
Self-Maintenance for Autonomous Robots
controlled by READYLOG

Stefan Schiffer Andreas Wortmann Gerhard Lakemeyer

Knowledge-Based Systems Group
RWTH Aachen University, Aachen, Germany

andreas.wortmann@rwth-aachen.de

(schiffer,gerhard)@cs.rwth-aachen.de

Abstract— In order to make a robot execute a given task plan
more robustly we want to enable it to take care of its self-
maintenance requirements during online execution of this plan.
This requires the robot to know about the (internal) states of
its components, constraints that restrict execution of actions
and how to recover from faulty situations. The general idea is
to implement a transformation process on the plans, which are
specified in the agent programming language READYLOG, to
be performed based on explicit qualitative temporal constraints.
Afterwards, a ’guarded’ execution of the transformed program
results in more robust behavior.

I. INTRODUCTION

To arrive at truly intelligent agents such as robots, many
issues need to be adressed such as perception, locomotion,
manipulation, human-robot interaction, planning and reason-
ing. In this paper we are concerned with the latter in the
sense of cognitive robotics as introduced by the late Ray
Reiter, meaning “the study of the knowledge representation
and reasoning problems faced by an autonomous robot (or
agent) in a dynamic and incompletely known world” [9].

The central effort of Reiter’s vision [10] “is to develop an
understanding of the relationship between the knowledge, the
perception, and the action of such a robot”. This is outlined
by several questions the research in cognitive robotics is
supposed to answer. Especially, “what does the robot need
to know about its environment” and “when should the
inner workings of an action be available to the robot for
reasoning”. We approach a specialization of the intersection
of these questions, namely “what does the robot need to
know about itself and its requirements”. This is especially
interesting as present agents are often unable to explicate
their requirements (e.g., calibration of manipulators before
usage) relative to a plan. They usually need these require-
ments to be considered in an external process and in advance,
otherwise they fail during plan execution.

We propose a constraint-based self-maintenance frame-
work, which enables an agent to monitor its self-maintenance
requirements during program execution. Whenever the
framework determines unsatisfied requirements, appropriate
recovery measures are performed online. This behaviour
increases agent autonomy and robustness. We achieve this
by adding a program transformation step in READYLOG, a

logic-based robot programming language based on the Situ-
ation Calculus. This program transformation uses explicitly
formulated constraints that express dependencies between
task actions and the robot itself. These are only important at
run-time and we cannot and do not want to consider them
at planning time already. Thus, by decoupling the run-time
requirements, we also alleviate the costs for planning.

II. FOUNDATIONS

In the following, we briefly sketch the foundations of our
approach. For one, that is the Situation Calculus and our
robot control language READYLOG, for another that is a
formulation of temporal constraints.

A. Situation Calculus & READYLOG

The Situation Calculus [12] is a sorted logical language
with sorts situations, actions, and objects. Properties of the
world are described by relational and functional fluents that
change over time (situation dependent). Actions have pre-
conditions, and effects of actions are described by successor
state axioms. The world evolves from situation to situation,
e.g., s′ = do(a, s) means that the world is in situation s′ after
performing action a in situation s. GOLOG [11] is a logic-
based robot programming (and planning) language based on
the Situation Calculus. It allows for Algol-like programming
but it also offers some non-deterministic constructs. A Basic
Action Theory (BAT), which is a set of axioms describing
properties of the world, axioms for actions and their pre-
conditions and effects, and some foundational axioms, then
allows for reasoning about a course of action. To run a
program the original GOLOG uses an evaluation semantics:
Do(δ, s, s′) means that executing program δ transforms situ-
ation s to s′. The program is evaluated as a whole and then
executed in one go.

There exist various extensions and dialects to the original
GOLOG interpreter, one of which is READYLOG [5]. It
provides an online interpreter and integrates several ex-
tensions like interleaved concurrency, sensing, exogenous
events, and online decision-theoretic planning (following [2])
into one framework. In READYLOG a program is interpreted
in a step-by-step fashion where a transition relation defines



A

B

(a) A MEETS B

A

B

(b) A BEFORE B

A

B

(c) A STARTS B

A

B

(d) A ENDS B

A

B

(e) A CONTAINS B

A

B

(f) A OVERLAPS B

A

B

(g) A EQUALS B

Fig. 1. Seven of Allen’s interval relations [1]. We omitted the inverse
relations here for simplification purposes.

the transformation from one step to another. In this so-
called transition semantics a program is interpreted from one
configuration 〈δ, s〉, a program δ in a situation s, to another
configuration 〈δ′, s′〉 which results after executing the first
action of δ, where δ′ is the remaining program and s′ the
situation resulting from the execution of the first action of δ.

We use READYLOG to specify our agents and the approach
presented here is an extension to READYLOG. As programs
in READYLOG represent task plans, we will use the term
program from now on instead of plan.

B. Temporal Constraints

To formulate temporal constraints between actions we
obviously require a notion of temporal relations between
actions (or more generally, between states). Since we are
interested in constraints that should be easy to formulate
for the designer we prefer a qualitative description of these
relations. We consider this sufficient for most cases we intend
to handle and spare computing explicit timing values. We
therefore chose Allen’s Interval Algebra [1] as our basis.
For an overview on important relations in this algebra see
Fig. 1. An example of a constraint that we want to formulate
could be

calibrate arm BEFORE manipulate

to indicate that the manipulator has to be calibrated before we
can actually use it. We are not the first to consider an interval
formulation in GOLOG [6]. However, our approach is not
targeted at flexible interval planning but more to formulate
the constraints and augment a given program according to
these.

C. Durative Actions

Usually, actions are durative, i.e., they consume time.
The original Situation Calculus only knows instantaneous
actions. There are, however, some extensions that we are
going to adopt to represent durative actions [4], [3]. In these
approaches, actions with a duration are considered activities
that are bounded by instantaneous start/stop-actions. The fact
that such an activity is currently being performed is indicated
by a fluent for each activity. See Fig. 2 for an example.

Going+ −

Fluent
“Going”

Action
“start going”

Action
“stop going”

Durative Action “Goto”

Fig. 2. Exemplary decomposition of a durative action

III. APPROACH

The general idea is to implement a program transformation
process based on temporal constraints and the program to
be performed. Fig. 3 depicts how we propose to integrate
the components of our self-maintenance framework into the
existing agent controller.

We propose to intervene between decision-theoretic plan-
ning, whose output is an executable program, and its online
execution. Before any action of the program is performed in
the real world, a self-maintenance interpreter checks whether
there are unsatisfied constraints for this action. If such
constraints are found, the program execution is delayed and
the program is augmented with maintenance and recovery
measures. The augmented program is only then passed on
for execution. Depending on the constraint(s) the transfor-
mation also includes monitoring markers, e.g., making sure
the locomotion module is off throughout the execution of
manipulating something. It possibly also requires a list of
commitments to actions in the future.

For this transformation to work, we need to make one
important restriction, though. Since the self-management
may not invalidate the program, we separate the task from
the maintenance domain and restrict the constraints to only
map elements from the former to the latter.

A. Constraints

Our approach is similar to [8] who propose a framework for
online plan repair and execution control based on temporal
constraints. Their work is motivated by the same problems
as ours, namely that “taking into account run-time failures

Plan/Program Task BATMgmt BAT

Transformation

Constraints

ExecutionTodo-List Monitoring

δ

δ′

Fig. 3. Architectural overview of our approach. The program δ, which only
uses the Basic Action Theory for the task, is passed to our transformation
process. This process uses constraints, which link elements from the Task
BAT to elements from the self-maintenance domain. The latter are specified
in the Mgmt BAT. The transformation yields a modified program δ′ which
is passed on for execution together with instructions for monitoring and
commitments to future action. These commitments are maintained in a todo-
list to ensure that they will eventually be satisfied.



TABLE I

TRANSLATION OF A CONSTRAINT TO AN ORDER ON SITUATIONS

A BEFORE B Mgmt (B)

b B ψ

Ta
sk

(A
) a a < b a < B+ a < ∆+

ψ

A A− < b A− < B+ A− < ∆+
ψ

φ ∆−
φ < b ∆−

φ < B+ ∆−
φ < ∆+

ψ

and timeouts” requires online plan recovery. However, they
rely on partial order planning and assume temporal flexible
plans. Their objective is to execute a plan under resource
and timing constraints by grounding time points at execution
time. We, on the other hand, are interested in interleaving
self-maintenance and task actions at execution time on a
qualitative level. Time points in the Situation Calculus are
only characterized by actions.

Our constraint syntax is A⊗ B where
A is from the task domain. It can be (a) a instanta-

neous action which corresponds to an interval end-
point, (b) a durative action that needs to be decom-
posed to its end-points, or (c) a fluent formula that
needs to be checked with respect to the interval.

⊗ is one of Allen’s relations.
B is from the self-management domain. The same

cases as described above for A also apply for B.

B. Online Program Transformation

We transform the program (i.e., a plan generated by
READYLOG) using the set of constraints available for the
next task action to be executed. The set of constraints is
translated to a Constraint Satisfaction Problem (CSP) by
resolving each constraint to an order on situations described
by primitive or start/stop-actions. An example is given in
Table I. Small case letters denote instantaneous actions,
capital letters stand for complex actions, and ∆−

φ and ∆+
φ

represent a fluent formula φ becoming false or true in
a certain situation, respectively. The solution of the CSP
then dictates the transformation. It schedules maintenance
actions and augments the program with appropriate occur-
rence and persistence commitments, i.e., commitments to
future situations. Before we detail the construction of the
CSP in Sec. III-B.2, we first elaborate on the concept of
commitments mentioned above.

1) Commitments: There are maintenance constraints that
require a commitment to future points in time. Consider, for
example, the constraint A BEFORE B, which denotes that
B has to be performed sometime after B or the constraint
A EQUALS B, which, amongst others, demands that B has
to stay active until A terminates. The only way to handle
such commitments so far is to introduce auxiliary fluents that
record these commitments. To determine the value of these
fluents we would need to use regression [13], which traces
the fluent’s value back to the initial situation and applies
all changes made since then up to the current situation. As
regression is quite expensive with an increasing number of

actions performed already, we follow a different approach.
We extend the READYLOG language with two sets of concep-
tually different commitments: (i) occurrence commitments,
which denote that some action has to be performed in the
future, and (ii) persistency commitments, which denote that
some situation calculus expression holds for some timespan,
e.g., for a subsequence of a situation term.

a) Occurrence Commitments: Occurrence commitments
O are commitments about the future program and ought to
ensure that a certain action happens in the future and under
certain circumstances. We consider four forms of occurrence
commitments which represent the different circumstances
under which we may require an action to be performed in
the future.

� sometime (β) denotes that action β has to be performed
some time in the future,

� after (α, β) denotes that β has to be performed some
time in the future, but not before the next occurrence
of action α.

� within (β, N) denotes that β has to be performed within
the next N actions.

� then (α, β, N) denotes that β has to be performed within
the next N actions, after the next occurrence of α.

The self-maintenance interpreter updates O according to the
constraints involved. In any future step, it also needs to be
notified about the existence of actions to be integrated. We
therefore introduce a new construct TODO (α) to the READY-
LOG language which causes both, updating O according to
the last action α performed and managing to check and
schedule an action from O if applicable.

b) Persistency Commitments: Persistency commitments
P denote that some situation calculus expression needs to
hold for some timespan. These commitments follow similar
ideas as the occurrence commitments, i.e., a set of situation
calculus expressions should hold under certain circumstances
in the future. As satisfying these commitments is considered
vital to program execution, the self-maintenance interpreter
may terminate the program if such a persistency commitment
is violated.

� between (α, β, ϕ) denotes that the expression ϕ has to
hold between the next occurrence of α and the first
subsequent occurrence of β.

� until (β, ϕ) denotes that ϕ has to hold until the next
occurrence of β.

The corresponding construct MONITOR follows the same
idea as the TODO construct above, i.e., the persistency
commitments are updated relative to the last action per-
formed and then the resulting persistency commitments
are checked relative to the current situation. We introduce
two auxiliary relations UPDATEMONITOR (α,P,P ′) and
CHECKMONITOR (s, δ′,P) which perform these tasks.

2) Constructing the CSP: If, at any point in program
execution, we have more than one constraint associated with
the next action α, we have to schedule the corresponding



maintenance actions appropriately. We do so by using trans-
formation rules which we will present in the next section.

The constraints satisfaction problem that we construct
is a fixed length CSP. It is built over variables
{tα1 , . . . , tα, . . . , tαk

}, where each tαi represents a time-
step in the sequence of actions induced by the maintenance
constraints. The number of variables, i.e., the length of the
CSP, is infered from the transformation rules. For every
action that needs to be scheduled we need one time-step,
hence one variable, and we need one time-step for the task
action α itself. If there are occurrence commitments of
types within (β, N) or then (α, β, N), these are also added to
the CSP by adding additional variables tαj for each action
required in any of these commitments. The domain of all
these variables are the natural numbers [1, 2, . . . , n], where
n is the length of the CSP, namely, the number of actions
to be scheduled around the task action α plus one (for
α itself). The restrictions on the variable assignments are
taken from the transformation rules and the commitments.
This completes the construction of the CSP. The solution
to the CSP is an assignment of values to the variables tαi .
It represents an ordering on the actions to be scheduled
and it can then be translated to the sequence of actions
[αi1 , . . . , αin

].
3) Transformation Rules: The illustration of our mainte-

nance constraints in Table I was a slight simplification. As
already mentioned, we actually use a set of transformation
rules per constraint. A transformation rule is a six-tupel
(A⊗B,α,Φ, CCSP ,O,P), where

• A ⊗ B, is a (maintenance) constraint as described in
Sec. III-A

• α ∈ AP , i.e., an action from the task domain
• Φ is a situation calculus formula qualifying the scope

of the transformation rule, e.g., apply different rules
depending on whether a fluent F holds or not.

• CCSP is a multi-set of restrictions of the form T ×
T × Ψ, where T is the set of CSP variables and Ψ is
an arithmetical or logical expression on these variables.
For example, (ti, tj ,Ψi,j) denotes that ti und tj are
constraint by the expression Ψi,j .

• O is a set of occurence commitments
• P is a set of persistency commitments

The transformation rules have to be read as follows. If
there is a maintenance constraint associated with the next
task action α to be executed in situation s, and the condition
Φ holds, then (1) the restrictions CCSP have to be met in the
CSP, that is built, and (2) the CSP has to also meet both, the
occurence commitments O and the persistency commitments
P . That is to say, every set of pairwise restrictions on
variable assignments {(ti, tj) | Γi,j} in the final CSP is made
up of the Ψ in (ti, tj ,Ψi,j) from CCSP . As an example,
consider the constraint A MEETS B with transformation rule
(A Meets B,A−, True, {(tA− , xB+ , tA− ≈ε tB+)}, ∅, ∅). If
the next action to be performed is A−, and the formula Φ
holds in that situation, this rule causes the variables tA− , tB+

to be added to the CSP with the restriction tA− ≈ε tB+ on
their ordering. It also causes the occurence commitments to
be updated with O, and the persistency commitments to be
updated with P .

C. Extended Configurations

The transition semantics mentioned in Sec. II so far de-
scribed transitions over configurations of the form (δ, s). This
does not allow iterative modifications of our commitments
O and P without introducing procedural notions of variable
assignments. This seems indesirable. Therefore, we extend
the transition semantics of READYLOG from configurations
(δ, s) to configurations (δ, s,O,P) which include both, oc-
curence commitments O and persistency commitments P .
Then, in each transition, i.e., in one step of the interpreter,
we can update not only the program and the situation but
the commitments needed for successful self-maintenance as
well.

D. Special Features

Our approach features two particularities, namely (non-
) preemptive actions and constraint inheritance, which we
elaborate on in the following.

1) (Non-)Preemptive Actions: By introducing a decom-
position of complex actions (i.e., activities) into an action
starting the activity and an action stopping it, we skipped
the fact that some of the actions that an agent can take
may not be terminated by the agent itself in a meaningful
way. Following [8], we use their notion of preemptive and
non-preemptive actions, i.e., we distinguish between actions
which can be terminated at any time without ruining the
outcome and actions which are expected to fail if terminated
early. We will also borrow the idea that the underlying
execution system sends some form of report about the end
of non-preemptive actions.

Within a coffee delivery scenario we might consider a self-
maintenance action beep, that makes an annoying sound
while the agent transports coffee, to be preemptive, while the
task action pickup clearly is not. Since we want to treat both
types of action similarly during program transformation, we
introduce a construct waitForEnd(A, τ). It takes a complex
action A and a deadline τ and terminates the action A if it
is preemptive. If the action is non-preemptive, it blocks the
program execution until either the execution system signals
that the action has finished or the deadline is met, at which
point program execution is aborted.

2) Inheritance: It is an often seen bad practice to duplicate
constraints for related actions. To alleviate this and provide a
more convenient way of formulating the constraints, it should
be possible to define constraints for classes of actions, e.g.,
we would like to have an action inheritance for several move
actions. Building on [7], we employ a modular BAT that
allows for inheritance of constraints along the hierarchy of
actions. See Fig. 4 for an example.



Motion

Turn Goto

SneakHover

Fig. 4. Inheritance of constraints in a hierarchy of actions

E. Concurrency

The transformation, and hence the execution, may require
several actions to be running concurrently. With our notion
of durative actions this is possible, but the maintenance
may even require two or more instantaneous actions to be
executed simultaneously. READYLOG, however, currently
only supports interleaved concurrency [4], which executes
two action sequences concurrently by interleaving them. This
is opposed to true concurrency [14], where sets of actions
may be executed ’truly concurrently’ between any two situ-
ations. To deal with this, we make use of something we call
the ε-slot. Since, with a real execution system, concurrent
calls to execute something will be serialized eventually, we
consider two (or more) actions happening simultaneously if
they happen within a time span not exceeding the ε-slot.
ε is a natural number that denotes, how many subsequent
instantaneous actions we think can be considered to happen
simultaneously.

IV. A DETAILED EXAMPLE

To illustrate our approach we will now step through a
detailed example. Consider the following setup: Given a
Basic Action Theory that contains at least

• the fluent Calibrated indicating whether the robot’s
laser range finder has already been calibrated,

• the complex task domain action goto (x), which causes
our robot to move to position x, and

• the two complex maintenance domain actions
calibrate = (start calibrate, stop calibrate, Calibrating),
and viscan = (start viscan, stop viscan, Viscaning).
calibrate calibrates the laser range finder, i.e., it causes
Calibrated to hold afterwards, and viscan tests for
imminent collisions using a visual obstacle detector.

Each of these actions is always possible, and calibrate is the
only way to set the fluent Calibrated = True. The set of
constraints is
C = {goto (x) EQUALS viscan, goto (x) AFTER calibrate},
which denotes that goto (x) is performed concurrently with
viscan and only after the laser range finder was calibrated.
These constraints imply – amongst others – three transforma-
tion rules. We abbreviate complex actions by their first letter
with the usual modifiers, omitting the parameter of goto (x)
as it is of no relevance for this example. Thus, G denotes
the complex action goto (x), G+ denotes start goto (x), G−

denotes stop goto (x) and GF denotes the fluent Going (x).

Furthermore, variables tα refer to the position of an action
α in a sequence of actions. The transformation rules are

(1) (G AFTER C,G+,¬Occurred (C−) ∧ ¬CF ,

{tC+ < tC− , tC− < tG+}, ∅, ∅)

where Occurred indicates whether C− was
already performed, i.e., ∃s′, a1, . . . , aN . s =
do([a1, . . . , aN , C−], s′).

(2) (G EQUALS V,G+,¬V F ,

{tV + ≈ε tG+}, ∅, {between
(
V +, G−, V F

)
})

(3) (G EQUALS V,G−, V F , {tG− ≈ε tV −}, ∅, ∅)
The agent has not performed any actions yet, i.e., the

current situation is the initial situation S0. The ε-slot
length is 3 and the program to be performed is δ =
[start goto (x) , δ1, stop goto (x) , δ2], where δ1 and δ2 are
sequences of primitive actions that we do not want to detail
here. Furthermore, both occurrence commitments O and
persistency commitments P are empty in S0. We now show
how execution of this program evolves in terms of single
steps of the transition semantics:

(I) We start in situation s = S0, with the program
δ = [start goto (x) , δ1, stop goto (x) , δ2]

and commitment sets O = ∅ and P = ∅.
(i) Inspecting the set of constraint-implied transforma-
tion rules reveals that the next action to be performed,
start goto (x), requires self-maintenance attention, as
both “¬Occurred (C−) ∧ ¬CF ” (from G AFTER C)
and “¬V F ” (from G EQUALS V ) hold in s.
(ii) Therefore, the rules (1) and (2), together with
start goto are transformed into a constraint satisfac-
tion problem over variables tC+ , tC− , tV + , tG− . The
domains are DtC+ = DtC−

= DtV + = DtG−
=

{1, 2, 3, 4}, because we know from the transformation
rules, that we need to perform four actions to trans-
form the current situation into a situation that satisfies
the self-maintenance requirements. The transformation
rules further imply restrictions on the order of three
pairs of actions, namely

• CC+,C− = {(i, j) | i < j}
• CC−,G+ = {(i, j) | i < j}
• CV +,G+ = {(i, j) | i ≈ε j}.

Furthermore, there is an additional set of global con-
straints for each pair of variables that states that their
values are different. We illustrate the CSP in Fig. 5.
(iii) This CSP is solved using a simple backtracking
CSP solver that yields (possibly amongst others) the
solution tC+ = 1, tC− = 3, tV + = 2, tG− = 4, which
corresponds to the sequence of actions

δ∗ = [start calibrate, start viscan, stop calibrate,

R (start goto (x))],
where R (start goto (x)) is an indicator denoting that
we already tried to perform self-maintenance for the



tC+ tC−

tG+tV +

tC+ < tC−

{(1, 2), (1, 3), (1, 4),

(2, 3), (2, 4), (3, 4)}

tC− < tG+

{(1, 2), (1, 3),

(1, 4), (2, 3),

(2, 4), (3, 4)}

tV + ≈ε tG+

{(1, 2), (1, 3), (2, 1),

(2, 3), (2, 4), (3, 1), (3, 2),

(3, 4), (4, 2), (4, 3)}

Fig. 5. An exemplary CSP for four variables tC+ , tC− , tG+ , and
tV + represented as nodes. Edges are labeled (left and below, respectively)
with constraints between these variables and the set of possible variable
assignments (above and right, respectively).

action start goto (x). This leads to the remaining pro-
gram

δ′ = [start calibrate, start viscan, stop calibrate,

R (start goto (x)) , δ1, stop gotox, δ2]
(iv) Rule (2) also yields the persistency commit-
ment “between

(
V +, G−, V F

)
”, which states that

we require the fluent V F to hold from V + to
G−, thus we update P accordingly to P ′ =
{between (start viscan, stop goto (x) , Viscaning)}

(II) The second step of the transition semantics now faces
the same situation s = S0 as before, a modified
program

δ = [start calibrate, start viscan, stop calibrate,

R (start goto (x)) , δ1, stop goto (x) , δ2]
modified persistency commitments P =
{between (start viscan, stop goto (x) , Viscaning)}
and unmodified occurrence commitments O = ∅.
(i) start calibrate is performed.
(ii) The remaining program is

δ′ = [start viscan, stop calibrate,

R (start goto (x)) , δ1, stop goto (x) , δ2]
(iii) Neither P nor O require updates.

(III) The third step faces the situation
s = do (start calibrate, S0) ,

the program
δ = [start viscan, stop calibrate,

R (start goto (x)) , δ1, stop goto (x) , δ2],
and unmodified occurrence commitments
O = ∅ and persistency commitments P =
{between (start viscan, stop goto (x) , Viscaning)}.
(i) start viscan is performed.

(ii) The remaining program is
δ′ = [stop calibrate, R (start goto (x)) ,

δ1, stop goto (x) , δ2].
(iii) As start viscan is performed, P updates to P ′ =
{until (stop goto (x) , Viscaning)}, which denotes that
the fluent Viscaning is required to hold from now on
until stop goto (x) is performed.

(IV) The fourth step begins with situation
s = do([start calibrate, start viscan], S0)

and program
δ = [stop calibrate, R (start goto (x)) ,

δ1, stop goto (x) , δ2],
P = {until (stop goto (x) , Viscaning)}, and O = ∅.
(i) stop calibrate is performed.
(ii) The remaining program is

δ′ = [R (start goto (x)) , δ1, stop goto (x) , δ2].
(iii) Neither P nor O require updates.

(V) The situation advanced to
s = do([start calibrate, start viscan, stop calibrate], S0)
with program remainder

δ = [R (start goto (x)) , δ1, stop goto (x) , δ2]
and commitments O = ∅ and P =
{until (stop goto (x) , Viscaning)}.
(i) Neither “¬Occurred (stop calibrate) ∧
¬Calibrating” (from goto (x) AFTER calibrate),
nor “¬Viscaning” (from goto (x) EQUALS viscan)
hold in s, thus, recovering from the faulty situation
where start goto (x) was supposed to be executed,
has succeeded and start goto (x) may finally be
performed.
(ii) Therefore, the recovery indicator is removed and
start goto (x) is performed. Leaving

δ′ = [δ1, stop goto (x) , δ2].
(iii) P and O do not change.

(VI) The situation is now
s = do([start calibrate, start viscan,

stop calibrate, start goto (x)], S0)
with program remainder

δ′ = [δ1, stop goto (x) , δ2],
and O = ∅.
(i) Now the sequence of actions δ1 – which may re-
quire further self-maintenance recovery – is performed.
Thus, P and O may have been updated to P ′ =
{until (stop goto (x) , Viscaning)}∪Pδ1 and O′ = Oδ1 ,
respectively.
(ii) δ′ = [stop goto (x) , δ2].

(VII) The situation has advanced to
s = do([start calibrate, start viscan, stop calibrate,

start goto (x) , δ1], S0),



the program remainder is
δ = [stop goto (x) , δ2],

and commitments are O = Oδ1 and P =
{until (stop goto (x) , Viscaning)} ∪ Pδ1 .
(i) stop goto (x) is to be performed, but there is another
transformation rule left unsatisfied. Rule (3) states to
assure that stop viscan is performed immediately after
stop goto (x).
(ii) This is achieved by solving a CSP about rule
(3), which leads to a program remainder δ∗ =
[R (stop goto (x)) , stop viscan] without further mod-
ifications to P and O.
(iii) Then

δ′ = [R (stop goto (x)) , stop viscan, δ2]
(VIII) Step eight faces situation

s = do([start calibrate, start viscan, stop calibrate,

start goto (x) , δ1], S0)
with program remainder

δ = [R (stop goto (x)) , stop viscan, δ2]
and commitments O = Oδ1 and P =
{until (stop goto (x) , Viscaning)} ∪ Pδ1 .
(i) Evaluating the recovery indicator for stop goto (x)
leads to re-evaluation of rule (3). We notice that
Viscaning still holds. Since we also know that
stop goto (x) is about to be executed, we can retract
until (stop goto (x) , Viscaning) from P .
(ii) Finally, stop goto (x) is performed and P is
updated accordingly to P ′ = Pδ1 .

(IX) The current situation is
s = do([start calibrate, start viscan, stop calibrate,

start goto (x) , δ1, stop goto (x)], S0),
the program remainder is

δ = [stop viscan, δ2],
with P = Pδ1 and O = ∅.
(i) stop viscan is performed.
(ii) Neither P nor O require updates.
(iii) δ′ = δ2.

(X) The execution of δ2 continues and may require further
self-maintenance or not, but eventually the program
finishes.

V. DISCUSSION

In this paper we presented our approach to self-maintenance
for autonomous robots controlled by READYLOG. We mod-
ify a given program at run-time using explicitly formulated
temporal constraints that relate self-maintenance actions with
actions from the task domain. This way, we achieve more
robust and enduring operation and take care of maintenance
when it is relevant: at execution time. Keeping our approach
in one framework allows to use all of READYLOG’s features
in maintenance and recovery. Up to now, we have not consid-
ered any optimization issues in scheduling the maintenance
actions, we just apply one possible scheduling returned as

a solution to the CSP. It could be worthwhile looking into
methods on how to determine which of a set of solutions is
optimal.

In future work, we will consider two extensions. Explana-
tion: Since the robot knows which constraint(s) failed in a
particular situation and it probably does not have means to
take care of it itself, the robot can at least exhibit to the user
what went wrong. Interaction: Alternatively, if the robot can
not handle a constraint itself (e.g., no emergency off while
drive) but knows, that a human user could do, it can simply
trigger an interaction, e.g., ask “Could you please release
my emergency button?”.

ACKNOWLEDGMENTS

The authors thank the reviewers for their comments.

REFERENCES

[1] J. F. Allen. Maintaining knowledge about temporal intervals. Commun.
ACM, 26(11):832–843, November 1983.

[2] C. Boutilier, R. Reiter, M. Soutchanski, and S. Thrun. Decision-
theoretic, high-level agent programming in the situation calculus. In
Proceedings of the 17th National Conference on Artificial Intelligence
and 12th Conference on Innovative Applications of Artificial Intelli-
gence, pages 355–362. AAAI Press / The MIT Press, 2000.

[3] J. Claßen, Y. Hu, and G. Lakemeyer. A Situation-Calculus Semantics
for an Expressive Fragment of PDDL. In AAAI’07: Proceedings of the
22nd National Conference on Artificial Intelligence, pages 956–961.
AAAI Press, 2007.

[4] G. de Giacomo, Y. Lespérance, and H. J. Levesque. Congolog, a
concurrent programming language based on the situation calculus.
Artificial Intelligence, 121(1-2):109–169, 2000.

[5] A. Ferrein and G. Lakemeyer. Logic-based robot control in highly
dynamic domains. Robotics and Autonomous Systems, 56(11):980–
991, 2008.

[6] A. Finzi and F. Pirri. Flexible interval planning in concurrent temporal
golog. In Working notes of the 4th Int. Cognitive Robotics Workshop,
2004.

[7] Y. Gu and M. Soutchanski. Reasoning about Large Taxonomies of
Actions. In D. Fox and C. P. Gomes, editors, AAAI’08: Proceedings
of the 23rd National Conference on Artificial Intelligence, volume 2,
pages 931–937. AAAI Press, 2008.

[8] S. Lemai and F. Ingrand. Interleaving temporal planning and execution
in robotics domains. In AAAI’04:Proceedings of the 19th National
Conference on Artifical Intelligence, pages 617–622. AAAI Press /
The MIT Press, 2004.

[9] H. Levesque and G. Lakemeyer. Cognitive Robotics. Handbook of
Knowledge Representation. Elsevier, 2007.

[10] H. Levesque and R. Reiter. High-level robotic control: Beyond
planning. a position paper. In AIII 1998 Spring Symposium: Integrating
Robotics Research: Taking the Next Big Leap, March 1998.

[11] H. J. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. B. Scherl.
GOLOG: A Logic Programming Language for Dynamic Domains.
Journal of Logic Programming, 31(1-3):59–83, 1997.

[12] J. McCarthy. Situations, Actions, and Causal Laws. Technical Report
Memo 2, AI Lab, Stanford University, California, USA, 3 July 1963.
Published in Semantic Information Processing, ed. Marvin Minsky.
Cambridge, MA: The MIT Press, 1968.

[13] F. Pirri and R. Reiter. Some Contributions to the Metatheory of the
Situation Calculus. Journal of the ACM, 46(3):325–361, 1999.

[14] R. Reiter. Natural actions, concurrency and continuous time in the
situation calculus. In In Principles of Knowledge Representation and
Reasoning: Proceedings of the Fifth International Conference (KR’96),
pages 2–13, Cambridge, Massachusetts, U.S.A., November 1996.


	Introduction
	Foundations
	Situation Calculus & ReadyLog
	Temporal Constraints
	Durative Actions

	Approach
	Constraints
	Online Program Transformation
	Commitments
	Constructing the CSP
	Transformation Rules

	Extended Configurations
	Special Features
	(Non-)Preemptive Actions
	Inheritance

	Concurrency

	A Detailed Example
	Discussion
	References

