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Abstract. In this paper, we propose a system for robust and flexible vi-
sual gesture recognition on a mobile robot for domestic service robotics
applications. This adds a simple yet powerful mode of interaction, es-
pecially for the targeted user group of laymen and elderly or disabled
people in home environments. Existing approaches often use a mono-
lithic design, are computationally expensive, rely on previously learned
(static) color models, or a specific initialization procedure to start ges-
ture recognition. We propose a multi-step modular approach where we
iteratively reduce the search space while retaining flexibility and exten-
sibility. Building on a set of existing approaches, we integrate an on-line
color calibration and adaptation mechanism for hand detection followed
by feature-based posture recognition. Finally, after tracking the hand
over time we adopt a simple yet effective gesture recognition method
that does not require any training.

1 Introduction

In the development of domestic service robots easy and natural interaction is a
vital property of a successful system. Intuitive control and interaction can, for
example, be achieved with natural language. However, a huge part of meaning in
communication is also transferred via non-verbal signals [1]. A very important
mode of this non-verbal communication is using gestures. This is especially true
in interaction with a domestic service robot, since controlling the robot often
relates to entities in the world such as objects and places or directions. References
to objects can conveniently be made by pointing gestures while other dynamic
gestures can be used to indicate directions or commands.

Quite some approaches tend to pose undesirable requirements both, before
the start of operation as well as within operation itself. For example, they may
require a tedious calibration of hand colors or depend on initialization poses of
the human. Also, some approaches are quite costly and demand high compu-
tational resources. We try to avoid these undesirable properties and aim for a
flexible, modular, and robust system that is both easy to set up and easy to use
while minimizing computational demands. We designed a modular architecture
where gesture recognition is decomposed into sub-tasks orchestrated in a multi-
step system. This enables a filter-and-refine like processing of the input where
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the single steps are as independent as possible to allow for an easy replacement
of the particular method used for any of them. Further, the output of each step
can already be used for specific purposes. That is, for example, pointing ges-
tures can already be inferred from the position (and possibly the posture) of
a hand and a face, while recognition of dynamic gestures additionally requires
hand tracking to extract a trajectory. What is more, the overall computational
demands are kept low because the amount of information to be processed gets
reduced in each step.

2 A Multi-step Approach

The process of gesture recognition is subdivided into four main steps: hand de-
tection, posture recognition, hand tracking, and finally gesture recognition. Hand
detection is the task of finding the position of one or more hands in an image,
where we follow a color-based approach. To increase robustness against false
detections, we additionally apply a hand verification step. Posture recognition
then is to determine the shape of the hand, that is to say the configuration of
the fingers (e.g., a fist or an open hand) and the orientation of this posture.
Both, hand verification and posture recognition are performed with a feature-
based classification method. Binary classification is used to decide whether a
candidate area actually contains a hand and a multi-class classification deter-
mines one of multiple possible postures. Hand tracking refers to recording the
position of the hand (and its posture) over a sequence of images. Finally, ges-
ture recognition is understood as identifying a specific dynamic movement of the
hand from the trajectory formed over time. A graphical overview of our system’s
architecture is depicted in Figure 1.

Note that the intermediate steps yield useful information already. The hand
detection and verification provide us with hand positions and posture recognition
adds the posture of a hand detected. Specific commands such as a lifted open
hand can already be processed, for example, as an indication of a stop-request or
the user’s request for attention. Taking an existing face detector as a secondary
cue also allows for identifying pointing gestures when the posture is, say, a lifted
index finger. We refer to gestures at this stage as deictic gestures. Also, by
iteratively refining the information we can dismiss wrongly detected hands and
attach additional information thus enabling increased performance of later steps.



3 Related Work

Hand Detection A lot of the existing hand detection approaches are color-based,
since skin-colored regions can quite easily be detected in an image [2, 3]. There
are two main issues with (such static) color-based hand detection, however. For
one, not every skin-colored region in an image is in fact a hand. For another, in
dynamic environments the values of skin color may vary over time, for example,
because of changes in lighting conditions or due to obstructions like shadows or
colored reflections. A combined way to tackle the problems mentioned above is
to make use of the assumption that an image containing a hand also contains a
face. This does not seem to be too restrictive given a human-robot interaction
scenario. If a face is detected, a skin color can be extracted from that face
and then be used for hand detection. Such an approach was already presented
in [4]. We follow similar directions but apply some variations. We operate on
the HSV color space which, according to [5], seems most appropriate for skin
color detection. We then use a modified scheme to dynamically adapt the color
values over time. Another way to detect hands is to use features instead of color.
In [6] a sliding window is used and a classifier is applied on this window to
decide on whether this window contains an object of interest (i.e. a hand) or
not. It is an extension of a method presented for object detection in [7], namely
a haarcascade, which is a cascade of haar-like visual features. The classifier is
built using the AdaBoost method [8] for boosting. An alternative to classical
boosting could be random forests [9], especially for multi-class classification as
we will employ for posture recognition. Random forests have successfully been
applied to face recognition for multiple identities on a mobile robot [10] already.

A method to recognize hand postures is followed in [11]. The idea is to bring
the fingers of a hand in a meaningful relation by considering the hand’s convex
hull and counting the defects of this hull. However, this is only done for planar
hands and it is not generally applicable in its current form. Triesch and v.d. Mals-
burg present a system for posture recognition using elastic graph matching [12].
Several points on a hand are used to build a graph which is compared to graphs
trained on a set of postures before. Although both these methods seem appeal-
ing and could potentially be plugged into our modular architecture, we opt for
a feature-based posture recognition following the approach in [6] to be able to
exploit the similarities in hand verification and posture recognition.

Hand Tracking Tracking can, for example, be realized with a method called
“Flocks of Features” [13]. To track, the hand position is initialized by detecting
one of a set of six trained postures. Then, features are chosen on this hand and
followed with KLT feature tracking [14]. Another successful tracking mechanism
is CAMSHIFT [15], a modification of the mean shift algorithm. The position of
a fixed size window is iteratively computed. However, CAMSHIFT is color-based
and it is thus subject to the drawbacks we mentioned earlier. That is why we
follow the lines of [14] in tracking.

Gesture Recognition There is a huge body of work on gesture recognition, a
survey can be found in [16], for example. A lot of the approaches use statistical



methods such as Hidden Markov Models (HMMs) which we think are compu-
tationally too demanding for our setting. Also, statistical methods usually rely
on (often huge amounts of) training data which the recognition then depends
on. Instead, we plan on extending a simple approach to gesture recognition de-
scribed in [17]. It is especially intriguing since it does not require any form of
training and does not depend on any external library or toolkit either.

4 Hand Detection & Posture Recognition

In this section we detail our approach to hand detection, hand verification, and
posture recognition. First, we employ a color-based approach for hand detec-
tion. A ColorFilter selects those parts of the image that are skin-colored. The
extracted parts are then forwarded to a Hand Verification step which decides
whether these areas actually contain a hand or not. All detected and verified
hands are subsequently processed by a multi-class classifier determining one of
a set of specific postures for each hand. The result of this procedure, that is,
the hands in an image and their (possibly undefined) postures are then available
for any later module. This multi-step processing tries to reduce the search space
with every step. The cheapest, color-based classification is done first. The false
positive rate may be comparatively high here, though. However, the subsequent
step filters out further false positives, now with a feature-based method which
is computationally more costly, but only has to consider fewer candidates. Only
those hands are processed in the posture classification that passed the first two
steps. This way, we proceed with less effort than it would have taken to do
the classification of the different postures on the complete image instead of on
candidate regions only.

4.1 Hand Detection

The maybe most obvious feature of hands in an image is color. Skin color may
easily be detected [2, 3], but especially a static color model suffers from dynamic
changes in the environment such as lighting, shadows, and inter-person skin
color variations. Further, static color models typically require a training which
has as many examples for skin color as possible. Any hand exhibiting a color
that is not covered by the training set will not be detected by this color model.
That is why we opt for a dynamically adapting skin color model with almost
no prior information. Instead, we exploit the following assumption: If the robot
is to interact with a person, this person is most likely facing the robot. So,
similarly to [4], we first detect faces in the image to extract parameters for our
color model from the face region. For one, the face detection module is active
on our robot already, so no additional effort is required. For another, there
are properly working face detection methods [18] readily available in OpenCV1.
After a sufficiently reliable detection of a face in x subsequent images we compute
expectation values σc and standard deviation µc for each of the HSV color space
1
http://opencv.willowgarage.com/



Table 1. Results of Color Evaluation

Cover Percentage2 True
positive

False positive
Mean
iterationsFace Image

0.3 0.6 0.83 0.19 0.71
. . .
0.5 0.8 0.90 0.19 1.03
. . .
0.6 0.8 0.93 0.24 3.42

0.7 0.5 0.96 0.33 11.25
. . .
0.9 0.9 0.99 0.44 54.10

channels c, i.e., hue, saturation, and value. Pixels in the image with a value of vc

in color channel c are then classified according to the formula | σc − vc |≤ α · µc

where α is a positive real-valued factor allowing us to control the adaptivity.
Additionally, we compute two control values for every image that help in

determining when and how we need to adapt our model. The image cover per-
centage indicates how many percent of the image are classified to be skin-colored.
Analogously, the face cover percentage tells us how many pixel of the face region
were classified to be of skin color. If the face cover percentage is too low, this
indicates that only few pixels were considered to be skin, which obviously is
undesirable. In that case we have to increase α to make our skin color classifier
more lenient. If, on the other hand, the image cover percentage is too high, too
much of the overall image is considered to be skin. In that case we need to lower
our α for the model to be more restrictive.

Evaluation To determine appropriate values for the image cover percentage
and face cover percentage we constructed a database of around 800 pictures of
typical application scenario settings. To do so, we placed faces and hands with
variations in lighting and brightness on indoor background images. Faces and
corresponding hands were varied in size to mimic a user standing in front of the
robot at distances of between two and three meters. For every combination of
image cover percentage between [0.5 . . . 0.9] and face cover percentage between
[0.3 . . . 0.9] in steps of 0.05 we computed the true positive and false negative rate
as well as the number of iterations it took the color model to reach a fixed value
as mean iterations. Selected results are listed in Table 1.2

The final ColorFilter then used a threshold of 0.5 for the face cover percentage
and 0.8 for the image cover percentage. We chose to do so because at these values
the true positive rate of 90% was reasonably high while the false positive rate
of 19% was tolerable, especially since further false detections can still be sorted
out in later steps. A mean number of 1.03 iterations also indicates that these
values are quite stable and do not require too many adaptations. Combinations
beneath the horizontal line after the values 0.6 and 0.8 have a very high number
of iterations so that it would take too long to compute color models with these.

4.2 Hand Verification & Posture Recognition

Since the previous step, the color-based hand detection, results in a non-negligible
amount of false positives, the next step is to verify the candidate regions. Also,

2 Percentages are given as values between 0.0 for 0% and 1.0 for 100%, respectively.



Table 2. Results for Haarcascade trainings in overview

Training Images True
Positive

False
Detections

Stages
Training
TimePositive Negative

All Hands 1000 700 0.15 71.95 11 21h
All Upright 1000 1000 0.36 3.06 18 42h
Open Own 3000 2000 0.98 12.71 12 7h
Open Kumar 1000 700 0.93 2.37 14 9h
Fist 130 100 0.57 0.23 4 1h
Fist + Open 500 + 500 1000 0.28 0 19 41h
L 100 100 0.25 0 10 3h

we want to determine the posture of every hand verified. For both these tasks
we choose a feature-based approach. A basic technique in feature-based detec-
tion is to use a so-called sliding window. A window of fixed size is slided over
the image and for each position of the window a decision rule (i.e. a classifier)
decides whether the window contains an object of interest or not. Since the clas-
sifier used with the sliding window can be a binary or a multi-class classifier and
the window does not need to be slided over the whole image but can also be
only slided over regions of interest (ROIs) we opt to use feature-based classifi-
cation (with haar-like features) for both, the hand verification and the posture
recognition.

Data Sets A major question in building feature-based classifiers in general,
and for binary classifiers for hand verification in particular, is the selection of
an appropriate training set. In contrast to faces, the variations found with many
different hand postures are considerably larger. To determine a good classifier for
hand verification we trained and evaluated several haarcascades (using OpenCV)
and random forests with different training sets compiled from collections avail-
able on the Internet, namely one with high resolution images of a single posture3,
a set with lower resolution images of ten different postures4 and a collection by
Ajay Kumar5 used as training data for a touchless palmprint authentication [19].
Additionally, we constructed our own data set from hand images extracted from
video sequences and placed on complex backgrounds. The video sequences were
recorded by gesturing in front of our robot. We intend to make our data set
publicly available soon. Negative examples were taken from a data set collected
by Natoshi Seo.6

Evaluation We conducted extensive evaluation series with both, classical haar-
cascades and random forests. Results from different trainings for haarcascades
and random forests are given in Table 2 and Table 3, respectively. The evalua-
tion suggests that training does not seem suitable to generate a single cascade
capable of detecting arbitrary hands with any of the available training sets. An
in-depth investigation revealed that the choice of haar-like features available to
the classifier influences the recognition results. This finding is supported by re-
sults from [6], where instead of traditional haar-like features the authors use

3
http://www2.imm.dtu.dk/∼aam/datasets/datasets.html

4
http://www.idiap.ch/resources/gestures/

5
http://www.comp.polyu.edu.hk/∼csajaykr/IITD/Database Palm.htm

6
http://tutorial-haartraining.googlecode.com/svn/trunk/data/negatives/



Table 3. Results for Random Forest classifiers
TP rate FP rate Samples Trees Time (h:m)

All hands, old feat. 0.73 0.25 2× 190 10 0:36

All hands, 4 orient., 0.79 0.25 5× 200 3 0:20
5 classes 0.63 0.03 5× 2000 20 16:02

Open 0.73 0.07 2× 250 5 0:09

Fist 0.78 0.07 2× 250 7 0:21

Open + Fist 0.77 0.21 2× 250 9 0:12

Closed 0.60 0.12 2× 1000 2 1:18

Victory 0.61 0.16 2× 180 1 0:06

Classify Postures 0.19 - 5× 150 5 0:31

so-called “four box” features that are more fine-grained. Despite the unsatisfac-
tory results for both, haarcascades and random forests, it is worth noting, that
random forests have considerably lower training times while providing better
results. Moreover, it is possible to extend our current implementation of random
forests to use the “four box” features to improve on our results. Until we finish
to do so, we make use of a haarcascade created by Daniel Baggio.7 Evaluation
on our test data yielded a true positive rate of 74% and a false negative rate of
9.1822 ∗ 10−8, which corresponds to one false detection every six frames. Hence,
in the current system it may happen, that the user has to repeat a gesture as a
result of false detections.

Besides classifying between “hand” and “no hand” only, an additional dimen-
sion is to differentiate between several hand postures. As Tables 2 and 3 indicate,
it is possible to train haarcascades as well as random forests to recognize specific
single postures with true positive rates of up to 98% for haarcascades and at
least 60% for random forests. Training times for random forests were consid-
erably lower than for haarcascades. However, we did not succeed in building a
single random forest classifier that was able to tell apart five different postures
with a sufficiently high true positive rate. We hope to eventually achieve more
accurate posture classification once we fully integrate the “four box” features
used in the classifier from [6] into our random forest classifiers. Until then, we
restrict ourselves to a few postures that we could train sufficiently accurate single
classifiers for. Those classifiers can then be applied independently in parallel.

4.3 Deictic Gestures

As already mentioned, we can make use of the intermediate results after the hand
detection and posture recognition steps already. These static gestures are referred
to as deictic gestures. We trigger detection either when a specific posture (such
as a pointing) is recognized or by means of an external trigger such as keywords
like “stop” or “there” spotted by the speech recognition module running on the
robot. As an additional cue to extract information from for pointing gestures we
make use of the face detection module we used before already. We extract the
face’s position and compute a vector from the center of the face position to the
center of the hand’s position to identify a pointing target.

7
http://code.google.com/p/ehci/wiki/HandTracking
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Fig. 2. Processing steps on a Snake trajectory for gesture recognition [17].

5 Tracking & Gesture Recognition

After the position of a hand has been determined, its trajectory has to be tracked
over time to enable gesture recognition. Tracking and Gesture Recognition are
thus closely connected.

5.1 Hand Tracking

The general idea with tracking is that a hand’s position will not change too
rapidly from one image frame to the next. A naive method to track a hand is to
detect all hands in the image and associate the closest hand in the subsequent
frame. However, this presupposes a very reliable hand detection. A different
technique is applied in [6], where hands with the same posture are tracked over
time. The underlying assumption that the posture of the hand stays the same
throughout a gesture does not seem to allow for too natural gestures, though.

In our system, we use a tracking scheme called “Flocks of Features” as
proposed in [13]. Components to realize the tracking are readily available in
OpenCV. After detecting a hand, features are computed and then tracked using
KLT feature tracking [14]. In a test series of 20 “tries-to-escape” where the user
erratically moved around the hand within the camera’s field of view, the selected
tracking scheme proved sufficiently robust. Hands were tracked over periods of
between 1.5 and 34.98 seconds with an average of 18.48 seconds. This is sufficient
for most gestures in a domestic setting.

5.2 Gesture Recognition

The final step in our system is to recognize a gesture from following the hand’s
position over time. First, the trajectory of the hand is recorded. Then, this
trajectory is compared to a set of known gestures. Since we want to keep our
system as free from training and as computationally inexpensive as possible, we
opt to adapt a method introduced by Wobbrock et al. [17] initially designed for
one-stroke hand-written gestures. It is fast to implement and still yields reliable
results. The basic principle is to norm trajectories to a certain scheme and then
to compare performed gestures to a set of known gestures by computing their
individual points’ distances.

The preparation of trajectories before the comparison to known gesture tem-
plates is as follows. Since pairwise comparing all points is too costly only points



with the same index are compared. For this to work, the trajectories have to
contain the same number of points, which is why every trajectory is filled to
have equidistant points. Here we chose 128 as the number of points following
results given in [17]. Afterwards, the trajectory is rotated to a standard ori-
entation, i.e., an orientation of 0◦ between the first point and the centroid, to
achieve rotational invariance. Then, the resulting point set is scaled to fit a box
of 100× 100 pixels. Preparation steps are shown in Figure 2

Basic movements like “left to right” correspond to lines in a trajectory. Un-
fortunately, the detection of straight horizontal and vertical lines is problematic
with the method from [17]. This is why we need to slightly modify the approach
by applying a different scaling mechanism. If the ratio between width and height
of the unscaled trajectory is below a certain threshold (empirically determined
to be 0.3) we only scale the larger side of the box. This prevents the scaled line-
trajectories from being too scattered to be recognizable. We adjust the gesture
templates to compare with accordingly.

Evaluation We conducted a separate mouse-based evaluation of the gesture
recognition component to yield results independent from the hand detection it-
self. We recorded a total set of 314 gestures (one of Line, Wave, Square, Circle,
and Triangle) where 85.67% were recognized correctly. More than 50% of the
false detections were confusions between Square and Circle gestures. One reason
could be imperfections in the mouse-based input. Preliminary findings in the
analysis of human gestures suggest that humans perform gestures surprisingly
precise. If we then assume the trajectories from human gestures to be more pre-
cise than the ones created artificially, these confusions might drop down already.
Moreover, we additionally applied a corner detection on the trajectory to clear
up these confusions. With this extension in effect we could raise the detection
rate to above 92%.

6 Conclusion

In this paper, we proposed a modular system for visual gesture recognition for
interaction with a domestic service robot. The processing pipeline is organized
to reduce the amount of information to process at every step, starting with an
inexpensive on-line adapting color-based method for hand detection, leaving only
parts of the image to be processed by the more expensive feature-based posture
recognition. The actual gesture recognition adopts a fast approach originally
designed for hand-written gesture recognition that does not require any training.
Results from intermediate processing steps can already be used for interaction,
for example, to react on deictic pointing or stop gestures.

Although our system suffers from shortcomings in the hand verification and
posture recognition steps yet, the overall performance is sufficient for it to be
applicable in a domestic setting with some minor restrictions. While we suc-
cessfully used the system at a recent major robotics competition already, each
individual step can still be improved. These improvements, however, can be re-
alized relatively easily due to the modular design. Likewise, anyone replicating



the system can exchange any of the proposed components to his or her liking.
Our next step is to fully integrate the “four box” features from [6] in our random
forest implementation. Future work further includes the extension to work on
3D position information for hands and for gestures, respectively.
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