurate
professional vision-based body motion tracking system. While doing so,
the data of Nao’s internal state, i.e., the readings of all its servos, the
inertial measurement unit, the force receptors plus a camera stream of
the robot’s camera were stored for different, typical robotic soccer sce-
narios in the context of the RoboCup Standard Platform League. These
data will be combined in order to compile an accurate ground-truth data
set. We describe how the data were recorded, in which format they are
stored, and show the usability of the logged data in some first experi-
ments on the recorded data sets. The data sets will be made publicly
available for the RoboCup’s Standard Platform League community.

1 Introduction

Collecting ground-truth data for real-world applications is a nontrivial but very
important task. In order to evaluate new algorithmic approaches or to benchmark
system performance, they are inevitable. This is particularly true for robotics
applications. For instance, the European Robotics Research Network (EURON)
states in a Survey and Inventory of Current Efforts in Comparative Robotics



Research: “It was a well-known fact that the current practice of publishing re-
search results in robotics made it extremely difficult not only to compare results
of different approaches, but also to asses the quality of the research presented
by the authors.” [1]. Therefore, EURON started an initiative on how results
in robotics could be better compared, leading to a number of publications and
workshops at international robotics conferences. One option for comparing re-
sults more easily is to pose a common and non-trivial real-world problem, which
is to be solved by a number of research group. Among them are the DARPA
Grand Challenge, ELROB, or RoboCup. There is also a number of specialized
tasks for establishing benchmarking objectives such as robot manipulating, mo-
tion planning, or for mobile robots. As for the latter, the Rawseed project [2] is
concentrating on multi-sensor data sets for fundamental problems such as local-
ization and navigation. With such data sets and associated ground-truth data,
new localization algorithms can be benchmarked and be compared with exist-
ing approaches. Another available robotics data set is, for example, the Radish
Data Set [3] or the KTH collection for simultaneous localization and mapping
(SLAM) [4]5. Standardized data sets are also common and available for machine
learning approaches and computer vision (e.g. [5–7]).

The purpose of ground-truth data is to provide an absolute reference to a
particular set of properties like the position of objects relative to the robot or
the robot itself relative to the environment. The ground-truth data has to have
a certain accuracy but at least some magnitudes higher than the precision of
the algorithm to be evaluated in order to allow for a significant evaluation. Such
data sets usually contain a set of sensor data (e.g. laser range scans, inertial mea-
surements, camera images) and a reference position and orientation of the robot.
In indoor environment usually a three-dimensional reference (a two-dimensional
position plus an orientation) is sufficient. For outdoor environments usually a
full six-dimensional reference (a three-dimensional position plus three rotational
angles) is necessary.

In the case of a humanoid robot like the Aldebaran Nao [8], which we address
in this paper, even more reference data are interesting. In order to perform a
task such as playing soccer, the robot has to solve sub-tasks such as object
tracking or self-localization. For these sub-tasks, the robot needs an estimation
of the position and orientation of its limbs, torso, and head. This information
is estimated by processing sensor data of the robot, e.g. inertial measurements,
force receptors, joint angles, and camera images. Therefore, it is desirable to have
ground truth for the position and orientation of the head and the torso in the
reference data set. In order to provide such an extended data set, we conducted
experiments in a body motion capturing system with the biped robot platform
Nao on a RoboCup Standard Platform League (SPL) football field.

In this paper, we describe the gathering of ground-truth data for the robot.
Unlike e.g. [9], where the ground-truth data of the robot were estimated in 3D
(x, y, θ) for a localization experiment, we here aim at providing full data sets
of the robot’s sensory information while performing typical tasks. In particular,

5 More SLAM related data sets are listed at http://www.openslam.org



Fig. 1: The experimental setup for the data recording. The left image shows the
RoboCup Standard Platform League field within motion capturing system. The
right image shows one of the 15 cameras of the body motion tracking system. The
LEDs at the front of the camera provide pulsed infra-red light allowing capturing
under day light conditions.

the global 6D coordinates of the robot’s head and torso together with the servo
values and the camera images offer data sets for also benchmarking algorithms
on the Nao platform or conducting off-line experiments, e.g. machine learning.

In the remainder of this paper we describe our experimental setup in Sect. 2.
We particularly show the setup of the body motion capturing system and the
markers that were attached to the robot during the experiments. In Sect. 3,
we briefly go over how the data were logged with our robot control software
Fawkes [10], before we show some first experiments on the usefulness of the
collected data for benchmarking in Sect. 4. We conclude with Sect. 5.

2 Body Motion Capturing with the Robot Nao

For collecting the extended ground-truth data, we used body motion capturing
technology. This technology allows to continuously track the position and orien-
tation of parts of a human body in a three-dimensional space. Moreover, using
a model of the human skeleton also the orientation and position of joints can be
recorded. The technology is commonly used in movie production, animation, de-
velopment of computer games, and artistic performances, where the recordings
of the natural movements of a human is required.

We used the CUBE laboratory of the Institute for Electronic Music and
Acoustics of the University of Music and Performing Arts in Graz. The labora-
tory is equipped with a high performance motion capturing system and is usually
used for research on innovative forms of arts and music [11]. The body motion
capturing system is the high resolution fully-3D tracking system V624 by the
company Vicon. It consists of 15 infra-red cameras which records the position
of a number of reflective markers attached to the body. The system is able to



Fig. 2: The experimental setup for the humanoid robot Nao. The left image shows
the robot Nao with the 42 tracking markers for a full body motion capturing. The
right image shows the robot with four tracking markers each for the head and the
torso (the fourth marker on the chest is not visible).

record the positions with a frame-rate of 120 Hz and a high spacial accuracy of
less then one millimeter. The system is able to track a volume of about 60 m3.
The left image of Figure 1 shows the experimental setup of the tracking system.
In order to be able to record full-featured camera images with the robot, we
set up a fully rule-compliant RoboCup Standard Platform League (SPL)6 field
within the body motion capturing system. The right image shows one of the
cameras of the tracking system. The camera uses pulsed infra-red light which
allows for tracking under day light conditions. This in turn allowed us to record
a video stream of the soccer field with the robot’s internal camera.

We started with attaching 42 reflective markers to the robot’s head, torso,
and limbs, just as it would be done for human motion capturing. The left image
of Fig. 2 shows the robot with the 42 markers. Unfortunately, it turned out that
the robot is too small for a full body motion capturing. Because of the size of
the robot, some markers especially on the back and on the feet are too close
to each other, which makes it impossible for the system to reliably track these
markers. The system fails to distinguish close markers and therefore regularly
fails to provide tracking data. Therefore, we decided to track only the position
and orientation of the head and torso of the robot. The right image of Fig. 2
shows the robot with markers only attached to the head and torso. We hoped
for whole-body data, however, the ground-truth position and orientation of head
and torso still provide a reasonable means for benchmarking. The upper body
serves as global reference for the robot on the field, while the head provides a
global reference for the position and orientation of the cameras which are the
main sensors for most applications. The body motion capturing system provides
the position and orientation in 6D of two separate rigid bodies modeled as cubes.

6 SPL website is at http://www.tzi.de/spl/
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Fig. 3: The coordinate system of the tracking data. The left image shows the
global coordinate system in respect to the SPL soccer field. The right image shows
the coordinates for the cubes representing the position and orientation of head
and torso of the robot with respect to the global coordinate system. The image
depicts the alignment of the axis and markers for the robot shown on the left.

The torso has its rotational point in the center, while the head has its rotational
point in the head joint. Fig. 3 shows the coordinate system for the ground-truth
data.

The left image of Figure 3 shows the 6D coordinate system (x, y, z, Θ, Φ, Ψ).
The center of this global coordinate system is the center of the field. The x axis
runs parallel to the side lines of the field from the yellow goal towards the blue
one. The positive y axis runs along the middle line to the left. The z axis points
upwards. The right image shows the position and orientation of the two tracking
cubes for the head (top) and the torso (bottom). The markers (spheres in the
image) are shown in the true alignment with the cubes (refer to Figure 2). The
rotation points of the cubes are in the torso’s centers and in the head joint, resp.
For the torso cube the rotation point is in the center of the upper body behind
the chest button. The angles Θ,Φ, Ψ are global and are always related to the
global axis. The robot on the left image of Figure 3 has its torso and head in
an upright position and is aligned with the global axis. The robot is oriented
along the x axis. The connecting line of the shoulder joints is parallel to the y
axis. The direction of the rotation of the angles are depict by the corresponding
circular arrows.

3 Data Logging

For acquiring useful data sets, it would be desirable to log all the data the robot
can provide. However, the throughput of CPU and memory is restricted on the
Nao platform, and we therefore had to assess first, how much data we could log.
We describe our assessment in Sect. 3.1. In Sect. 3.2, we describe how we logged
the data through our robot control software Fawkes.
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Fig. 4: CPU and Memory Benchmarks for the Nao Robot Platform

3.1 CPU and Memory Assessment

To determine the computational constraints for software on the Nao and the
specific problems of logging, we had to investigate the basic capabilities of the
robot platforms in terms of CPU speed and memory throughput.

The memory of the computing system is divided into several stages, the main
memory (RAM) and several levels of cache within the CPU. The AMD Geode
LX-800 used in the Nao has two levels of cache, with the L2 cache of 128 KB
having more influence on the performance. We have applied a benchmark7 to
test the throughput of the different memory types. The averaged results of 10
runs are shown in Fig. 4(a). The L1 and L2 caches show the expected behavior,
with a peak transfer rate of 1.7 GB/sec and 1.5 GB/sec respectively. But the
performance of the RAM is much worse, dropping to only 240 MB/sec.

To measure the CPU speed an artificial CPU benchmark that implements
a matrix-vector multiplication has been used. It implements the calculation of
A = B · C, where B is a matrix and A and C are vectors. We vary the amount
of memory required to store a matrix ranging from 0.08 MB to 32 MB. We have
implemented two variants of the multiplication. The first multiplies each row of
the matrix B with C, allowing for a sequential access to the matrix memory. The
second multiplies each value of a column of B with the appropriate element in
C. This requires access to values spread throughout the whole chunk of memory.

Fig. 4(b) shows the results given in million floating point operations per
second (MFlops) with double precision. The row-based implementation has an
almost constant speed of about 40 MFlops for any matrix size. This indicates that
the memory throughput is high enough to keep the CPU busy all of the time
as long as the memory can be read optimally. This changes drastically for the
column-based implementation. For the smallest matrix the speed is comparable,
as the problem of 0.08 MB still fits into the L2 cache of 128 KB. But for larger

7 Bandwidth benchmark: http://home.comcast.net/˜fbui/bandwidth.html



matrices the computation speeds drops to 10 MFlops and below. Here we see
that the bad throughput from the CPU to the RAM causes the computation
units of the CPU to wait for new data most of the time.

3.2 Logging with Fawkes

Fawkes8 is a component-based robot software framework [10] developed for
real-time applications in the field of cognitive mobile robotics. Functionality
to operate the robot is encapsulated in plugins which can be combined and
configured at run-time.

Fawkes follows a component-based approach for defining different functional
blocks. We deploy a blackboard as communication infrastructure. Information is
stored as semantic groups of values accessed by a unified interface and identified
by a type and a unique ID, but the blackboard also supports message channels
between components. The robot data as provided by NaoQi are stored in black-
board interfaces. Data is read from NaoQi at the DCM update rate of 50 Hz9

and transferred to Fawkes via a remote blackboard connection.
The blackboard is one of the corner stones for the data recording during the

experiments. Since all the data produced by the system is stored at a central
place it can be logged very efficiently. Fawkes features a generic blackboard
logging component. Because all value groups follow a common interface for data
access, there is no need for a specific logging mechanism, rather the plugin is
only configured for the interfaces which should be logged.

We took the data logs as depicted in Fig. 5. Each log file has a preface
describing the data fields contained in the log, which is given as a comma-
separated value list. Each line of the ground-truth data consists of a time stamp
and the 6D coordinated of head and torso. Each sensor data frame consists of a
relative time offset since the start of logging, and the joint angles for all joints.
A global time stamp is attached at the end of each frame. Similarly, the electric
current values are stored. These data were recorded with a frequency of 50 Hz.

The camera frame were recorded separately. Each frame comes with a global
time stamp followed by the camera image itself. The camera image has a reso-
lution of 320 × 240 in the format YUV 422. The frequency had to be restricted
to 15 Hz. With the global time stamps in data and camera frame, both logs can
be synchronized.

4 Data Sets

Overall, 20 different scenarios were logged with different setups. Sometimes the
robot was running towards an opponent, or the ball, sometimes the robot was
just walking around recording camera data. Two example scenarios are shown
in Fig. 6. The trajectory presented in these figures are drawn from the tracked

8 Fawkes is free software and available at http://www.fawkesrobotics.org
9 Experiments were conducted with NaoQi 1.3.17 providing a minimum loop time of

20 ms.



Ground Truth Log

# 6 lines header, describing the text fields

a b c d e f g h i k l m n \n

Hardware Log

# 8 lines header, describing the text fields

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 \n

Hardware Current Log

# 8 lines header, describing the text fields

1 2 3* 4* 5* 6* 7* 8* 9* 10*11*12*13*14*15*16*17*18*19*20*21*22*23*24*

25*26*27*28*29*30*31*32*33*34*35*36*37*38*39*40*41*42*43*44*45*46*47* \n

Camera Frame

timestamp camera frame YUV 422, 320× 240@15 Hz

. . .

end camera frame

Legend: atime stamp,bhead roll, chead pitch, dhead yaw, ehead x, fhead y,
ghead z, htorso roll, itorso pitch, ktorso yaw, ltorso x mtorso y ntorso z,
1time offset, 2servo enabled∈ {true, false}, 3head yaw, 4head pitch, 5l shoul-
der pitch, 6l shoulder roll, 7l elbow yaw, 8l elbow roll, 9l hip yaw pitch,
10l hip roll, 11l hip pitch, 12l knee pitch, 13l ankle pitch, 14l ankle roll,
15r hip yaw pitch, 16r hip roll, 17r hip pitch, 18r knee pitch, 19r ankle pitch,
20r ankle roll, 21r shoulder pitch, 22r shoulder roll, 23r elbow yaw, 24r el-
bow roll, 25acc x, 26acc y, 27acc z, 28gyro x, 29gyro y, 30gyro ref, 31l FSR front l,
32l FSR front r, 33l FSR rear l, 34l FSR rear r, 35r FSR front l, 36r FSR front r,
37r FSR rear l, 38r FSR rear r, 39us reading, 40us direction, 41l foot bumper l side,
42l foot bumper r side, 43r foot bumper l side, 44r foot bumper r side, 45chest but-
ton state, 46battery charge, 47DCM time stamp, note: the starred data yield the
current values of the resp. sensor

Fig. 5: Data Frames



Fig. 6: Example scenarios

(x, y) coordinates of the torso. Note that each trajectory ’wiggles’ along the
robot’s path. The explanation for this is that the torso is tilting to the left and
the right, respectively, when the robot walks. As the tracker accuracy is below
1 mm, one can find such movement in the tracked data. The spatial resolution
and accuracy of the ground truth data are determined by the motion capturing
system. The time synchronization between the data of the tracking system and
the data recorded by the robot was done manually. We used easy to find motions
like stand-up as synchronization points.

Further, we analyzed the time accuracy of our logging session. In the 20
runs of our current experiments, we could observe some variances in the aspired
frame rate depending on the complexity of the task. The data were recorded at
frequency of 50 Hz, i.e. 20,000 µsec. The average frame time we could achieve
with our robots for the logged data over 92, 661 data frames lies at 21,245.82
µsec, with a standard deviation of 89 µsec.

Fig. 7 shows first experimental results on using the recorded data sets for
benchmarking the robot Nao and our software. In particular, we compare the
data of the head yaw that the robot logged with the globally tracked data
(Fig. 7(a)), the calculated odometry of the robot’s position with the tracked
relative positions (Fig. 7(b)), as well as the global position, which our localiza-
tion system yields, with the globally tracked torso position (Fig. 7(c)).

The head yaw data as depicted in Fig. 7(a) were achieved the following way.
Several time, the robot was turning around itself (i.e. no translational move-
ment), while his head was constantly moving from the left to the right. This
resembles our search-ball behavior. The relative head yaw was computed from
the tracked data as head yaw rel = normalize(Θhead −Θtorso) with Θ the global
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yaw angle (see Fig. 3 for the definition of the global coordinate system). The
local data were just taken from Nao’s head joint reading. Note that the global
reference data in Fig. 7 are drawn with a time offset of 1 sec for readability
reasons as, otherwise, the graphs would overlay with each other. Also note that
the tracker could not always yield data for the torso and the head (gaps in the
graph). Moreover, note that the yaw odometry comes from an absolute angle sen-
sor and therefore there the errors do not accumulate like the odometry shown
in Fig. 7(b)).

The other graphs show our inverse kinematic calculations of the robot’s torso
position compared with the globally tracked data, and the results of our local-
ization algorithm (cf. [12] for a concise description of the implementation) for
the two data sets Run-19 and Run-20. These two graphs show the usefulness of
the recorded data sets, in particular. We now can establish good error measures
and compare future enhancements of the kinematic and the localization on these
data.

5 Conclusion

In this paper we described how we recorded a ground-truth data collection for
the biped humanoid robot Nao. During our experiments we logged all relevant
sensor data that the robot Nao can provide, from all sensor joint angles over
the joint currents up to the camera stream. An assessment of the throughput
of the robot’s hardware revealed that the camera stream could not be recorded
with a desired 30 Hz at full VGA resolution, but only with 15 Hz at 320 × 240
pixels. The sensor data were logged with a frequency of 50 Hz, and data analysis
showed that this frequency could be satisfyingly achieved in over 90,000 frames.
The respective ground truth to our experiments were established by means of a
professional motion capturing system that can track human body motion in 6D
with a sub-millimeter accuracy. 15 pulsed infra-red cameras were used to track a
the head and the torso of the Nao. This technology allowed also for logging the
camera images of the robot. In this environment, we set up a football field fully
compliant with the RoboCup 2009 SPL rules, and recorded 20 different runs.

As we conducted the experiments very recently, we are still processing the
data for compiling the single logs into a coherent data collection. The data sets
are available at http://www.zadeat.org/nao_gt. Moreover, we are going
to develop tool support to provide the data in different formats for allowing real-
time playback. By now, we provide the data as comma-separated value text files
and in a binary format as it was logged by our robot control software Fawkes.
A tool for converting these binary data into comma-separated value files exists
already.

In first experiments we showed the plausibility of the data, and that these
data sets are meaningful and can be beneficially used for benchmarking both, the
robot’s hardware as well as the own control software. We compared the robot’s
head yaw with the globally tracked data and our odometry and pose estimates
calculations with the global reference data.



With this paper we hope to start an initiative for benchmarking the platform
Nao similar to project like Rawseed by providing reference data sets. This should
help for comparing the approaches of the different research groups that work with
the Nao.
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