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Abstract. Until now world models in robotic soccer have been mainly quantita-
tive in nature, consisting of fine-grained (numerical) estimates of player positions,
ball trajectories, and the like. In contrast, the concepts used in human soccer are
largely qualitative. Moving to qualitative world models also for robots has the
advantage that it drastically reduces the space of possible game situations that
need to be considered and, provided the concepts correspond to those in human
soccer theory, it eases the task of agent specification for the designer. In this pa-
per we propose qualitative representations using ideas from spatial cognition and
employing Voronoi diagrams. We also discuss how reasoning with these repre-
sentations is achieved within our underlying agent programming framework.

1 Introduction

Until now world models in robotic soccer have been mainly quantitative in nature, con-
sisting of fine-grained (numerical) estimates of player positions, ball trajectories, and
the like. In contrast, the concepts used in human soccer are largely qualitative. Moving
to qualitative world models also for robots has the advantage that it drastically reduces
the space of possible game situations that need to be considered. Provided the concepts
correspond to those in (human) soccer theory, it also eases the task of agent specification
for the designer.

For example, if we use abstract to positional information like front-left, many sim-
ilar game situations are represented by the same qualitative values whereas all these
situations would differ in terms of their numerical values. This is useful, for example,
when we formulate the preconditions required to initiate a tactical move. With a qualita-
tive description we cover multiple similar settings, making the specification applicable
in many circumstances. We also ease the specification process since we are able to use
terms that are much closer to the natural language descriptions commonly used in hu-
man soccer theory. Besides, in the majority of cases a tactical instruction just cannot be
formulated with precise positions but instead always refers to a set of positions denoted
by a qualitative abstraction of regions such as front or left.

Dylla et al. [9] were among the first to address the question of how insights from
human soccer theory can be applied when specifying the behavior of soccer robots.
Their proposal is to analyze existing moves from human soccer theory as, for example,
described in [17] and to adapt these moves to the abilities of the respective robotic soc-
cer leagues. They identified requirements needed to adapt existing moves to a soccer
robot team one of which, they state, is that the robots in the team have to build a quali-
tative world model. The reason for this is that human soccer knowledge, which is often
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represented in the form of diagrams, has an inherent qualitative nature. To encode the
moves which are most often depicted only in a prototypical fashion a qualitative world
representation is needed to formalize behaviors for cooperative team play.

There already exists work on using qualitative information for autonomous agents.
For example, Stolzenburg et al. [21] compared methods how to intercept the ball in the
soccer simulator; one of the methods used qualitative abstracted ball coordinates. In
[11], Fraser et al. describe the inReach predicate for the ball distance while employing
a hysteresis function, Stone et al. [22] apply Reinforcement Learning in the Simulation
League using some handpicked qualitative predicates for state space abstraction. While
in these approaches only some qualitative aspects focusing on a particular task are cho-
sen, none of these fulfill all requirements that are necessary for a complete qualitative
framework.

In this paper we follow the ideas by Dylla et al. [9]. Continuing the work on using
human soccer knowledge for robotic soccer, we present qualitative enhancements to a
world model particularly suited for robots in the MIDDLE SIZE LEAGUE, where up to
five robots per team play on a 8m×12m indoor soccer field. However, the enhancements
could be applied to any other ROBOCUPsoccer league just as well. Drawing on previous
work in the area of spatial cognition, we present an approach to representing positions
on the field qualitatively. We also discuss models for further information needed to
transfer human knowledge on soccer such as to decide when a pass can be played to a
team-mate. This is done in the context of the logic-based action language READYLOG,
a variant of GOLOG [16], which we use for an exemplary specification of the soccer
move “kick-off”.

When using a qualitatively abstracted world model, an important issue is drawing
appropriate inferences. A simple example is to derive the result of distance near +
distance f ar. One option would be to apply one of the existing qualitative spatial cal-
culi (cf. [4] for a survey of existing calculi). However, this currently does not seem
feasible not only for computational reasons. Instead, we propose a hybrid quantitative-
qualitative representation of the respective world model information, which allows for
a limited form of reasoning about qualitative world model predicates, that seems ex-
pressive enough for most soccer applications. To be able to do so we have methods for
re-quantifying the qualitative values to their numerical counterparts.

In the next section we define our qualitative world model. In section 3 we briefly
introduce the language READYLOG and we show how it can be used to specify abstract
soccer moves. In section 4, we present an example illustrating our approach to reasoning
about the predicates in our qualitatively enhanced world model. Section 5 concludes the
paper.

2 Qualitative Representations

In the following we present the models which we use to abstract the quantitative data
gathered from the sensors of the robots and stored in the quantitative world model to a
qualitative representation of the world.
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Fig. 1: The combination of distance and orientation relations compared to the polar
coordinate system.

2.1 Positional Information

In [3], Clementini, Felici, and Hernandez present a unified framework which allows for
qualitative representation of positional information. The framework combines an orien-
tation and a distance relation. The position of a primary object is represented by a pair
of distance and orientation relations with respect to a reference object. Both relations
depend on a so-called frame of reference which accounts for several factors like the size
of objects and different points of view.

The framework also features basic reasoning capabilities such as the composition
of spatial relations as well as switching between different frames of reference. Unfor-
tunately, the reasoning features provided are not guaranteed to yield unique1 results,
for instance, for the composition of qualitative terms. However, as for the ROBOCUP
soccer domain we depend on unambiguous outcomes of such compositions since they
are needed to instruct the robot.

From a quantitative point of view, the combined description of a position with this
model can be seen as the representation of a point in polar coordinates. A point p in
polar coordinates is defined by the distance r from the origin to this point and the angle
ϕ measured from the horizontal x-axis to the line from the origin to p in the counter-
clockwise direction. Thus, the position of a point p is described as (r,ϕ). This descrip-
tion directly corresponds to the combination of the distance and the orientation relation.
We illustrate this in Figure 1. This correspondence is of particular interest concerning
our hybrid approach to reasoning which we will discuss in detail in section 4.

The number of subdivisions, that is the level of granularity within the qualitative
description of both distance and orientation can be chosen freely. In this paper we re-
strict ourself to one level with eight distinctions although it is possible and might be
of benefit to have multiple levels. For a recent approach to qualitative orientation with
adjustable granularity see [19].

1 By unique we mean results which contain exactly one relation.
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Fig. 2: Semantic regions on the playing field. Figure (a) shows the orientation grid
taken from [12]. Figure (b) shows the grid embedded into a soccer field. The re-
sulting semantic regions on the playing field are shown in Figure (c).

Beside the relative positional information described so far positions are also used in
a global frame of reference. A qualitative concept which is applied frequently is that of
semantic regions on the playing field. These regions are often used as tactical positions
corresponding to player roles. To model semantic regions in the sense of global posi-
tioning we employ a well-known approach to qualitative representation of positional
information proposed by Freksa and Zimmermann in [12, 13]. Qualitative orientation
information in two-dimensional space is given by the relation between a vector and a
point. The vector consists of a start point A and an end point B. It represents the orien-
tation of a possible movement. Now, imagine a line through A and B and two further
lines, one orthogonally going through A and B each. These three lines form an orien-
tation grid which has the form of a double-cross. Different positions of an additional
third point C can then be described with respect to this grid. Altogether the grid leads
to 15 different orientation relations.

The grid used for the representation of orientational alignment is based on a (move-
ment) vector. Unfortunately, we do not have an explicit movement in the context of
global positioning on the playing field. On the other hand, we can regard the direction
of play as a vector. From a tactical point of view one of the main objectives in a game is
to advance from a defensive situation in the team’s own half to an offensive one in the
opponent’s half. Thus, we can take the center of each team’s half as the start and end
point of an imaginary vector. If we place this vector onto the playing field we can relate
semantic positions on the field to the orientation relations provided by Freksa’s grid.
This yields a subdivision of the field into 15 regions. The regions and their derivation
are depicted in Figure 2.

Dividing the grid by the field’s horizontal and vertical axes results in zones for the
length of the field and in sides for the width. This system roughly corresponds to the
Cartesian coordinate system; zones and sides form perpendicular axes with the zones
corresponding to the x-axis and the sides corresponding to the y-axis. Thus, we can
still specify an object’s position in a coordinate system like manner, but by using zones
and sides we achieve a qualitative abstraction. The analogy to the Cartesian coordinate
system is of importance to our hybrid approach to reasoning again.
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In the following we are going to elaborate on possible applications of the qualitative
approaches to positional information we just presented.

2.2 Derived Predicates

Besides the greater comfort within the specification of tactical patterns we can use the
zone and side information to build further qualitative predicates. Consider, for instance,
the course of a soccer game. The overall positioning on the pitch is, besides the ball
possession, one of the fundamental indicators upon which to classify whether a team
is currently in a defensive or an offensive situation. Moreover, it is an important infor-
mation whether the game’s focus is on one of the sides of the playing field or in the
center.

With the zone information we can provide a predicate which we call game setting.
It expresses where on the pitch the main activity of play is. It can be used to derive
positioning instructions or simply to call appropriate sub-procedures in an agent’s pro-
gram. We compute the game setting by a weighted sum of the zone indices of all players
and of the ball: wteam ·

∑
i∈team zone(i)+wopp ·

∑
j∈opps zone( j)+wball · zone(ball). The

center of the possible values lies at a value of zero which states that the focus of play is
located in the midfield. To be able to perform a classification of the game’s focal point
in terms of a situation being offensive, balanced, or defensive we need to establish a
threshold. Upon this threshold we can decide to which of the above class the current
situation belongs. Feasible values for this threshold as well as for the weights for each
of the three different objects within the above formula were found empirically in real
world experiments. They can, however, also be learned which could lead to more ade-
quate results. Analogously to the game setting we can determine the gist of play with
respect to the sides of the pitch. We call this the game edge. The game edge renders
useful, for instance, if we need to decide which side of the pitch is less occupied and
can thus be used to advance into the opponent’s field half with a lower risk of being
attacked.

2.3 Reachability

Apart from the static semantic regions there are further aspects which can be useful to
determine. In particular, we are interested in dynamic spatial properties such as reacha-
bility of different kinds, which is central for the description and the execution of tactical
patterns in soccer. For a discussion of the different forms of reachability we refer to [9].
For all these different reachability relations the individual abilities of a single robot or
agent are relevant since even within the same league players of different teams may
have unequal capabilities in terms of speed and mobility. Nevertheless, there are some
general properties which hold for all players despite their physical abilities.

We consider the concept of Voronoi diagrams to be applicable for modeling a sim-
plified version of the reachability relations required. A Voronoi diagram V (S) of a set
S of n point sites is the partitioning of a plane with n points into n convex polygons
such that each polygon contains exactly one point and every point in the given polygon
is closer to its central point than any other. For a more detailed account on Voronoi
diagrams and their dual, the Delaunay triangulation DT (S), see e.g. [1].
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We make use of Voronoi diagrams and their dual the Delaunay triangulation to
model reachability as they separate the field into non-intersecting regions and we get a
connection graph between the players. We take the players as point sites in the plane and
construct V (S) and DT (S) with the Euclidean distance thereupon. Then, the Voronoi re-
gion of each player is the set of points closer to this player than to any other player.
Furthermore, in the dual of the Voronoi diagram V (S), the Delaunay triangulation
DT (S), two players’ point sites are connected
if and only if they share a common boundary
in the Voronoi diagram. Our idea of modeling
reachability with the aid of V (S) and DT (S)
is to consider players to be reachable to each
other if their Voronoi regions share a common
boundary, that is, they are connected in the
Delaunay triangulation DT (S). Fig. 3 depicts
the Delaunay triangulation and the Voronoi re-
gions for the geometric structure of several

Fig. 3: Voronoi diagram and Delaunay triangu-
lation of a soccer situation

players on a soccer playing field. The yellow lines represent the triangulation, the green
and red shaded regions correspond to the Voronoi regions of the attacking team and the
defending team, respectively.

2.4 Free Space

The notion of free space is another important aspect which can frequently be found in
the description of spatial settings and tactical patterns in soccer. The term free space de-
notes an area which is not occupied by any of the players of the opposing team. Consider
the Voronoi diagram being constructed upon all opponent players on the field. That is,
each opponent player corresponds to the center of a Voronoi region. The Voronoi edges
are formed by points that are equally far away from the two players the edge is between.
The Voronoi vertices reflect points in the plane which have the maximal possible dis-
tance to even three or more of the surrounding players. These vertices directly match
our interpretation of positions in free space as we sketched it above. Please note that we
include the four corner points of the playing field into the Voronoi diagram. We need
at least three Voronoi regions to obtain a Voronoi vertex. Including the corner points
yields a minimum of four regions thus guaranteeing that we do not have less than one
Voronoi vertex.

We provide two distinct ways to employ these vertices. First, we consider a clas-
sification request. Given a point on the playing field, we can ask how ’free’ this point
is. To answer such a request we compute the point’s distance to the nearest point site
in the opponent’s Voronoi diagram as well as its distance to the nearest Voronoi vertex.
The ratio between these two values is a good criterion on how ’free’ the given point is
because it reflects whether the point is closer to a free position or to an opponent player.
Since the ratio does not reflect the absolute distance to an opponent we additionally
take a minimal distance into account which has to be exceeded. Second, we can answer
inquiries for free point positions. Most times it is reasonable to specify a region of in-
terest in which to search for a free position. For simplicity we assume that we specify a
region of interest by a position in the pitch’s coordinate system (along with a maximal
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distance to search up to). Given this query, we determine the nearest Voronoi vertex to
the position. If the distance between the query point and the vertex is lower than the
maximal distance we return the vertex’ position. Otherwise, we return the position of a
point lying on a line starting at the query point going into the direction of the nearest
Voronoi vertex.

2.5 Additional Concepts

Within the course of a soccer game it is a vital piece of information whether or not
one’s team is in possession of the ball. That is, again, an information we can provide by
utilizing the structure of Voronoi diagrams. The simplest way to answer the question of
ball possession is to check if the ball is located in the Voronoi region of a player who
belongs to one’s own team. This is, of course, not always correct. For example, if the
player whose Voronoi cell the ball belongs to is not facing the ball it might be the case
that another player who has a greater distance to the ball but who is directly facing it
can reach it more quickly. It is, however, possible to take this additional information
into account and to refine the predicate accordingly.

As an additional qualitative predicate of particular interest in the soccer context we
now consider something we call passway vacancy. We denote a qualitatively abstracted
classification of the amount of space available along a potential pass way by this pred-
icate. That is to say, we classify the degree of exposure of a line segment going from
point Pstart to point Pend by examining possible points of interception. We derive our
classification by considering a ratio on how likely an interception is. Consider a straight
line from Pstart to Pend. We compute the minimal distance of each opposing player to
this line, that is either the length of a line perpendicular to the pass way or the distance
to the pass way’s nearest end point. Further, we compute the distance from each oppo-
nent to the starting point of the pass way. Then, we calculate the ratio between this two
values. That is to say, we determine if the opponent is so close to the pass way that it
can intercept a ball passed along the pass way.

3 Using Readylog For Behavior Specifications

READYLOG [10], a variant of GOLOG, is based on Reiter’s Situation Calculus [20, 18],
a second-order language for reasoning about actions and their effects. Changes in the
world are only due to actions so that a situation is completely described by the history
of actions starting in some initial situation. Properties of the world are described by
fluents, which are situation-dependent predicates and functions. For each fluent the user
defines a successor state axiom specifying precisely which value the fluent takes on
after performing an action. These, together with precondition axioms for each action,
axioms for the initial situation, foundational and unique names axioms, form a so-called
basic action theory [20].

GOLOG has emerged as an expressive language in recent years. It has imperative
control constructs such as loops (while), conditionals [16] (if ...then), and (recursive)
procedures (proc(name(parameters),body)), but also less standard constructs like the
nondeterministic choice of actions (|). Extensions exist for dealing with continuous
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Fig. 4: Example for the “build-up play” move.

change [15] and concurrency [6], allowing for exogenous and sensing actions [5] and
probabilistic projections into the future [14]. Another extension provides the facility to
do decision-theoretic planning [2] which involves Markov Decision Processes (MDPs)
(solve(p,h), where p is a GOLOG program, h is the MDP’s solution horizon). READY-
LOG integrates these and more features in one agent programming framework [10].

To encode the behavior one has to specify a domain axiomatization including the
actions the robot can perform together with their effects, and the fluents which describe
the properties of the world like the ball position. Examples of domain descriptions for
the soccer domain can be found in [7, 8].

3.1 A Soccer Move Example

We now specify the soccer move “kick-off” in READYLOG and we show that our qual-
itative world model (READYWORLD) supports the specification. We adapted three pos-
sible ways to build up a play as discussed in [17].

The first way to build up play is with a long pass (Fig. 4(a)). We immediately notice
that the term long is one of the coarse, qualitative notions we need to establish in order to
adapt human soccer theory for our autonomous soccer agents. We could also formulate
this as passing the ball from a back position to a front position on the playing field. The
second way to build up play is with a diagonal pass as depicted in Fig. 4(b). This time,
the term diagonal is of qualitative nature. Diagonal means passing to the side being
opposite to the current one. Fig. 4(c) shows the last possibility to build up play which
is with a deep pass (dashed line labeled with 1) followed by a subsequent back pass
(dashed line labeled with 2). The term deep is used to denote the space behind or in
between a group of opponent players. The endpoint of such a pass has to be the most
free position available in between or behind the group of opponents.

We now try to adapt as much of these descriptions as possible by integrating their
most essential parts into one pattern. All three possibilities have in common that the
ball is located in the back part on the pitch. According to a role ontology it is a player
currently having a defensive role which is about to initiate the pattern to build up play.
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proc build up play defender ,
if haveBall(ownNumber) then

getFreeSide(offense,FreeSide); getPassPartner(offense,FreeSide,PassPartner);
solve (

if ¬isKickable(ownNumber) then
interceptBall

else if isPassReachable(ownNumber,PassPartner) then
passTo(ownNumber,PassPartner)

endif
endif
| pickBest( bestSide ,{leftSide, middleSide, rightSide}

dribbleTo (ownNumber,middleZone,bestSide)
| kickTo(ownNumber,middleZone,bestSide) ) /∗ end of pickBest ∗/

| interceptBall ; kickTo( ownNumber, middleZone, middleSide ),
3, func Reward ) /∗ end solve with horizon 3 ∗/

else
interceptBall

endif
endproc

Fig. 5: The build-up play program for the defender.

We already characterized the possibility of a long pass as ’bringing’ the ball to the front
part of the pitch. Therefore, in this case the agent chooses to pass to a teammate who is
located in the attacking zone. For the two other possibilities the pass’ destination is the
midfield. The agent can either make a diagonal pass, that is the case if the target position
is on the opposite side of the field, or it can simply pass to a free area on the same side
or in the pitch’s center. To illustrate our adaptation of the build up play patterns for the
MIDDLE SIZE LEAGUE we depicted a diagram similar to the ones in [17] in Figure 4(d).

Figure 5 shows a program in our action language READYLOG capturing the above
example. Note that this specification contains several qualitative elements such as mid-
dleZone, leftSide, and offense as well as qualitative predicates such as isPassReachable.
With our qualitative world model we are able to simply transfer the qualitative notions
from the specification in [17]. Moreover, the use of qualitative terms and predicates
makes the program applicable in many game situations.

4 Reasoning

When a robot executes a READYLOG program like the one in Figure 5, it needs to
evaluate different courses of action and choose the most appropriate one. This happens
every time a solve-construct is encountered. Roughly, the robot evaluates the different
alternatives (nondeterministic actions separated by ′|′ and nondeterministic choice of ar-
guments (pickBest)) and chooses the one that maximizes expected utility in a decision-
theoretic fashion (see [2, 10] for details). The evaluation of one alternative involves
projecting the effects of the actions it contains into the future, starting from the current
(qualitative) world model.

For the purposes of this paper, the main question is how moving-actions involving
qualitative spatial terms are projected. For example, suppose the robot is currently in



12 Stefan Schiffer, Alexander Ferrein, and Gerhard Lakemeyer

zoneBack

sideLeft

(a) quantitative
representative

Front

FrontRight

Right

BackRight

FL

Left

BL

Back

(b) composing the
orientation

distFar

distMiddle

distClose

distVeryClose

(c) composing the
distance

sideRight

zoneFront

(d) qualitative abstraction

Fig. 6: An exemplary projection of qualitative values in READYLOG.

region [zoneBack,sideLeft] (Figure 6(a)). What should the effect of the action go(front-
right,far) be? Depending on the exact position of the robot, it could end up in any of 9
zones on the field.2 While this may still be manageable, things quickly get out of hand
when we want to project a sequence of actions. In the worst case, the eventual outcome
would span all 15 zones, that is, we lose all information about where the robot might
end up. Moreover, projecting all possibilities is too costly, as the robot needs to make a
decision on what to do next in the order of less than a second.

To avoid these complications and to remain computationally efficient, we simplify
the problem in the following drastic way: to project the path of the robot, we sim-
ply translate the qualitative information back to numeric (geometric) values, taking as
representative the mid-points of zones, sides, directions, and distances. The compo-
sition can be computed straight-forwardly using Euclidean geometry. The numerical
end-result is then converted back to a qualitative description in the same way we per-
form the qualitative abstraction in the first place. Figure 6 illustrates this for the action
go(front-right,far) starting in region [zoneBack,sideLeft]. There are several advantages
to this. Rather than having to entertain all possibilities, we only need to compute one.
Using mid-points also reduces the error in a reasonable way for practical purposes. Per-
haps most importantly, we can use the existing projection mechanism of READYLOG,
which requires that the effects of atomic actions are deterministic (in the case of a goto-
action, the effect must be a unique location).3 The method is clearly sound, as the result
is among those which a purely qualitative reasoner would obtain. It is not complete,
as there may be cases where the computed path would take the robot outside the field
and hence render the action illegal, even though other legal solutions may exist. Being
incomplete is not a big problem in this application. It is more important to obtain a
reasonable approximation fast in most circumstances. Also, plans often do not survive
very long in soccer, that is, they are often aborted because the world has changed in a

2 See also [3] for a discussion of ambiguities in their approach to qualitative representations of positional
information.

3 Note that this is different from nondeterministic actions, which are complex, that is, made up of a number
of primitive actions.
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way that makes the current plan invalid. Hence it is not worth spending too much effort
on figuring out what to do. Finally, we remark that, once a course of action has been
chosen, we employ the same method that we use during reasoning to compute actual
robot trajectories, using the real robot position as the starting location.

5 Conclusions

In this paper we proposed a qualitative spatial world model for soccer playing robots,
combining earlier work on semantic regions with that on orientation and distance rela-
tions. In addition, we used Voronoi diagrams to provide us with a notion of reachability,
which is important in the soccer domain. Computing robot trajectories from ambigu-
ous qualitative descriptions was achieved by mapping the qualitative terms to unique
geometric representatives.

The current reasoning scheme is admittedly somewhat ad hoc and was chosen
mainly for efficiency reasons. One refinement would be to consider more than one tra-
jectory. Also a comparison with existing spatial calculi [4] is needed. On the practical
side, while the above ideas are fully implemented, we need to carry out more experi-
ments to see how the qualitative approach fares in real games.
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