
Plan Recognition by Program Execution in
Continuous Temporal Domains

Christoph Schwering, Daniel Beck, Stefan Schiffer, and Gerhard Lakemeyer

Knowledge-based Systems Group, RWTH Aachen University, Aachen, Germany
(schwering,beck,schiffer,gerhard)@kbsg.rwth-aachen.de

Abstract. Much of the existing work on plan recognition assumes that
actions of other agents can be observed directly. In continuous temporal
domains such as traffic scenarios this assumption is typically not war-
ranted. Instead, one is only able to observe facts about the world such
as vehicle positions at different points in time, from which the agents’
plans need to be inferred. In this paper we show how this problem can be
addressed in the situation calculus and a new variant of the action pro-
gramming language Golog, which includes features such as continuous
time and change, stochastic actions, nondeterminism, and concurrency.
In our approach we match observations against a set of candidate plans
in the form of Golog programs. We turn the observations into actions
which are then executed concurrently with the given programs. Using
decision-theoretic optimization techniques those programs are preferred
which bring about the observations at the appropriate times. Besides
defining this new variant of Golog we also discuss an implementation
and experimental results using driving maneuvers as an example.

1 Introduction

Much of the work on plan recognition, e.g. [1–5], has made the assumption that
actions of other agents are directly observable. In continuous temporal domains
such as traffic scenarios this assumption is typically not warranted. Instead, one
is only able to observe facts about the world such as vehicle positions at differ-
ent points in time, from which the agents’ actions and plans need to be inferred.
Approaches which take this view generally fall into the Bayesian network frame-
work and include [6–8]. One drawback of these approaches is that actions and
plans can only be represented at a rather coarse level, as the representations are
essentially propositional and time needs to be discretized.

On the other hand, action formalisms based on first-order logic are very
expressive and are able to capture plans at any level of granularity, including
parallelism, continuous change and time. As we will see, this makes it possible
to model the behavior of agents directly in terms of actions such as changing the
direction of a vehicle or setting a certain speed. In a sense, this expressiveness al-
lows to combine actions into plans or programs, whose execution can be thought
of as an abstract simulation of what the agents are doing. This and parame-
terized actions yield a huge flexibility in formulating possible agent plans. Plan

recognition in this framework boils down to finding those plans whose execution
are closest in explaining the observed data.

In this paper, we propose an approach to plan recognition based on the action
programming language Golog [9], which itself is based on the situation calcu-
lus [10, 11] and hence gives us the needed expressiveness. The idea is, roughly,
to start with a plan library formulated as Golog programs and to try and match
them online with incoming observations. The observations are translated into
actions which can only be executed if the fact observed in the real world also is
true in the model. These actions are executed concurrently with the given pro-
grams. Decision-theoretic optimization techniques are then used to select those
among the modified programs whose execution bring about a maximum number
of observations at just the right time.

Many of the pieces needed for a Golog dialect which supports this form
of plan recognition already exist. These include concurrency [12], continuous
change [13], stochastic actions [11], sequential time [14], and decision theory [15].
As we will see, these aspects need to be combined in novel ways and extended.
The main contributions of the paper then are the definition of a new Golog
dialect to support plan recognition from observations and to demonstrate the
feasibility of the approach by applying it to traffic scenarios encountered in a
driving simulator.1 The rest of the paper is organized as follows. In the next
section, we briefly outline our example traffic scenario. Section 3 introduces our
new Golog variant prGolog, followed by a formal specification of an interpreter
and a discussion of how plan recognition by program execution works in this
framework. In Section 6, we present experimental results. Then we conclude.

2 Driving Maneuvers: An Example Domain

In this section we briefly introduce our example domain and some of the modeling
issues it raises, which will motivate many of the features of our new Golog dialect.

In our car simulator a human controls a vehicle on a two-lane road with other
cars controlled by the system. The goal is to recognize car maneuvers involving
both the human-controlled car and others on the basis of observed global vehicle
positions which are registered twice a second. For simplicity we assume com-
plete knowledge and noise-free observations. We would like to model typical car
maneuvers such as one vehicle passing another in a fairly direct and intuitive
way. For that it seems desirable to build continuous time and continuous change
directly into the modeling language. Among other things, this will allow us to
define constructs such as waitFor(behind(car1, car2)), which lets time pass con-
tinuously until car1 is behind car2. To actually steer a car in the model, we will
use actions to set the speed and to change the orientation (yaw). For simplicity
and for complexity reasons, we assume that such changes are instantaneous and
that movements are modeled by linear functions (of time) as in [13]. Concurrency
comes into play for two reasons. For one, with multiple agents present they need

1 We remark that the only other existing work using Golog for plan recognition [3] is
quite different as it assumes that actions are directly observable.

(a) (b)

Fig. 1: Two cars driving straight with different tolerances.

to be able to act independently. For another, observations will be turned into
special actions which are executed concurrently with the agents’ programs. Tech-
nically we will make use of ConGolog’s notion of interleaved concurrency [12].

To see where probabilities come into play, we need to consider a complication
which results from a mismatch between a simple model of driving in a straight
line and reality, especially when a human controls a car. Most likely the human
will oscillate somewhat even when his or her plan is to drive straight, and the
amount of oscillation may vary over time and among individuals (see Figure 1
for two examples). Since the observed data will also track such oscillations, a
straight-line model is not able to explain the data. Instead we introduce toler-
ances of varying width and likelihood, where the width indicates that a driver
will deviate at most this much from a straight line and the likelihood estimates
the percentage of drivers which exhibit this deviation. Technically, this means
that the action which changes the direction of a car is considered a stochas-
tic action in the sense of [15, 11]. We use a discretized log-normal distribution,
where each outcome determines a particular tolerance. In a similar fashion, set-
ting the speed introduces tolerances along the longitudinal axis to accommodate
differences between the actual speed and the model.

3 The Action Language prGolog

prGolog is our new dialect of the action language Golog [9]. Golog is based on
Reiter’s version of the situation calculus [11] which is a sorted second-order lan-
guage to reason about dynamic systems with actions and situations. A dynamic
system is modeled in terms of a basic action theory (BAT) D which models the
basic relationships of primitive actions and situation dependent predicates and
functions, called fluents. A situation is either the initial situation S0 or a term
do(a, s) where s is the preceding situation and a is an action executed in s.
The main components of a BAT D are (1) precondition axioms Poss(a, s) ≡ ρ
that denote whether or not the primitive action a is executable in situation s,
(2) successor state axioms which define how fluents evolve in new situations, and
(3) a description of the initial situation S0. A successor state axiom for a fluent
F (x, s) has the form F (x, do(a, s)) ≡ γ+F (x, a, s) ∨ F (x, s) ∧ ¬γ−F (x, a, s) where
γ+F and γ−F describe the positive and negative effects on fluent F , respectively.

Our simple model of a car consists of primitive actions that instantaneously
change the vehicle’s velocity and yaw, respectively. Furthermore, there are fluents
x(v, s) and y(v, s) for the x and y-coordinates of the car v. Here, the x-axis points
in the forward/backward direction and the y-axis in the left/right direction.

prGolog offers the same programming constructs known from other Golog
dialects: deterministic and stochastic actions, test actions φ?, sequences δ1; δ2,
nondeterministic branch δ1 | δ2 and choice of argument πv . δ, interleaved concur-
rency δ1 ‖ δ2, and others like if-then-else and while-loops, which are not needed
in this paper. Also, to simplify the presentation, we use procedures as macros.

The prGolog programs in the plan library describe the plans an agent could
be following. A lane change of a car v can be characterized as follows:

proc leftLaneChange(v, τ)

πθ .(0◦ < θ ≤ 90◦)?;waitFor(onRightLane(v), τ); setYaw(v, θ, τ);

πτ ′ .waitFor(onLeftLane(v), τ ′); setYaw(v, 0◦, τ ′).

This program leaves certain aspects of its execution unspecified. The angle θ at
which the car v steers to the left may be nondeterministically chosen between
0◦ and 90◦. While the starting time τ of the passing maneuver is a parameter
of the procedure, the time τ ′ at which v gets back into the lane is chosen freely.
The points in time are constrained only by means of the two waitFor actions in
a way such that the car turns left when it is on the right lane and goes straight
ahead when it is on the left lane. onRightLane and onLeftLane stand for formulas
that specify what it means to be on the right and on the left lane, respectively.
Using the procedure above an overtake maneuver can be specified as

proc overtake(v, w)

πτ1 .waitFor(behind(v, w), τ1); leftLaneChange(v, τ1);

πτ2 . πz . setVeloc(v, z, τ2);

πτ3 .waitFor(behind(w, v), τ3); rightLaneChange(v, τ3).

3.1 Stepwise Execution

To carry out plan recognition online, we will need to execute programs incremen-
tally. ConGolog [12] introduced a transition semantics that does exactly this: a
transition from a configuration (δ, s) to (δ′, s′) is possible if performing a single
step of program δ in situation s leads to s′ with remaining program δ′.

3.2 Time and Continuous Change

In the situation calculus, actions have no duration but are executed instan-
taneously. Hence, to get the position of a vehicle at a certain point in time,
continuous fluents like x(v, s) and y(v, s) need to return functions of time which
can be evaluated at a given time to get a concrete position. As in ccGolog [13],
y(v, s) returns a term linear(a0, a1, τ0) which stands for the function of time
f(τ) = a0 + a1 · (τ − τ0). The definition of successor state axioms for x(v, s) and
y(v, s) to represent the effects of primitive actions is lengthy but straightforward.

We adopt sequential, temporal Golog’s [14] convention that each primitive
action has a timestamp parameter. Since these timestamped actions occur in sit-
uation terms, each situation has a starting time which is the timestamp of the last

executed action. The precondition of a waitFor(φ, τ) action restricts the feasible
timestamps τ to points in time at which the condition Poss(waitFor(φ, τ), s) ≡
φ[s, τ] holds. Here the syntax φ[s, τ] restores the situation parameter s in the
fluents in φ and evaluates continuous fluents at time τ . This precondition already
captures the “effect” of waitFor, because just by occurring in the situation term,
it shifts time to some point at which φ holds.

3.3 Stochastic Actions and Decision Theory

We include stochastic actions in prGolog which are implemented similarly to [11].
The meaning of performing a stochastic action is that nature chooses among a
set of possible outcome actions. Stochastic actions, just like primitive actions,
have a timestamp parameter. The setYaw action mentioned in the lane change
program is a stochastic action. All outcomes for setYaw set the yaw fluent to the
same value, they only differ in the width of the tolerance corridor described in
Section 2 and Figure 1. In particular, the outcome actions are setYaw∗(v, θ,∆, τ)
where∆ specifies the width of the tolerance corridor. Note that only the tolerance
parameter ∆ follows some probability distribution; the vehicle identifier v, the
angle θ, and the timestamp τ are taken as they stand. We introduce a new fluent
for the lateral tolerance, ∆y(v, s) whose value is the ∆ of the last setYaw∗ action.
For setVeloc(v, z, τ) we proceed analogously.

Stochastic actions introduce a second kind of uncertainty in programs: while
nondeterministic features like the pick operator πv . δ represent choice points
for the agent, the outcome of stochastic actions is chosen by nature. To make
nondeterminism and stochastic actions coexist, we resolve the former in the spirit
of DTGolog [15]: we always choose the branch that maximizes a reward function.

4 The Semantics of prGolog

For each program from the plan library we want to determine whether or not
it explains the observations. To this end we resolve nondeterminism (e.g., con-
currency by interleaving) decision-theoretically: when a nondeterministic choice
point is reached, the interpreter opts for the alternative that leads to a situation
s with the greatest reward r(s). To keep computation feasible only the next l
actions of each nondeterminstic alternative are evaluated. In Section 5 a reward
function is shown that favors situations that explain more observations. Thus
program execution reflects (observed) reality as closely as possible.

The central part of the interpreter is the function transPr(δ, s, l, δ′, s′) = p
which assigns probabilities p to one-step transitions from (δ, s) to (δ′, s′). A
transition is assigned a probability greater zero iff it is an optimal transition wrt
reward function r and look-ahead l; all other transitions are assigned a proba-
bility of 0. transPr determines the optimal transition by inspecting all potential
alternatives as follows: (1) compute all decompositions γ; δ′ of δ where γ is a next
atomic action of δ, (2) find a best decomposition γ; δ′, and (3) execute γ. By
atomic action, we mean primitive, test, and stochastic actions. A decomposition

is considered best if no other decomposition leads to a higher-rewarded situation
on average after l more transitions.

At first, we will define the predicate Next(δ, γ, δ′) that determines all decom-
positions γ; δ′ of a program δ. We proceed with the function transAtPr(γ, s, s′) =
p which holds if executing the atomic action γ in s leads to s′ with probability
p. Then, we define a function value(δ, s, l) = v which computes the estimated
reward v that is achieved after l transitions of δ in s given that nondeterminism
is resolved in an optimal way. value is used to rate alternative decompositions.
With these helpers, we can define transPr(δ, s, l, δ′, s′) = p.

In our definition we often use if ∃x . φ(x) then ψ1(x) else ψ2 as a macro for
(∃x . φ(x)∧ψ1(x))∨ (∀x .¬φ(x)∧ψ2) where x is also visible in the then-branch.

4.1 Program Decomposition

Next(δ, γ, δ′) holds iff γ is a next atomic action of δ and δ′ is the rest. It very
much resembles ConGolog’s Trans predicate except that it does not actually
execute an action. Like ConGolog, we need to quantify over programs; for the
details on this see [12]. Here are the definitions of Next needed for this paper:

Next(Nil , γ, δ′) ≡ False

Next(α, γ, δ′) ≡ γ = α ∧ δ′ = Nil (α atomic)

Next(πv . δ, γ, δ′) ≡ ∃x .Next(δvx, γ, δ
′)

Next(δ1; δ2, γ, δ
′) ≡ ∃δ′1 .Next(δ1, γ, δ

′
1) ∧ δ′ = δ′1; δ2 ∨

Final(δ1) ∧Next(δ2, γ, δ
′)

Next(δ1 ‖δ2, γ, δ′) ≡ ∃δ′1 .Next(δ1, γ, δ
′
1) ∧ δ′ = δ′1 ‖δ2 ∨

∃δ′2 .Next(δ2, γ, δ
′
2) ∧ δ′ = δ1 ‖δ′2.

δvx stands for the substitution of x for v in δ. Final(δ) holds iff program execution
may terminate, e.g., for δ = Nil . We omit it for brevity.

4.2 Executing Atomic Actions

Now we turn to executing atomic actions with transAtPr . Test actions are the
easiest case because the test formula is evaluated in the current situation:

transAtPr(φ?, s, s′) = p ≡ if φ[s] ∧ s′ = s then p = 1 else p = 0.

Primitive actions have timestamps encoded as parameters like in sequential,
temporal Golog, which are of the newly added sort real [14]. The BAT needs to
provide axioms time(A(x, τ)) = τ to extract the timestamp τ of any primitive
action A(x, τ) and the function start(do(a, s)) = time(a) which returns a situa-
tion’s start time. The initial time start(S0) may be defined in the BAT. Using
these, transAtPr can ensure monotonicity of time:

transAtPr(α, s, s′) = p ≡
if time(α[s]) ≥ start(s) ∧ Poss(α[s], s) ∧ s′ = do(α[s], s)

then p = 1 else p = 0.

When a stochastic action β is executed, the idea is that nature randomly
picks a primitive outcome action α. The axiomatizer is supposed to provide two
macros Choice(β, α) and prob0(β, α, s) = p as in [11]. The former denotes that
α is a feasible outcome action of β, the latter returns the probability of nature
actually choosing α in s. Probabilities are of sort real. The number of outcome
actions must be finite. The axiomatizer must ensure that (1) any executable
outcome action has a positive probability, (2) if any of the outcome actions is
executable, then the probabilities of all executable outcome actions add up to 1,
(3) no stochastic actions have any outcome action in common, and (4) primitive
outcome actions do not occur in programs as primitive actions. The transAtPr
rule returns the probability of the outcome action specified in s′ if its precondi-
tion holds and 0 otherwise:

transAtPr(β, s, s′) = p ≡
if ∃α, p′ .Choice(β, α) ∧ transAtPr(α, s, s′) · prob0(β, α, s) = p′ ∧ p′ > 0

then p = p′ else p = 0.

4.3 Rating Programs by Reward

The function value uses transAtPr to determine the maximum (wrt nondeter-
minism) estimated (wrt stochastic actions) reward achieved by a program. For
a program δ and a situation s, value inspects the tree of situations induced
by stochastic actions in δ up to a depth of look-ahead l or until the remain-
ing program is final and computes the weighted average reward of the reached
situations:

value(δ, s, l) = v ≡

if ∃v′ . v′ = max
{(γ,δ′)|Next(δ,γ,δ′)}

∑
{(s′,p)|transAtPr(γ,s,s′)=p∧p>0}

p · value(δ′, s′, l − 1) ∧

l > 0 ∧ (Final(δ) ⊃ v′ > r(s))

then v = v′ else v = r(s).

The expression max{(γ,δ′)|Next(δ,γ,δ′)} f(γ, δ′) = v stands for

∃γ, δ′ .Next(δ, γ, δ′) ∧ v = f(γ, δ′) ∧ (∀γ′, δ′′)(Next(δ, γ′, δ′′) ⊃ v ≥ f(γ′, δ′′)).

For an axiomatization of the sum we refer to [16].

4.4 Transition Semantics

Finally, transPr simply looks for an optimal decomposition γ; δ′ and executes γ:

transPr(δ, s, l, δ′, s′) = p ≡
if ∃γ .Next(δ, γ, δ′) ∧ transAtPr(γ, s, s′) > 0 ∧(
∀γ′, δ′′ .Next(δ, γ′, δ′′) ⊃ value(γ; δ′, s, l) ≥ value(γ′; δ′′, s, l)

)
then transAtPr(γ, s, s′) = p else p = 0.

The function is consistent, i.e., transPr(δ, s, l, δ′, s′) returns a unique p, for
the following reason: If a primitive or a test action is executed, the argument is
trivial. If a stochastic action β is executed, this is reflected in s′ = do(α, s) for
some primitive outcome action α and the only cause of α is β due to requirements
(3) and (4). We will see that transPr is all we need for online plan recognition.

5 Plan Recognition by Program Execution

In our framework, plan recognition is the problem of executing a prGolog pro-
gram in a way that matches the observations. An observation is a formula φ
which holds in the world at time τ according to the sensors (e.g., φ might tell
us the position of each car at time τ). For each of the, say, n vehicles, we
choose a δi from the pre-defined programs as hypothetical explanation for the
ith driver’s behavior. These hypotheses are combined to a comprehensive hy-
pothesis δ = (δ1 ‖ . . . ‖ δn) which captures that the vehicles act in parallel. We
determine whether or not δ explains the observations. By computing a confidence
for each explanation we can ultimately rank competing hypotheses.

To find a match between observations and program execution, we turn each
observation into an action match(φ, τ) which is meant to synchronize the model
with the observation. This is ensured by the precondition Poss(match(φ, τ), s) ≡
φ[s, τ] which asserts that the observed formula φ actually holds in the model at
time τ . Hence, an executed match action represents an explained observation.

Plan recognition can be carried out online roughly by repeating two steps:
(1) If a new observation is present, merge the match action into the rest program.
(2) Execute the next step of the hypothesis program.
In practical plan recognition, it makes sense to be greedy for explaining as many
observations as possible, with the ultimate goal of explaining all of them. This
behavior can be easily implemented with our decision-theoretic semantics. Recall
that the interpreter resolves nondeterministic choice points by opting for the
alternative that yields the highest reward r(s) after l further look-ahead steps.
We achieve greedy behavior when we provide the reward function

r(s) = number of match actions in s.

While being greedy is not always optimal, this heuristic allows us to do plan
recognition online. Since the interpreter can execute no more than l match ac-
tions during its look-ahead, nondeterminism is resolved optimally as long as the
program contains at least l match actions. Thus, (2) is more precisely:
(2) If the program contains at least l match actions, execute the next step.

We now detail steps (1) and (2). Let δ be the hypothesis. The initial plan
recognition state is {(δ, S0, 1)} because, as nothing of δ has been executed yet,
it may be a perfect hypothesis. As time goes by, δ is executed incrementally.
However, the set grows because each outcome of a stochastic action must be
represented by a tuple in the set.

Incoming observations are merged into the candidate programs by appending
them with the concurrency operator. That is, when φ is observed at time τ we

replace all configurations (δ, s, p) with new configurations (δ ‖match(φ, τ), s, p).
When the number of match actions in δ is at least l, we are safe to update
the configuration by triggering the next transition. Thus, upon matching the
observation φ at time τ , a state Si of the plan recognition evolves as follows:

Si+1 = {(δ′, s′, p′) | (δ, s, p) ∈ Si, δ contains ≥ l − 1 match actions,

D ∪ C |= p · transPr(δ‖match(φ, τ), s, l, δ′, s′)=p′ ∧ p′ > 0}
∪ {(δ‖match(φ, τ), s, p) | (δ, s, p) ∈ Si, δ contains < l − 1 match actions}

where D is a BAT and C are the axioms of our language. To simplify the pre-
sentation we assume complete information about the initial situation S0.

Finally, we roughly describe how hypotheses can be ranked. Generally the
idea is to sum the probabilities of those executions that explain the observations.
By this means the hypothesis go straight is ranked very well in Figure 1a, whereas
the wide oscillations in Figure 1b cut off many of the likely but small tolerances.
A complication arises because transPr does not commit to a single nondetermin-
istic alternative if both are equally good wrt their reward. While our implemen-
tation simply commits to one of the branches which are on a par, transPr returns
positive probabilities for all of them. With requirements (3) and (4) from Subsec-
tion 4.2 it is possible to keep apart these alternative executions. For space reasons
we only sketch the idea: let Ui ⊆ Si be a set of configurations (δ, s, p) that stem
from one of the optimal ways to resolve nondeterminism. Then the confidence of

Ui being an explanation so far is
∑

(δ,s,p)∈Ui
p · r(s)

r(s)+m(δ) where m(δ) is the num-

ber of match actions that occur in the program δ. This weighs the probability of
reaching the configuration (δ, s, p) by the ratio of explained observations r(s) in
the total number of observations r(s) +m(δ). Since there are generally multiple

Ui, the confidence of the whole hypothesis is maxUi

∑
(δ,s,p)∈Ui

p · r(s)
r(s)+m(δ) .

6 Classifying Driving Maneuvers

We have implemented a prGolog interpreter and the online plan recognition
procedure in ECLiPSe-CLP,2 a Prolog dialect. We evaluated the system with a
driving simulation, TORCS,3 to recognize driving maneuvers. Our car model is
implemented in terms of stochastic actions like setVeloc and setYaw and fluents
like x and y which are functions of the velocity, yaw, and time. The preconditions
of primitive actions, particularly of waitFor and match, impose constraints on
these functions. For performance reasons we restrict the physical values like yaw
and velocity to finite domains and allow only timestamps to range over the full
floating point numbers so that we end up with linear equations. To solve these
linear systems we use the constraint solver COIN-OR CLP.4 The look-ahead to
resolve nondeterministic choice points varies between two and three.

2 http://www.eclipseclp.org/
3 http://torcs.sourceforge.net/
4 http://www.coin-or.org/

We modified the open source racing game TORCS for our purposes as a
driving simulation. Twice a second, it sends an observation of each vehicle’s
noise-free global position (Xi, Yi) to the plan recognition system. According to
our notion of robustness, it suffices if the observations are within the model’s
tolerance. The longitudinal and lateral tolerance of each driver Vi is specified
by the fluents ∆x (Vi) and ∆y(Vi) (cf. Section 3). Therefore, TORCS generates
formulas of the form

φ = ∧i |x(Vi)−Xi| ≤ ∆x (Vi) ∧ |y(Vi)− Yi| ≤ ∆y(Vi).

Thus, the plan recognition system needs to search for possible executions of the
candidate programs that match the observed car positions. If a smaller toler-
ance is good enough to match the observations, the confidence in the candidate
program being an explanation for the observation is higher.

In our experiments, the online plan recognition kept the model and reality
in sync with a delay of about two to five seconds. A part of this latency is in-
herent to our design: a delay of (look-ahead)/(observations per second) seconds
is inevitable because some observations need to be buffered to resolve nondeter-
minism reasonably. This minimal latency amounts to 1.5 s in our setting, the
rest is due to computational limitations.

6.1 Passing Maneuver

In our first scenario, a human-controlled car passes a computer-controlled car. To
keep the equations linear, both cars have nearly constant speed (about 50 km/h
and 70 km/h, respectively). Six test drivers drove 120 maneuvers in total, 96
of which were legal passing maneuvers (i.e., overtake on the left lane) and 24
were random non-legal passing maneuvers. We tested only one hypothesis which
consisted of a program overtake for the human driver and a program go straight
for the robot car. Note that even though the robot car’s candidate program is
very simple, it is a crucial component because the passing maneuver makes no
sense without a car to be passed. Hence, this is an albeit simple example of
multi-agent plan recognition.

We encountered neither false positives nor false negatives: For all non-passing
maneuvers the candidate program was rejected (confidence 0.0). In case the
driver indeed did pass the robot car, our system valued the candidate program
by a clearly positive confidence: 0.54 on average with standard deviation ±0.2.

6.2 Aggressive vs Cautious Passing

In the second experiment, the human may choose between two ways to pass
another vehicle in the presence of a third one as depicted in Figure 2. Robot car
A starts in the right lane and B follows at a slightly higher speed in the left lane.
The human, C, approaches from behind in the right lane with the aim to pass A.
C may either continuously accelerate and attempt to aggressively pierce through
the gap between B and A. Alternatively, if C considers the gap to be too small,

C

B

A

Fig. 2: While B passes A, C may choose between two maneuvers.

he or she may decelerate, swing out behind B, and cautiously pass A. To keep
the equations linear, we approximate acceleration by incrementing the velocity
in the model iteratively instead of setting it just once. Our system compares two
competing hypotheses, one for C driving cautiously and one for the aggressive
maneuver. The candidates for A and B are simply go straight again. Note that
although the programs for A and B are very simple, they are crucial because
otherwise A and B would not move in the model.

We conducted this experiment 24 times with two different test drivers for
C, each driving aggressively and cautiously in equal shares. When C behaved
cautiously, this hypothesis was rated 0.3 on average (±0.11) while the aggressive
hypothesis was rated 0.0. When C drove aggressively, the aggressive program was
rated 0.57 on average (±0.12) and the cautious hypothesis was rejected with 0.0.
Hence, the system distinguished correctly between the alternative hypotheses.

7 Discussion and Conclusion

In this paper, we proposed a new action language for specifying the behavior
of multiple agents in terms of high-level programs. Among other things, the
language combines decision theory to resolve nondeterminism with concurrency,
and it supports temporal flexibility as well as robustness using stochastic actions.

On top of this language, we built online plan recognition by program execution.
Observations are translated into match actions which are executed concurrently
with candidate programs. Based on the decision-theoretic component and the
transition semantics, a greedy heuristic, which preferred a maximal number of
matched observations, worked well in our experiments.

The handling of continuous time and robustness distinguishes our approach
from others like [1–5]. Neither of the approaches supports continuous time and
change. [3, 4] also simulate candidate plans, but they require an action sensor,
which is not given in continuous domains. Also, they do not provide any means to
handle the mismatch between model and reality (cf. Section 2). While we use the
plan library to reduce the space of explanations, [5] builds upon a pre-defined
set of goals for which optimal plans (wrt a cost function) are computed and
compared to the observed action sequence. This might lead to explanations that
appear atypical to humans. We could achieve similar behavior with a program
like (πa . a)∗;φ? which boils down to planning for goal φ. However, it is not clear
whether or not [5] could handle fluent observations in continuous domains. Note
that our approach also works if observations occur more sparsely than in our
experiments – the program execution just needs to match fewer observations.

However, much more needs to be done to deal with real-world traffic sce-
narios. We believe that recognition can be improved with more realistic models
of acceleration and the like. Also, qualitative models like QTC [17] should be
considered. The assumption of complete information also needs to be relaxed.
Finally, we are interested not only in recognizing plans but to predict potentially
dangerous future situations to assist the driver.

References

1. Kautz, H.A., Allen, J.F.: Generalized plan recognition. In: Proc. of the Fifth Nat’l
Conf. on Artificial Intelligence (AAAI’86). (1986) 32–37

2. Charniak, E., Goldman, R.: A probabilistic model of plan recognition. In: Proc. of
the Ninth Nat’l Conf. on Artificial Intelligence (AAAI’91). (1991) 160–165

3. Goultiaeva, A., Lespérance, Y.: Incremental plan recognition in an agent program-
ming framework. In Geib, C., Pynadath, D., eds.: Proc. of the AAAI Workshop
on Plan, Activity, and Intent Recognition (PAIR-07), AAAI Press (2007) 52–59

4. Geib, C., Goldman, R.: A probabilistic plan recognition algorithm based on plan
tree grammars. Artificial Intelligence 173 (2009) 1101–1132

5. Ramirez, M., Geffner, H.: Plan recognition as planning. In: Proc. of the 21st Int’l
Joint Conf. on Artificial Intelligence (IJCAI’09). (2009) 1778–1783

6. Pynadath, D.V., Wellman, M.P.: Accounting for context in plan recognition, with
application to traffic monitoring. In: Proc. of the Eleventh Annual Conf. on Un-
certainty in Artificial Intelligence (UAI’95), Morgan Kaufmann (1995) 472–481

7. Bui, H.H., Venkatesh, S., West, G.: Policy recognition in the abstract hidden
markov model. Journal of Artificial Intelligence Research 17 (2002) 451–499

8. Liao, L., Patterson, D.J., Fox, D., Kautz, H.: Learning and inferring transportation
routines. Artificial Intelligence 171 (2007) 311–331

9. Levesque, H., Reiter, R., Lespérance, Y., Lin, F., Scherl, R.: GOLOG: A logic
programming language for dynamic domains. J. Log. Program. 31 (1997) 59–84

10. McCarthy, J.: Situations, Actions, and Causal Laws. Technical Report AI Memo 2
AIM-2, AI Lab, Stanford University, California, USA (1963) Published in Semantic
Information Processing, ed. Marvin Minsky. Cambridge, MA: The MIT Press, 1968.

11. Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Imple-
menting Dynamical Systems. The MIT Press (2001)

12. De Giacomo, G., Lespérance, Y., Levesque, H.J.: ConGolog, a concurrent program-
ming language based on the situation calculus. Artificial Intelligence 121 (2000)
109–169

13. Grosskreutz, H., Lakemeyer, G.: cc-Golog – an action language with continuous
change. Logic Journal of the IGPL 11 (2003) 179–221

14. Reiter, R.: Sequential, temporal GOLOG. In: Proc. of the Int’l Conf. on Principles
of Knowledge Representation and Reasoning (KR’98). (1998) 547–556

15. Boutilier, C., Reiter, R., Soutchanski, M., Thrun, S.: Decision-theoretic, high-level
agent programming in the situation calculus. In: Proc. of the 17th Nat’l Conf. on
Artificial Intelligence (AAAI’00), Menlo Park, CA (2000) 355–362

16. Bacchus, F., Halpern, J.Y., Levesque, H.J.: Reasoning about noisy sensors and
effectors in the situation calculus. Artificial Intelligence 111 (1999) 171–208

17. Van de Weghe, N., Cohn, A.G., Maeyer, P.D., Witlox, F.: Representing moving
objects in computer-based expert systems: the overtake event example. Expert
Systems with Applications 29 (2005) 977–983

