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a b s t r a c t

In this paper,wepresent the robot programming andplanning languageReadylog, aGologdialect,which
was developed to support the decision making of robots acting in dynamic real-time domains, such as
robotic soccer. The formal framework of Readylog, which is based on the situation calculus, features
imperative control structures such as loops and procedures, allows for decision-theoretic planning, and
accounts for a continuously changing world. We developed high-level controllers in Readylog for our
soccer robots in RoboCup’s Middle-size league, but also for service robots and for autonomous agents in
interactive computer games. For a successful deployment of Readylog on a real robot it is also important
to account for the control problem as a whole, integrating the low-level control of the robot (such as
localization, navigation, and object recognition) with the logic-based high-level control. In doing so, our
approach can be seen as a step towards bridging the gap between the fields of robotics and knowledge
representation.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

Research on autonomous mobile robots has developed highly
successful methods for tasks, such as localization, mapping, or
navigation. In general, these methods rely heavily on techniques
such as probabilistic state estimation, and there seems to be little,
if any need for ideas from logic-based knowledge representation
(KR). On the other hand, the planning and reasoning-about-action
communities in KR have made significant advances in modeling
and reasoning about the dynamics of the world. While there is
perhaps little question that reasoning is useful when a robot
needs to make decisions on how to achieve its goals, few KR
techniques have actually found their way into robotic systems.
One of the reasons is that these techniques are perceived as being
far too computationally demanding. In this paper, we want to
demonstrate that this need not be so and that it is possible, and
indeed very fruitful, to integrate state-of-the-art logical reasoning
mechanisms into a robot. As we will see, this is even possible in
domains, such as robotic soccer, where tight real-time constraints
need to be taken into account. Enabling a robot to represent part
of its environment using logic, also forces one to take seriously
the idea that symbolic representations need to be semantically
grounded in how the robot’s sensors perceive the world, an aspect
usually ignored in the KR community. It is in this sense, thatwe feel
that the paper fits into the theme of semantic knowledge in robotics.
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Another aspect dealt with in the paper is that one cannot ignore
that theworld changes constantly, evenwhen the robot is thinking
about what to do next.
Here, we present the robot programming and planning

language Readylog, a derivative of Golog [1], which is based
on the situation calculus [2], a first-order logic to reason
about actions and change. Readylog was designed to support
high-level decision making for robots acting in dynamic real-
time domains like robotic soccer. The idea of Readylog is
to combine planning with programming. It features control
structures known from imperative programming languages, but
also non-standard constructs for decision-theoretic planning
employing MDP theories in the logical framework. Readylog
supports reasoning under uncertainty and continuous change.
It accounts for problems such as gathering sensor values and
integrating them into the high-level controller, or monitoring
the execution of previously established behavior plans. It was
successfully applied for controlling (soccer) robots in RoboCup
competitions [3,4] and service robotics tasks [5], and it showed
its usefulness as a behavior representation language [6]. With the
embedding of the Readylog high-level controller on a real robot
and integrating it into the overall robotic system, we demonstrate
an approach to bridge the gap between robotics and logic-based
methods from the field of reasoning about actions. We want to
emphasize that, for our work, a combination of the low-level
control of the robot (localization, navigation, object recognition)
with the logic-based high-level control was of great importance to
come up with an overall efficient and flexible robot controller.
The paper is organized as follows. In the next sectionwe discuss

related work. In Section 3, we show the robotics side of this
work. We describe the hardware platform of our robots and their
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software system. In Section 4, we present some of the theoretical
background of the situation calculus andGolog, whichReadylog is
based on. Section 5 addresses our approach to the control problem
for robots acting in dynamic domains. Readylog makes extensive
use of decision-theoretic (DT) planning, and we show how DT
planning works in the Readylog framework. We further address
the problem of monitoring the execution of the behavior policies,
and the problem of integrating sensor values in an efficient way.
At the end of this section, we present an approach to macro
actions in the decision-theoretic context to speed up planning.
In our examples, we show how Readylog is used for controlling
soccer robots in RoboCup’s Middle-size league. Other Readylog
applications are discussed in Section 6. Then we conclude.

2. Related work

For the problem of high-level decision making, a rich body
of related approaches exist. These comprise work on decision
making in general, but also on applications from various fields.
Here, we restrict ourselves to research on applying decision
making techniques to mobile robots. Some examples are the
Procedural Reasoning System (PRS) [7], PRS-lite [8], the Saphira
architecture [9], Reactive Action Packages (RAP) [10], or the
Reactive Plan Language (RPL) [11] and Structured Reactive Controller
(SRC) [12]. Although these approaches follow different directions,
they have often influenced each other. For example, language
constructs which express that a process waits for certain
conditions to become true have been incorporated in many
languages, including RPL and also Readylog. There are other
approaches that use Markov Decision Processes (MDPs) for
decision making of a robot. One impressing example for deploying
this techniques is Nursebot [13]. The robot was applied in nursing
homes to help the elderly with their daily life, reminding to take
medicine or to go the doctor.
Another interesting and related field for robot control is the

high-level control of autonomous rovers which fulfill planetary
missions. The goals of a mission planner are different from ours.
The domain is generally less dynamic, but resource allocation
and run-time plan adaptation need to be taken into account.
Further, the terrain the robot is operating in is rough and
unknown. For example, [14] report on a partial order planner
which also accounts for plan repair. In [15] the authors describe
a rover deploying a model-based planning approach based on
the Intelligent Distributed Execution Architecture [16]. A similar
approach is followed by Carbone et al. [17], where a model-based
high-level controller for rescue robots is presented. They also
concentrate on integrating sensor values into the model-based
controller of the robot. They tested their architecture on real robots
in search & rescue scenarios.
On the side of logic-based action formalisms, a closely related

approach is the work of Pirri et al. [18], where an architecture for
a domestic robot is presented. They also make use of Golog for
their high-level control, and stress the importance of representing
knowledge about the environment and of integrating sensing
results into the high-level controller, as well as monitoring the
execution of the robot’s action. However, they do not deal with
domains where real-time decision making is as important as
in our case. The first realistic large-scale application of Golog
was the tour-guide robot in the Deutsches Museum Bonn in the
Rhino project [19]. Over several days, a RWI B21 robot served
as museum tour-guide and explained the exhibits. Funge [20]
makes use of Golog for modeling animated creatures in a cognitive
way. He uses the possibility of non-determinism in Golog for his
creatures to fill in details in sketch plans based on their background
domain knowledge. Levesque and Pagnucco [21] report on Legolog,
their implementation of Golog on a Lego Mindstorm robot.
They connected an IndiGolog interpreter implemented in Prolog
to the Lego Mindstorm Robotics Invention System (RIS). Pham
[22] describes an interface between DTGolog and the Sony Aibo
ERS-7. The interface is based on the framework Tekkotsu [23].
For example, an application that the Aibo is used for is to fulfill
navigation tasks for which an optimal policy was calculated.
The Fluent calculus [24] is an approach to reasoning about

actions and change similar to the situation calculus. With FLUX
[25], which stands for FLUent eXecutor, Thielscher introduces a
run-time system for the fluent calculus. FLUX was applied to
mobile service robots [26], but also showed its strength at the 2006
AAAI General Game Playing Project Competition [27], by winning
the competition [28]. Other approaches for reasoning about actions
are [29–32], to name but a few. Sandewall [32] proposes the
Cognitive Robotics Logic (CRL). He presents a meta-theory for
reasoning about actions. The language allows for expressing
durative actions, composite actions, nondeterministic actions,
nondeterministic timing of actions and their effects, continuous
time and piecewise continuous fluents, imprecise sensors and
actuators, and action failures. Similar to CRL, the temporal action
logic TAL [31,33] makes use of a surface language representing
narratives, and a base language allowing the agent to reason about
narratives. The language TAL is also applied to deliberative tasks
for unmanned aerial vehicles [34].
Another recent paper underlining the importance of integrating

semantic knowledge into the robot controller is [35], where
description logics was chosen to represent the knowledge the
robot has about its environment. They propose a monitoring
scheme where sensor values are verified against the semantic
background knowledge. An early approach which makes use
of description logics for controlling robots is [36]. The authors
describe an approach to high-level control similar to the situation
calculus.Many other papers concentrate on integrating knowledge
into the robot system or use logic-based approaches to control a
robot and to integrate semantic knowledge of the environment
into the controller. For further reference on logic-based approaches
to robot control, we refer to [37]. In this recent paper, a concise
overview of the current developments and streams in the field of
reasoning about actions and the Cognitive Robotics community is
given.

3. Robot platform and software architecture

As we pointed out in the introduction, there are three parts
involved in our work, one of which is the robot system with its
sensors and actuators and its low-level control software. In this
section we briefly go over our robot system.

3.1. The robot platform
The hardware platform of our Middle-size RoboCup Team

AllemaniACs has a size of 39 cm × 39 cm × 80 cm (Fig. 1(a))
with a weight of 70 kg. The robot has a differential drive, each
motor has 2.4 kWpower. Themotorswere originally developed for
electric wheel chairs. They provide the robot with a translational
top speed of about 2.5–3m/s. The two 12 V lead-gel batteries with
15 Ah allow for 2 h operation time. Fig. 1(a) shows the hardware
platform. Directly above the base, a 360◦ laser range finder (LRF)
is mounted which provides data at 10 Hz. A Sony EVI-D100P
camera (marked as (b) in Fig. 1(a)) is installed, yielding images
in PAL resolution with 25 Hz. Behind the camera, parts of the air
tank for our pneumatic kicking device become visible (Item (c) in
Fig. 1(a)). On top, the IEEE 802.11a/b/g access point for wireless
communication and an omni-directional camera, pointing to a
hyperbolic mirror, is mounted ((d) and (e) in the figure). The robot
has two on-board Pentium III PCs at 933 MHz running Linux, one
equipped with a frame-grabber for the Sony EVI-D100P camera.
This platform allows soccer playing, but is also used for service
robotics applications as in RoboCup@Home [5].



982 A. Ferrein, G. Lakemeyer / Robotics and Autonomous Systems 56 (2008) 980–991
(a) AllemaniACs Robot. (b) Software architecture.

Fig. 1. The AllemaniACs system.
3.2. Robot control software

In this section we take a closer look at the low-level control
software of the AllemaniACs robots. The system uses a classical
three layered architecture with an interface layer between the
hardware and the control modules on the middle layer, which in
turn builds the interface to our high-level decision making with
Readylog. The middle layer features modules such as navigation,
localization, or object recognition. The third layer of the system
architecture consists of the world model and the reasoning
component Readylog, which we will introduce in Section 5. The
software architecture is shown in Fig. 1(b). The control flow is, as
is usual in layered hierarchical architectures, from bottom to top
concerning data, and from top to bottom w.r.t. control commands
(cf. e.g. [38]). For communication between control modules, we
make use of a blackboard system. Each module connects to the
blackboard system and is able to read data provided by other
modules from the blackboard. Inside the blackboard, several data
sections are separated and access rights are regulated.
The low-level interfaces are basically hardware drivers with

access to the blackboard. The motor driver provides data such
as odometry information which are calculated from the wheel
encoders and estimates the velocity of the robot on the one hand,
on the other hand it takes driving commands from modules of
upper levels. The laser driver takes commands for starting or
stopping the LRF, and provides 360 distance measurements per
sweep. As the directed camera is with its pan/tilt unit also an
actuator, it can take commands such asmove(ϕ, θ). It provides the
vision module with camera images. The omni-vision camera only
yields raw images. Finally, we have the kicker interfacewhich takes
commands actuating the pressure valves of the pneumatic kicking
device.
The modules on the middle layer work on the data provided

by the sensors. A central task, especially with fast heavyweight
robots is an effective collision avoidance strategy. With the data
from the LRF, we create an occupancy grid map, and then
search for a collision-free path in it. For successful complex robot
operations in dynamic environments, moreover, good localization
is needed. Here we make use of a Monte Carlo approach [39].
To endow the robot’s world model with a rich representation of
the environment, one further needs good object classification. We
use the information provided by the vision module, and further
we make use of the fact that the robot is localized in its given
environmentmap. Thus, it is able to distinguish between static and
dynamic obstacles. The dynamic obstacles are classified by their
laser signature. For the soccer application, an important feature is
the ball. The visionmodule inspects a camera image on several scan
lines of a color segmented image. For finding the ball we apply
randomized circle fitting. The circle fitting is implemented as an
any-time algorithm which returns the best fitted circle. With a
geometric model of the robot the position of the ball is estimated.
Above the middle layer, Fig. 1(b) shows the modules world

model, and skills. These are the modules with which our high-level
framework Readylog is connected. From the point of view of high-
level decisionmaking, the skill module encapsulates actuators, the
world model encapsulates sensor data. The skill module provides
the basic actions for Readylog. These are for example actions like
drive to global position or turn with angle θ or more sophisticated
ones, such as dribble around opponents. While the basic actions are
clearly influenced by the soccer application, they are nonetheless
useful for service robotics applications as well. As our high-level
controller, which we present in detail in Section 5 is implemented
in Prolog, and the rest of the software is implemented in C++,
we need another interface between Readylog and the low-level
control software. This function has the module HLI, the high-level
interface. It translates Prolog calls to appropriate C++ function
calls.

4. Situation calculus and golog

4.1. Situation calculus

The situation calculus is a second order language with equality
which allows for reasoning about actions and their effects. The
world evolves from an initial situation due to primitive actions.
Possible world histories are represented by sequences of actions.
The situation calculus distinguishes three sorts: actions, situations,
and domain dependent objects. A special binary function symbol
do : action × situation → situation exists, with do(a, s) denoting
the situationwhich arises after performing action a in the situation
s. The constant S0 denotes the initial situation, i.e. the situation
where no actions have yet occurred. The state the world is in is
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characterized by functions and relations with a situation as their
last argument. They are called functional and relational fluents,
respectively. As an example, consider the position of a robot
navigating in an office environment. One aspect of the world state
is the robot’s location robotLoc(s). Suppose the robot is in an office
with room number 6214 in the initial situation S0. The robot now
travels to office 6215. The position of the robot then changes to
robotLoc(do(goto(6215), S0)) = 6215. goto(6215) denotes the
robot’s action of traveling to office 6215, and the situation the
world is in after the action is described by do(goto(6215), S0).
For each action, one has to specify a precondition axiom stating

under which conditions it is possible to perform the respective
action and an effect axiom formulating how the action changes
the world in terms of the specified fluents. An action precondition
axiom has the form Poss(a(Ex), s) ≡ Φ(Ex, s) where the binary
predicate Poss ⊆ action× situation specifies when an action can be
executed, and Ex stands for the arguments of action a. For our travel
action, the precondition axiom may be Poss(goto(room), s) ≡
robotLoc(s) 6= room. After having specified when it is physically
possible to perform an action, it remains to state how the
respective action changes the world. In the situation calculus
the effects of actions are formalized by so-called successor state
axioms of the form F(Ex, do(a, s)) ≡ ϕ+F (Ex, a, s) ∨ F(Ex, s) ∧
¬ϕ−F (Ex, a, s), where F denotes a fluent, ϕ

+

F and ϕ
−

F are formulas
describing under which conditions F is true, or false resp. This
axiom simply states that F is true after performing action a if
ϕ+F holds, or the fluent keeps its former value if it was not made
false. Successor state axioms describe Reiter’s solution to the
frame problem [40], the problem that all the non-effects of an
action have to be formalized as well. As an example, consider
the following successor state axiom for the fluent robotLoc(s) :
robotLoc(do(a, s)) = y ≡ a = goto(room) ∧ y = room ∨
a 6= goto(room) ∧ y = robotLoc(s). Note that free variables
in the occurring formulas are meant to be implicitly universally
quantified. The background theory is a set of sentences D
consisting ofD = Σ∪Dssa∪Dap∪Duna∪DS0 , whereDssa contains
sentences about the successor state axioms, Dap contains the
action precondition axioms, Duna states sentences about unique
names for actions, and DS0 consists of axioms what holds in the
initial situation. Additionally,Σ contains a number of foundational
axioms defining situations. For details we refer to [41,40].

4.2. Golog

The high-level programming language Golog [1] is based on
the situation calculus. As planning is known to be computationally
very demanding in general, which makes it impractical for
deriving complex behavior with hundreds of actions, Golog finds
a compromise between planning and programming. The robot or
agent is equipped with a situation calculus background theory.
The programmer can specify the behavior, just as in ordinary
imperative programming languages, but also has the possibility to
project actions into the future. The amount of planning (projection)
used is in the hand of the programmer. With this, one has a
powerful language for specifying the behavior of a cognitive robot
or agent. While the original Golog is well-suited to reason about
actions and their effects, it has the drawback that a program
has to be evaluated up to the end before the first action can
be performed. It might be that the world changed between plan
generation and plan execution so that the plan is not appropriate
or is invalid. To overcome this problem, De Giacomo et al. [42]
proposed an incremental interpreter with conGolog. The program
is interpreted in a step-by-step fashion, where a transition relation
defines the transformation from one step to another. In this so-
called transition semantics, a program is interpreted from one
configuration 〈σ , s〉, a program σ in a situation s, to another
configuration
〈
δ, s′

〉
which results after executing the first action

of σ , where δ is the remaining program and s′ the situation
resulting of the execution of the first action of σ . The one-step
transition function Trans defines the successor configuration for
each program construct. In addition, another predicate Final is
needed to characterize final configurations, which are those where
a program is allowed to legally terminate.
To illustrate the transition semantics, let us consider the

definition of Trans for some of the language constructs:

(1) Trans(nil, s, δ, s′) ≡ false
(2) Trans(α, s, δ, s′) ≡ Poss(α, s) ∧ δ = nil ∧ s′ = do(α, s)
(3) Trans([σ1; σ2], s, δ, s′) ≡ Final(σ1, s)∧ Trans(σ2, s, δ, s′) ∨
∃δ′.δ = (δ′; σ2) ∧ Trans(σ1, s, δ′, s)

(4) Trans(σ1 ‖ σ2, s, δ, s′) ≡ ∃γ .δ = (γ ‖ σ2) ∧
Trans(σ1, s, γ , s′) ∨ ∃γ .δ(σ1 ‖ γ ) ∧ Trans(σ2, s, γ , s′).

(1) Here nil is the empty program, which does not admit any
further transitions.

(2) For a primitive action α we first test if its precondition holds.
The successor configuration is 〈nil, do(α, s)〉, that is, executing
α leads to a new situation do(α, s) with the nil program
remaining.

(3) The next definition concerns an action sequence [δ1; δ2], where
it is checked whether the first program is already final and
a transition exists for the second program δ2, otherwise a
transition of δ1 is taken.

(4) σ1 ‖ σ2 denotes that σ1 and σ2 can be executed concurrently.
Here the definition of Trans makes sure that one of the two
programs is allowed to make a transition without specifying
which. This corresponds to the usual interleaved semantics of
concurrency.

We only sketched the transition semantics here. In the next
section, some more examples are given. For a concise overview of
the transition semanticswe refer the interested reader for example
to [42,43]. We remark that the transition semantics allows for a
natural integration of sensing and on-line execution of programs.

5. Readylog — Real-time and dynamic golog

5.1. Introduction

The aim of designing the language Readylog, was to create a
Golog dialect which supports the programming of the high-level
control of agents or robots in dynamic real-time domains. Our
primary application was robotic soccer. The robotic soccer domain
has some specific characteristics, which made the development
of Readylog necessary and influenced several design decisions:
the robotic soccer domain is an unpredictable adversarial dynamic
real-time domain. This means that decisions have to be taken
quickly, and making plans for future courses of actions have
a mid-term horizon. Planning ahead for the next minute does
not make sense as the world changes unpredictably due to the
uncertainty of the outcome of the own actions and the behavior
of the opponent players. The unpredictability of the actions of
the agent demands for some notion of uncertainty. The idea of
Golog to combine planning with programming was accounted for
by integrating decision-theoretic planning; only partially specified
programs which leave certain decisions open, which then are
taken by the controller based on an optimization theory, are
needed. Readylog borrows ideas from [1,42–46] and features
the constructs given in Fig. 2. We will not introduce the whole
semantics of Readylog, here. Some of the constructs have already
been introduced in the previous section. Other constructs like the
solve statement will be discussed in detail in the next section.
While the aforementioned extensions were integrated into one
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Fig. 2. Overview of Readylog constructs.

framework, this was not enough to deploy Golog in dynamic real-
time domains as robotic soccer. In particular, one needs an efficient
implementation accounting for the real-time constraints posed by
the environment. Therefore, the Readylog framework features

(1) a novel on-line version of the decision-theoretic planning
method proposed by Boutilier et al. [46], which allows for
execution monitoring of policies;

(2) an enhanced version of passive sensing, which allows for
updating the world model in the background;

(3) the introduction of macro actions, so-called options, for
decision-theoretic planning, based on Precup et al. [47];

(4) several speed-ups for policy generation, such as making use of
caching previously computed results in the forward decision-
theoretic search for an optimal policy;

(5) a useful any-time approach for decision-theoretic planning to
overcome fixed horizons when searching for a policy, and by
this to better exploit the computational resources of the agent
or robot, and

(6) a progression method based on Lin and Reiter [48].

We address issues 1–3 in the following. For reasons of space we
cannot discuss the issues 4, 5, 6 here. For more details about these
topics we refer to [4].

5.2. DT planning in readylog

One of the most important features to model the behavior of
our robots is the use of decision-theoretic planning. It is very
convenient, as the domain axiomatizer may leave open several
choices in their behavior specification. The Readylog interpreter
chooses the best action alternative based on the underlying utility
theory. To illustrate how Readylog calculates an optimal policy
from a given input program we give a navigation example from a
toy maze domain. A robot wants to navigate from its start position
S to a goal position G. It can perform one of the actions from the
set A = {go_right, go_left, go_up, go_down}. Each of the actions
brings the robot to one of its neighboring locations. The actions are
stochastic, that is there exists a probability distribution over the
effects of the action. Each action takes the agent to the intended
field with probability of p, with probability 1 − p the robot will
arrive at any other adjacent field. The maze shown in Fig. 3 is
the well-known Maze66 domain from [49]. The robot cannot go
through the walls, if it tries, though, the effect is that it does not
change its position at all.
Fig. 3. The Maze66 domain from [49].

Fig. 4. Decision tree search in Readylog.

The fluent goal defines the goal position (goal = (7, 5)), and the
fluent loc denotes the current position of the robot in themaze. The
reward function is defined as reward(s) = +1 if loc(s) = goal and
−1 otherwise. To find the optimal path from S to G the robot is
equipped with the program

proc navigate
solve(h, reward,while loc 6= goal do
(go_right | go_left | go_up | go_down)

endwhile, h)
endproc

With the solve statement decision-theoretic planning is initi-
ated. The interpreter switches into an off-line mode and optimizes
the program given as the argument of the solve-statement up to
horizon (number of actions) h. The ‘‘|’’ represent a nondetermin-
istic action choice. At these choice points, the interpreter selects
the best action alternative. The Readylog interpreter does this via
predicates BestDowhich implement the forward-search algorithm
(Fig. 4). For space reasons we will not show the whole definition
of the algorithm here. For a detailed discussion of BestDo we refer
to [46,4]. As long as the robot is not at the goal location (and the
horizon is not reached), Readylog loops over the nondeterministic
choice statement. At each iteration the interpreter expands a sub-
tree for each of the actions inside the choice statement. As each of
the actions are stochastic, again for each outcomeof each action the
interpreter branches over all possible nature’s choices. This pro-
cess iterates until either the agent is located at the goal position
or the horizon is reached. At the leaves of the computation tree
over BestDo (at the end of the recursion) the agent receives the re-
ward for these final situations. Then, ‘‘going up’’ the computation
tree for nondeterministic choices, the best alternative is evaluated
and chosen for the policy. An illustration of the computation tree
is given in Fig. 4. Since it is not known in advance which outcome
is chosen by nature at execution time, the policy needs to cover all
possibilities, which is realized by nested conditionals. Coming up
to the root node, the computation terminates returning the policy,
the value for the policy, and its probability of success.

5.3. Execution monitoring for policies

As we remarked in the introduction to this section, our
specification language should not only be able to calculate a policy,
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but should also be able to execute the previously established
policy. Therefore, we need a run-time environment for executing
policies on-line. Soutchanski [50] proposed an on-line variant of
dtGolog, the decision-theoretic variant of Golog. In an earlier
paper, we showed that his approach is in general not feasible in
real-time domains (see [51,4] for a detailed discussion on that
matter). In our approach, we introduce the operator solve(h, f , p)
for a program p, a reward function f , and a fixed horizon h, which
initiates decision-theoretic planning in the on-line transition
semantics.

Trans(solve(h, f , p), s, δ, s′) ≡
∃π, v, pr.BestDo(p, s, h, π, v, pr, f ) ∧ δ = applyPol(π) ∧ s′ = s.

The predicate BestDo first calculates the policy for the whole
program p. The policy π is then scheduled for on-line execution as
the remaining program.We remark that policy generation assumes
that the program does not contain explicit sensing actions. As we
will see in the next subsection, this accounts for so-called passive
sensing. In the case of the robot’s position, for example, policy
generationworkswith an abstractmodel of the robot’smovements
so that robot positions in future states can simply be computed
without having to appeal to actual sensing. Making use of such
models during plan generation requires that we monitor whether
π remains valid during execution, as discrepancies between the
model and the real-word situation might arise. Monitoring is
handled within applyPol, which is defined below. Note that the
solve statement never reaches a final configuration, as further
transitions are needed to execute the calculated policy. To keep
track of the model assumptions we made during planning, we
introduce special markers into the policy. Hence, in the definition
of BestDowe have to store the truth values of logical formulas. For
conditionals this means:

BestDo(if ϕ then p1 else p2 endif; p,s, h, π, v, pr)
.
=

ϕ[s] ∧ ∃π1.BestDo(p1; p, s, h, π1, v, pr) ∧ π =M(ϕ, true);π1 ∨
¬ϕ[s] ∧ ∃π2.BestDo(p2; p, s, h, π2, v, pr) ∧ π =M(ϕ, false);π2.

Thus, for conditionals, we introduce a marker into the policy
that keeps track of the truth value of the loop condition at planning
time. We prefix the generated policy with a markerM(ϕ, true) in
case ϕ turned out to be true in s andM(ϕ, false) otherwise. While-
loops are treated in a similar way. The treatment of a test action
ϕ? is even simpler, since only the case where ϕ is true matters. If
ϕ is false, the current branch of the policy is terminated, which is
indicated by the Stop action.

BestDo(ϕ?; p, s, h, π, v, pr) .
=

ϕ[s] ∧ ∃π ′.BestDo(p, s, h, π ′, v, pr) ∧ π =M(ϕ, true);π ′ ∨
¬ϕ[s] ∧ π = Stop ∧ pr = 0 ∧ v = reward(s).

Next, we will show how our annotations allow us to check at
execution time whether the truth value of conditions in the
program at planning time are still the same, and what to do about
it when they are not. In case a marker was inserted into the policy
we have to check whether the test performed at planning time
still yields the same result. If this is the case, we are happy and
continue executing the policy, that is, applyPol remains in effect in
the successor configuration. Butwhat shouldwe do if the test turns
out differently? We have chosen to simply abort the policy in our
current formalization, that is, the successor configuration has Nil
as its program. Expressed formally, this means:

Trans(applyPol(M(ϕ, v);π), s, δ, s′) ≡ s = s′ ∧
(v = true ∧ ϕ[s] ∧
δ = applyPol(π) ∨ v = true ∧ ¬ϕ[s] ∧ δ = Nil ∨
v = false ∧ ¬ϕ[s] ∧
δ = applyPol(π) ∨ v = false ∧ ϕ[s] ∧ δ = Nil).
Note that in the above formula ϕ[s] stands for the logical formula,
where previously suppressed situation arguments in fluents are
restored. The applyPol transition further has to be defined for
primitive and stochastic action as well as for conditionals. Due to
changes in the world, it may be the case that action a has become
impossible to execute. In this case, we again abort the rest of the
policy with the successor configuration 〈Nil, s〉. For an if-construct,
which was inserted into the policy due to a stochastic action, we
determine which branch of the policy to choose and go on with
the execution of that branch. If we reach the horizon we have to
stop the execution of the policy, which, if nothing went wrong, has
reached a final configuration by then, i.e. Final(applyPol(p, h), s) ≡
Final(p, s) ∨ h = 0. With the above definitions, we are able to
detect when a policy becomes invalid during execution. As stated
above, currently, we handle invalid policies by simply invoking re-
planning. For the complete definition and thorough discussion of
applyPol as well as of BestDowe refer again to [4].

5.4. On-line passive sensing

To deal with incomplete knowledge about the environment
Golog was extended with sensing actions [52,53]. These spe-
cial actions allow an agent to query its sensors to gather infor-
mation about the environment. This approach has, under certain
circumstances, several drawbacks. When sensor values must be
updated very frequently, acquiring world information through ex-
plicit sensing actions is not feasible. The agent would simply be
overwhelmed with executing sensing actions. Another problem
existswhen off-line planning is interleavedwith on-line execution.
If the plan relies on the on-line information the result of planning
might be inconsistent due to wrong sensing results. So, in general,
with an active sensing approach it is not possible to plan ahead
of sensing actions. What is needed, is a passive sensing approach
which performs updates of the sensor values in the background.
Proposals for passive sensing approaches can be found in [54,44].
Note the difference between active and passive sensing: with a
passive sensing approach, there is no need to explicitly query sen-
sors in the control program. (Here sensors may refer to quite ab-
stract notions such as a robot’s position.) When deliberating, the
robot would use (probabilistic) models of sensor values, and dur-
ing execution these are substituted by the actual values, usually
supplied automatically at regular intervals. Active sensing, on the
other hand, refers to explicit sensing actions which are part of a
control program or plan, and where reasoning usually involves a
costly case analysis of the possible outcomes.
Updating a complete world model in simulated soccer domain,

for example, takes more than 100 ms, which is longer than the
decision cycle in RoboCup’s simulation league. To deal with this
problem, we extended the system architecture proposed in [44]
with an explicit worldmodel. They proposed a system architecture
where the high-level controller starts low-level processes via a so-
called action register. To initiate an action, the high-level controller
sends a command to the register. This command is passed through
to the execution module which in turn cares for the execution of
the action in the real world. From now on, the high-level controller
is no longer concernedwithmonitoring the execution of the action.
This is done asynchronously by the execution layer of the robotic
system. When the execution of the action is finalized, the low-
level control indicates this, by sending a replymessage to the high-
level controller via the action register. The high-level controller
can now react on this specific message. Between a send and a
replymessage the high-level controller could care for other things.
The communication between high-level and low-level system is
realized through a special fluent register and the two actions send
and reply. The high-level controller invokes the low-level process
with a send action, and the low-level process answers with a
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Fig. 5. The extended architecture.

reply message when the low-level process is finished. In Fig. 5 we
present the extended system architecture. As in [44] we use the
special register fluent and themessage passing between high-level
and low-level control. The presence of an explicit world model
extends the architecture. The special action exogfUpdate, which
is sent via the register initiates an update of the world model
of the agent. The shaded arc ‘‘world’’ denotes the connection to
the real world. One should think of this in terms of the layered
system architecture as shown in Section 3, which has access to
the actuators and can gather data from the sensors. The possibility
to asynchronously update sensor values allows for on-line passive
sensing.

5.5. Controllers for the robotic soccer domain

In this section, we present a Readylog example from the soccer
domain. We used the controller code shown below on our Middle-
size robots at several competitions. Fig. 6 shows two of our robots
in action at the 2004 Championships in Japan against the Team
Osaka. As presented in Section 3, the skill module encapsulates
the primitive actions including actions like goto, intercept, dribble,
or shoot. The world model of the soccer robot comprises fluents,
such as the agent’s position, the position of the ball, and the
opponents. All this information comes together with confidences
or visibility flags (which is true if the ball is seen), and come with
two flavors: the agent could query the positions gathered locally
from its sensors, or ask the information from the global world
model. The information coming from the global world model, are
most of the time, more accurate, though, they have some latency.
The robot must also store tactical information, such as its tactical
role. Further, a predicate bestInterceptor calculates which player
is best located to the ball and shall gain control over the ball. In
the following we show an example from our attacking player from
RoboCup’s Middle-size league.

proc attackerBestInterceptor
if scoringSituation then scoreDirectly(own)
else if ¬haveBall then interceptBall(own, fast) endif
endif

5 solve(4, reward,
continueSkill(currentSkill); (haveBall)?; (kickTo(own)
| dribbleAndKick(own)
| dribbleToPoints(own)
| if isKickable(own) then

10 pickBest(angle, {−3.1,−2.3, 2.3, 3.1}, / ∗ in rad ∗ /
(turnRelative(own, angle,medium);
(intercepBall(own, slow); dribbleOrMoveKick(own)
| interceptBall(numberByRole(supporter)
dribbleOrMoveKick(numberByRole(supporter)

15 )/ ∗ end pickBest ∗ /
else
interceptBall(own); dribbleOrMoveKick(own)
| interceptBall(own, 0.0)

endif)/ ∗ end solve ∗ /
20 endproc
Fig. 6. A scene from the RoboCup 2004 against the Osaka team (right-hand side).

In line 5, decision-theoretic planning is initiated using the
reward function reward. The reward function, basically, gives a
high reward for positions in front of the opponent goal, and high
negative reward for situations in front of their own goal. The agent
has the choice of calculating the best action among kickTo (l. 6),
dribbeMoveKick (l. 7), the dribbleToPoint (l. 8), and a multi-agent
plan (ll. 9–14) which we address below. The kickTo action directly
kicks the ball, dribbleMoveKick action combines a dribbling with
a goal shot if possible, dribbleToPoints stands for an action which
lets the agent dribble to certain defined positions on the field.
Fig. 7(a) shows the effect of the kick action (according to its action
model), Fig. 7(b) shows the dribbleMoveKickmodel, while Fig. 7(c)
shows the effect of the multi-agent plan from the lines 9–14 in
the program above.With the pickBest statement, several angles are
chosen, which serves as an argument for the following turn action.
With this turn action, the robot plays a pass to its teammate, which
in turn, plans to intercept the ball and try a goal shot.

5.6. A DT plan library for abstracted plans

Empirical results from several RoboCup competitions showed
that decision-theoretic planning using the above program took
between 0.17 and 2.1 s, with an overall average of 0.5 s. While an
average reasoning time of 0.5 smay be acceptable in robotic soccer,
2 s are probably not because of the high risk that an opponent
will attempt a tackle and intercept the ball. One possibility to
speed up the computation, is to make use of macro actions in the
DT context. The idea is to define a sub-task, calculate an optimal
policy for the sub-task, and use the solution as a primitive action
when solvingmore complex tasks later on.We proposed the use of
such macro actions, or options, in the Readylog framework in [55]
leading to an exponential speed-up in the computation time. For
dynamic domains such as robotic soccer, however, this approach
has some drawbacks, which are mainly related to the fact that
the state space of the MDP has to be enumerated explicitly. To
overcome these problems, we propose calculating policies in an
abstract way, and store these abstract policies in a DT plan library.
Later, when the agent can apply a policy from the plan library, it
has just to instantiate the abstract policy, without the need to plan
from scratch.
The basic procedure to calculate a policy for a macro action is

the following:

(1) Off-line pre-processing
(a) Calculate an abstract policy for each solve statement
occurring in the behavior specification.

(b) Replace each solve statement with its abstract policy in the
specification.
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(a) Direct kick alternative. (b) DribbleMoveKick alternative. (c) Cooperative Play alternative.

Fig. 7. Game situations.
(2) On-line execution
(a) Look up the policy, value, and probability of success for the
option in the plan library.

(b) If the option is not contained in the library, instantiate the
option in the particular situation, and store the value and
the probability of success, together with the current world
state in the library.

An abstract policy is calculated as follows. In a run of the
forward-search value iteration algorithm (Readylog’s DT plan-
ning algorithm), we do not calculate explicit numeric values for
the reward function but keep them as abstract terms. Basically,
we store the whole computation tree for a respective input pro-
gram without optimizing away the agent’s choices. Later, when
instantiating a plan from the plan library, we can establish the
optimal policy, the values and probabilities of all outcomes of
the policy by evaluating this abstract policy. As an example for
an abstract value for a policy, consider the maze domain where
the agent wants to leave the first room through the northern
door. The location at the northern door will have a high value,
as this is the goal of the agent. But instead of calculating the
concrete value, the value function is kept as the term v =
+(−(reward(do(go_up, s))), cost(do(go_up, s))), ·(prob(go_up, up,
s)), . . . . Later, we only have to fill in a concrete world situation to
get the respective value for leaving the room through the northern
door. Similarly, we keep the policy as an abstract term, as well as
the probability of its success. In the source code of our robot con-
trol program, we then replace every occurrence of a solve state-
ment with the name of the macro action. Thus, we can avoid calls
to initiate decision-theoretic planning, just inserting the new ab-
stract policy. When executing an option in a particular situation,
we first query our plan library if for the current world situation an
instantiated policy for the option currently to be executed exists.
If so, we simply take this policy from the library and execute it. If
there does not exist a policy for the option in the current world sit-
uation, we have to generate it. We take the situation independent
abstract policy for the option, and substitute the situation terms
with the actual situation. Similarly, we evaluate the value and suc-
cess probability of the option, given the current world situation.
With a particular situation, we can re-evaluate the precondition
axioms of actions, if-conditions, and nondeterministic choices of
the abstract policy and obtain one fully instantiated policy which
is the same as if we would have calculated it on the fly. To gain
computation speed for the next time when the agent wants to ex-
ecute the option in this particular situation, we store the fully in-
stantiated policy, the value, and the success probability together
with the world state. Thus, the next time the option is to be ex-
ecuted in the very same situation, we simply look up the policy
without the need to calculate anything at all. We remark that the
option concept is different from explanation-based learning [56],
where single examples lead to generalizations. Here we compute
the generalization first and then instantiate it when needed, also
caching the instance for future re-use.
The Readylog code to execute a macro action on-line is

illustrated below. The predicate getState calculates the current
world state based on fluent values as described above. The
predicate get_bestPolicy performs the look-up operation, the
predicate evaluate assesses the abstract plan tree, returning
a fully instantiated policy πs, which is then executed with
execute(πs). The store predicate saves the instantiated policy,
the value, and the success probability together with the current
world situation in the plan library for the next time it is needed.
The action asense is a sensing action, which is executed to sense
the actual state the agent is in, when trying to execute the option.
The logical formula ϕm is a condition which checks if the option is
executable. This condition can be viewed as a precondition for the
option. This precondition is part of the specification of the option,
and must be provided by the user.
getState;
while ϕm do
if DT Plan Library has entry for current state s then
get_bestPolicy(s,DT Plan Library, π);
execute(πs);

else
evaluate(s, AbstractValues, πs);
execute(πs);
store((s, πs, v, pr),DT Plan Library);

endif
execute(asense)

endwhile

Next, we give an example of DT macro actions in simulated
soccer. For restricting the state space of the soccer domain, we
make use of a qualitative world model which abstracts from the
infinite quantitative state space [57]. The playing field is divided
into grid cells, where each cell of a grid contains infinitely many
coordinates. For each of these cells one quantitative representative
(the center of this cell) is provided. Several other useful qualitative
abstractions for the soccer domain are defined in [57].Weused two
macro action, outplay opponent and create good scoring opportunity
in our test runs in the simulation league. The first macro works as
follows: facing attacking opponents, the ball leading agent either
dribbles or passes the ball to a teammate. If the macro action
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(a) Caesar. (b) The front side. (c) The back side.

(d) The middle

Fig. 8. Our service robot Caesar (RoboCup@HomeWorld Champion 2006, 2007) and a map of a local bank building.
chooses the pass, the agent afterwards moves to a free position to
be a pass receiver again. The second action aims to create a good
scoring opportunity to shoot a goal. The agent in ball possession can
dribblewith the ball if the distance to the opponent’s goal is too far.
Near the goal, the agent can shoot directly to the goal or pass to a
teammate that is in a better scoring position. We considered three
strategies: (a) usingDT planning to copewith the task, (b) using the
macro action, but only by evaluating a policy in each step,1 and (c)
using the macro action with the plan library that was generated in
the last step. Using the planning approach, the agent needed 0.1 s
on average to calculate a policy. With the evaluation strategy (b)
only 0.08 s are needed. This is a speed-up compared to planning
of about 20%. The time for off-line computations in this example
was about 0.02 s for each macro. Even taking this pre-processing
time into account our macro approach yields reasonable speed-
ups. Of course, pre-processing more and more complex macro
actions consumes more off-line computation time. But as this
time does not need to be spent on-line, this off-line computation
time can be justified. The macro action based on the plan library
clearly outperforms DT planning. In each test run, for both macro
actions, the executing system constantly returns the minimum of
measurable time of 0.01 s for searching the best plan in the plan
library, which corresponds to a mean time saving of over 90%.

6. Beyond robotic soccer

In the examples above, we concentrated on the soccer domain.
But we applied Readylog also to other domains. One application

1 Each policy evaluated in this step is stored in the plan library, so we can use
this stored knowledge in the next step (c).
domain for Readylog is the service robotics domain (Section 6.1),
the second very demanding application is the interactive computer
game Unreal Tournament 2004 (Section 6.2).

6.1. Service robotics application

Our Readylog approach is very suitable for service robotics
application, because of the easy way, how semantic information
about the environment can be integrated into the control of the
robot. For example, in our engagement in the RoboCup@Home
service robotics competition, we annotate items and furniture of
an home environment with semantic tags [5]. These tags can be
easily integrated into the Readylog high-level controller in order
to navigate to them ormanipulate them. In the following, we show
an example of a simple path planner in Readylog.
Fig. 8 shows the occupancy grid map of a local bank, where the

robot operated as a tour-guide. As in the RoboCup@Home scenario,
several sight-seeing spots which the robot should guide visitors to
can be defined. The nodes of this map are available for Readylog
by the fluentmapNode, and the relations childrenOf (mapNode). The
program the robot thenuses is the procedure pathPlan given below.
In order to find optimal tours, we used the Readylog’s solve and
pickBest statement. Here, the pickBest statement chooses the cost-
optimal next child node in the map.

proc pathPlan(Goal,H)
solve(H, reward_at(goal)
while¬mapNode = goal do
pickBest(child, childrenOf (mapNode), gotoMapNode(child))

endwhile
endproc
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(a) A scene from Unreal Tournament 2004. (b) Readylog code for the game bot.

Fig. 9. Readylog bots for Unreal Tournament 2004.
The action gotoMapNode is, in fact, a procedure which initiates
the robot to drive to the respective coordinate and announce
the exhibit. The reward function for the planning task was quite
simple. At the goal node the robot receives a high positive reward
and zero for all other nodes. When defining a metric on the graph,
and giving discounts for longer edges one easily can ensure that
the robot will take the shortest path to the goal.

function reward_at(goal)
∃v.mapNode = goal ∧ v = 100 ∨mapNode 6= goal ∧ v = 0)

return v

Several other such applications demonstrated the robustness
of our approach. It is also very easy to specify new service
robotics tasks for applications in RoboCup@Home competitions,
for example.

6.2. Readylog game bots

Besides service robotics and soccer application, we also
deployed Readylog in interactive computer games. In particular,
we developed so-called game bots for the interactive computer
game Unreal Tournament 2004 [58], which is a state-of-the-art
interactive computer game. The engine itself is mainly written in
C++, and cannot be modified. On the other hand, the complete
Unreal Script (in the followingUScript) code controlling the engine
is publicly available, and modifiable for each game. For instance,
introducing new kinds of game play such as playing soccer in
teams, or the game of Tetris have been implemented on the basis
of the Unreal Engine. All this can be defined easily in UScript,
a simple, object-oriented, Java-like language which is publicly
available. Several different types of game-play or game modes
have been implemented for this game. The ones relevant for our
work are: (1) Deathmatch, (2) Team Deathmatch, and (3) Capture
the Flag. The idea for the first two types of games is to disable
as many opponent players as possible without getting disabled
oneself. To be successful in this type of game, one has to know
the world, react quickly, and recognize the necessity to make a
strategic withdrawal to recharge. Games where only two players
or bots compete against each other in much smaller arenas are
especially interesting, as one can compare the fitness of different
agents easily in these settings. In the case of Capture the Flag, two
teams try to score by stealing the flag from the opponent’s base.
To win such a game, the players of a team have to cooperate, to
delegate offensive or defensive tasks, and to communicate with
each other. This game type is one that rewards strategic defense
and coordinated offense maneuvers.
In order to develop Readylog game bots, we first had to develop
a framework which allows an agent to receive data from the game
engine, and issue actions such as stop, celebrate, moveto, roam,
attack, charge, moveattack, or retreat. The world model our agents
have, is different from what the built-in bots have available. The
built-in bots are omniscient, that is, they have complete knowledge
of their environment. Our game bots, on the other hand, can only
sense objects visible to them. The world model consists of a large
number of fluents from different categories such as bot parameter
fluents (health status, or armor), and item and bot visibility fluents,
that is, whether or not known items in the environment are visible.
More information about the framework can be found in [59,60].

Readylog has turned out to be well-suited to this kind of
application. To illustrate this, we use an excerpt from our actual
implementation of the deathmatch agent (Fig. 9(b)). Here an agent
was programmed, which chooses at each action choice point,
between the outcomes of a finite set of actions. It has the choice
between collecting a weapon, retreating to a health item, and
so on, based on a given reward function. The main part of the
agent is the non-deterministic choice which represents the action
the agent performs next. It has the choice between roaming
and collecting items, attacking an opponent, or collecting several
specific items. The decision which action to take next is performed
based on the reward of the resulting state. Note also that the
non-deterministic choices are restricted by suitable conditions
attached to each choice. This way many choices can be ruled out
right away, which helps prune the search space considerably. Our
experimental results showed that our Readylog game bots were
competitive with the built-in bots, especially in the Capture-the-
Flag environment. The reason is that, although the built-in game
bots are omniscient, our Readylog agent could react more flexibly
due to its high-level strategy.

7. Conclusion

In this paper, we presented our approach to high-level con-
trol of autonomous robots in dynamic domains. We proposed the
framework Readylog, a robot programming language suitable to
support decision-theoretic planning under uncertainty, macro ac-
tions, continuous change, and sensing. The run-time environment
combines on-line execution with execution monitoring facilities.
We presented examples from the robotic soccer domain, for real
robots as well as simulated agents. Besides these soccer applica-
tions, we also applied Readylog successfully to interactive com-
puter games, as well as tasks in service robotics.
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Currently a robot’s world model and decision making is only
concernedwith user-definedmissions. In the future, wewould like
to extend this also to the robot’s own internal state. This should
allow the robot, for example, to recognize and act upon critical
states, such as localization failures or, more generally, to develop
a sense of self-awareness, which would help the robot to optimize
its behavior.
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