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Abstract

In a recent paper Belle and Lakemeyer proposed the
logicDS, a probabilistic extension of a modal vari-
ant of the situation calculus with a model of belief
based on weighted possible worlds. Among other
things, they were able to precisely capture the be-
liefs of a probabilistic knowledge base in terms of
the concept of only-believing. While intuitively ap-
pealing, the logic has a number of shortcomings.
Perhaps the most severe is the limited expressive-
ness in that degrees of belief are restricted to con-
stant rational numbers, which makes it impossible
to express arbitrary belief distributions. In this pa-
per we will address this and other shortcomings
by extending the language and modifying the se-
mantics of belief and only-believing. Among other
things, we will show that belief retains many but
not all of the properties of DS. Moreover, it turns
out that only-believing arbitrary sentences, includ-
ing those mentioning belief, is uniquely satisfiable
in our logic. For an interesting class of knowledge
bases we also show how reasoning about beliefs
and meta-beliefs after performing noisy actions and
sensing can be reduced to reasoning about the ini-
tial beliefs of an agent using a form of regression.

1 Introduction
Because of its expressiveness, first-order logic (FOL) has
played a key role in knowledge representation and reasoning
since the beginnings of AI [McCarthy, 1963]. Since uncer-
tainty is ubiquitous in many domains like robotics, it seems
natural to combine FOL and uncertainty, mixing both cate-
gorical beliefs and degrees of belief. Such formalisms are
especially useful when reasoning about the beliefs of robots
acting and perceiving in uncertain environments.

In a seminal paper, Bacchus, Halpern, and Levesque
(BHL) [1999] gave a very rich account of dealing with
stochastic actions and noisy sensing as an extension of Re-
iter’s version of the situation calculus [Raymond, 2001]. A
key advantage of BHL’s account is that it allows partial spec-

∗Contact Author

ifications of (subjective) beliefs, depending on what informa-
tion is actually available in a particular domain.

Belle and Lakemeyer (BL) [2017] proposed an alternative
formulation of BHL’s ideas based on a modal variant of the
situation calculus [Lakemeyer and Levesque, 2004], extend-
ing earlier work on static probabilistic beliefs [Belle et al.,
2016]. In contrast to BHL, which is purely axiomatic, BL’s
logic DS comes equipped with a possible-world semantics
together with distributions over worlds. Here a distribution is
defined in terms of an assignment of non-negative numbers to
the possible worlds. An epistemic state is modeled as a set of
distributions and a sentence φ is believed with degree r ini-
tially, roughly, if for each distribution in the epistemic state
the sum of the normalized weights of the worlds that satisfy
φ is r. Beliefs after performing a sequence of actions are
then defined using the notions of action likelihood and obser-
vational indistinguishability, which captures the idea that an
agent may not be able to distinguish between certain actions.

The logic has a number of interesting properties such as
full introspection of beliefs. It also comes equipped with a
notion of only-believing to capture the beliefs of a knowl-
edge base (KB) consisting of a set of sentences with degrees
of belief attached to them. Despite its appeal DS also has
shortcomings. Perhaps the main one is the lack of expres-
siveness when it comes to degrees of belief. Currently, the
language allows to express degrees of belief only as constants
or, more precisely, standard names representing rational num-
bers. However, it is clearly desirable to express that an agent
believes that the values of a random variable are, say, geomet-
rically distributed.1 Likewise, while an epistemic state in DS
consists of a set of distributions, which in principle would
allow an agent to have incomplete information about what
distribution is the correct one, this can also not be expressed.
Considering a running example drawn from from BL (Figure
1), BL allows a formula like B(h = 3: .5) ∧B(h = 4: .5)
to express that the robot believes the distance h to the wall is
3 or 4 with equal degree, yet a geometric distribution with ex-
pectation 2, like ∀u.B(h = u : G(u, 1

2 )), is not expressible in
BL. Similarly, it may be desirable to express that all the agent
believes is that the distribution of the distance to the wall is
geometric with expectation unknown.

1Since the domain ofDS is countable, only discrete distributions
are considered.
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Figure 1: a robot moving towards a wall

Another peculiar aspect of DS is that the beliefs of an
agent depend on properties of the actual world, that is, chang-
ing the world can affect an agent’s beliefs even though no
(sensing) actions have occurred.

Finally, besides these issues, another important missing
piece in BL’s work is the lack of consideration of how to per-
form projection, that is, reasoning about future beliefs in a
dynamic setting.

In this paper, we will address these shortcomings by ex-
tending the language and modifying the semantics of DS.
In particular, this allows us to characterize probabilistic KBs
(using only-believing), where an agent has incomplete infor-
mation about belief distributions. Our main technical result is
a solution to the projection problem by a novel form of regres-
sion. While regression under uncertainty has been considered
in the past, we show, for the first time, how to deal with nested
beliefs and quantifying into beliefs (quantifying-in).

The rest of the paper is organized as follows. In Section 2,
we introduce the syntax and semantics of the new logic called
DS∗. In Section 3, we investigate the properties of the logic.
Regression is presented in Section 4. Finally, we discuss re-
lated work in Section 5 and conclude.

2 The Logic DS∗

2.1 Syntax
DS∗ is a first-order modal language with equality and sorts of
type object and action. Implicitly, we assume that number is
a sub-sort of object and refers to the computable numbers C.2
Logical symbols include the usual symbols {=,∧,∀,¬} and
abbreviations {∃,≡,⊃}, as well as variables of every sort.
There are function symbols of every sort and arity:

fluent function symbols of every arity, such as distance(x),
nextTo(x,y), including two unary special symbols poss, l and
a special binary symbol oi. Roughly, poss specifies when an
action is possible (preconditions), l returns the likelihood of
an action and oi describes the observational indistinguisha-
bility (alternative choices) among actions;

rigid function symbols of every arity, such as sonar(x), in-
cluding arithmetical functions like +,−,×, etc.

While fluent functions may vary due to actions, rigid func-
tions are fixed. For simplicity, all action functions are rigid
and we do not include predicate symbols in the language.

2We use the computable numbers as they are still enumerable
and allow representing distributions mentioning certain real num-
bers such as Euler’s number e.

The language features a countable set of so-called stan-
dard names N , which are isomorphic with a fixed universe
of discourse. Roughly speaking, this amounts to having an
infinite domain closure axiom together with the unique name
assumption. N = NO ∪ NA where NO and NA are object
standard names and action standard names respectively.

The set of terms is the least set which contains the stan-
dard namesN , variables of sort object (u, v, x, y, . . .) and ac-
tion (a, a′, . . .), and if t1, . . . tk are terms, f a k−ary function
symbol, then f(t1, . . . tk) is in the set.

Ground terms are terms without variables. Primitive terms
are terms of the form f(n1, . . . nk), where f is a function
symbol and ni are object standard names. We denote the
sets of primitive terms of sort object and action as PO and
PA, respectively. While object standard names are syntac-
tically like constants, we require that action standard names
are all the primitive action terms, i.e. NA = PA. For exam-
ple, the action sonar(5), where a sonar returns the number
5, is considered a standard action name. For any action term
A(t1, . . . tk),A is referred to as the action type.3 Furthermore
Z refers to the set of all finite sequences of action standard
names, including the empty sequence 〈〉. We reserve standard
names >,⊥ in NO for truth values (to simulate predicates).

The set of formulas is the least set which contains atoms,
(t = t′) where t and t′ are terms, and if α and β are formu-
las, x is a variable, r, ri are rigid terms (terms without fluent
functions) of sort number, ta is of sort action, then ¬α, α∧β,
∀x.α, [ta]α, �α, B(α : r) and O(α1 : r1, . . . , αk : rk) are
in the set.

[ta]α should be read as “α holds after action ta” and �α
as “α holds after any sequence of actions.” The epistemic ex-
pression B(α : r) should be read as “α is believed with prob-
ability r”. Kα means “α is known” and is an abbreviation
for B(α : 1). O(α1 : r1, . . . αk : rk) may be read as “the αi
with a probability ri are all that is believed”. Similarly, Oα
means “α is only known” and is an abbreviation for O(α : 1).
For action sequence z = a1 · · · ak, we write [z]α to mean
[a1] · · · [ak]α. αxt is the formula obtained by substituting all
free occurrences of x in α by t.

A sentence is a formula without free variables. We use
TRUE as an abbreviation for ∀x(x = x), and FALSE for its
negation. A formula with no � is called bounded; a formula
with no � or [ta] is called static; a formula with no B or O
is called objective; a formula with no fluent, � or [ta] outside
B or O is called subjective; a formula with no B, O, �, [ta],
poss, l, oi is called a fluent formula; a fluent formula without
fluent functions is called a rigid formula.

2.2 Semantics
The semantics is given in terms of possible worlds, which
define what is true initially and after any sequence of ac-
tions. Compared to non-probabilistic accounts with deter-
ministic actions [Lakemeyer and Levesque, 2004], a number
of challenges need to be addressed, including how to specify
probabilities over uncountably many possible worlds, how to

3An action type is a set of actions that have the same action sym-
bol but bound to different parameters, e.g. sonar(1), sonar(2) are
of the same action type



deal with multiple probability distributions entertained by the
agent, and how to deal with probabilistic action effects, which
may be unobservable by the agent.

A world w is a mapping from the primitive terms (PO ∪
PA) and Z to N of the right sort, satisfying:

1. Rigidity: If t is a rigid primitive term, then for all
(w, z), (w′, z′), w[t, z] = w′[t, z′];

2. Arithmetical Correctness: If f is an arithmetical ex-
pression and val is its value in the usual sense, then for
all (w, z), w[f, z] = val. For example, w[1 + 1, z] = 2.

We will sometimes also use piecewise rigid functions such as
f(x) = .3 if x ∈ {3, 4, 5} and 0 o.w. We assume that these
are simply built into the logic as well.4

Let W be the set of all such worlds. Free variables are
handled substitutionally by using standard names. We now
define the notion of co-referring standard name for ground
terms. Given a ground term t, a world w, and action sequence
z, we define |t|zw (read: the co-referring standard name for t
given w, z) recursively by :

1. If t ∈ N , then |t|zw = t;
2. |f(t1, . . . tk)|zw = w[f(|t1|zw, . . . |tk|zw), z].

For a rigid term t, we use |t| instead of |t|zw for its denota-
tion. We will require that l(a) is of sort number, poss(a)
and oi(a, a′) only take values > or ⊥, and oi behaves like
an equivalence relation (reflexive, symmetric, and transi-
tive). oi(a, a′) means a and a′ are observationally indis-
tinguishable actions. In the example of Fig. 1, the robot
might perform a stochastic action fwd(x, y), where x is its
intended forward distance and y is the actual outcome se-
lected by nature. x is observable to the robot while y is not.
Then, oi(fwd(1, 1.1), fwd(1, 0.9)) says that nature can non-
deterministically select 1.1 or 0.9 as a result for the intended
value 1.

By a distribution d we mean a mapping from W to C≥0

(non-negative computable numbers) and an epistemic state
e is any set of distributions. By a model, we mean a triple
(e, w, z). In order to prepare for the semantics, we need to ex-
tend l(a), oi(a, a′), poss(a) from actions to action sequences:
Definition 1. We define

1. l∗ :W ×Z → C≥0 as
l∗(w, 〈〉) = 1 , for every w ∈ W;
l∗(w, z · a) = l∗(w, z)× n where w[l(a), z] = n;

2. z ∼w z′ as
〈〉 ∼w z′ iff z′ = 〈〉;
z · a ∼w z′ iff z′ = z∗ · a∗, z ∼∗z,
oi(a, a∗), z] = >;

3. exec(z) as

for z = 〈〉, exec(z) ≡ TRUE;
for z = z′ · a, exec(z) ≡ poss(a) = > ∧ [a]exec(z′).

Obviously, ∼w is an equivalence relation. Since W is
uncountable, to obtain a well-defined sum over uncountably
many worlds, the following three conditions are used for eval-
uating beliefs below:

4Alternatively, one could add them as additional assumptions
whenever needed.

Definition 2. We define BND, EQ,NORM for any distribution
d and any set V = {(w1, z1), (w2, z2), . . .} as follows:

1. BND(d,V, n) iff ¬∃k, (w1, z1), . . . , (wk, zk) ∈ V such
that

∑k
i=1 d(wi)× l∗(wi, zi) > n.

2. EQ(d,V, n) iff BND(d,V, n) and there is no n′ < n such
that BND(d,V, n′) holds.

3. for any U ⊆ V, NORM(d,U ,V, n) iff ∃b 6= 0 such that
EQ(d,U , b× n) and EQ(d,V, b).

Intuitively, given NORM(d,U ,V, n), n can be viewed as
the normalized sum of the weights of worlds in U wrt d in
relation to V . Here EQ(d,V, b) expresses that the weight of
the worlds wrt d in V is b, and finally BND(d,V, b) ensures
the weights of worlds in V is bounded by b. In essence, even
ifW is uncountable, the condition EQ and BND admit a well-
defined summation of the weights on worlds. See [Belle et
al., 2016] for a formal justification of this claim.

The truth of sentences in DS∗ is defined as:
• e, w, z |= t1 = t2 iff |t1|zw and |t2|zw are identical;
• e, w, z, |= ¬α iff e, w, z 6|= α;
• e, w, z |= α ∧ β iff e, w, z |= α and e, w, z |= β;
• e, w, z |= ∀x.α iff e, w, z |= αxn for every standard name
n of the right sort;

• e, w, z |= [ta]α iff e, w, z · n |= α and n = |ta|zw;
• e, w, z |= �α iff e, w, z · z′ |= α for all z′ ∈ Z .
To prepare for the semantics of epistemic operators, let

We,z
α = {(w′, z′) | z′ ∼w′ z, and e, w′, 〈〉 |= [z′]α ∧

exec(z′)}. If z = 〈〉, we writeWe
α and if the context is clear,

we writeWα. Intuitively,Wα is the set of alternatives (world
and action sequence pairs) of z that might result in α.

Finally, after actions, we will restrict ourselves to compat-
ible epistemic states that agree on action likelihood:
Definition 3. A distribution d is compatible with action se-
quence z, d ∼comp z iff NORM(d,W{d},zTRUE,W

{d},z
TRUE, 1); A dis-

tribution d is regular iff d ∼comp 〈〉.
Essentially, there are two cases where a distribution d

may be incompatible with an action sequence z. First,
EQ(d,W

{d},z
TRUE, 0), i.e. z has zero-likelihood in d. Second,

¬BND(d,W
{d},z
TRUE, r) for all r. This may happen, for example,

if d assigns equal weights to all worlds inW . Distributions of
this sort are called unmeasurable [Belle et al., 2016]. Regular
distributions are just the measurable ones.

Let (e, w, z) be a model and ez = {d|d ∈ e, d ∼comp z}.
We are now ready to define the semantics of B and O:

• e, w, z |= B(α : r) iff
∀d ∈ ez , NORM(d,W{d},zα ,W{d},zTRUE, n) and n = |r|;

• e, w, z |= O(α1 : r1, . . . , αk : rk) iff ∀d, d ∈ ez iff
NORM(d,W{d},zαi ,W{d},zTRUE, ni) for all 1 ≤ i ≤ k where
ni = |ri| .

For any sentence α, we write e, w |= α instead of e, w, 〈〉 |=
α. When Σ is a set of sentences and α is a sentence, we write
Σ |= α (read: Σ logically entails α) to mean that for every
set of regular distributions e and w, if e, w |= α′ for every



α′ ∈ Σ, then e, w |= α. We say that α is valid (|= α) if
{} |= α. Satisfiability is then defined in the usual way. If α
is an objective formula, we write w |= α instead of e, w |=
α. Similarly, we write e |= α instead of e, w |= α if α is
subjective.

2.3 Comparison with DS
The language of DS differs slightly from DS∗ in that DS
considers fluent predicates instead of fluent functions. More-
over, while in DS every closed term is a standard name,
we follow [Lakemeyer and Levesque, 2011], who use spe-
cial standard names for objects and actions. The semantic
structures in both logics are essentially the same, consisting
of worlds, sets of distributions over worlds serving as epis-
temic states, and action sequences. Our use of rigid mathe-
matical functions, which are not considered in DS, is similar
to theR-interpretation in [Belle and Levesque, 2018].

Since the semantic rules for B and O in both logics are
similar, but differ in important details, it is instructive to re-
view their definitions in DS. The main difference lies in how
Wα is defined and used. DS uses the notion of compat-
ibility between worlds: w′ ≈oi w iff for all a, a′ and z,
w′[oi(a, a′), z] = w[oi(a, a′), z], that is, w′ is compatible
with w if they agree on the values of oi. Wα in DS is then
defined wrt. triples e, w, z: We,w,z

α = {(w′, z′) | z′ ∼w′

z, w′ ≈oi w, and e, w′, 〈〉 |= [z′]α ∧ exec(z′)}. Note that
worlds in We,w,z

α agree with w wrt. observational indistin-
guishability. Belief is then defined as e, w, z |=DS B(α : n)
iff ∀d ∈ e (not ez) ,NORM(We,w,z

α ,WTRUE, n) for constant
n (and similarly for O).

The first thing to note is that our semantics of B (and O) is
independent of the real word, while DS is not. In particular,
the truth of B(α : n) depends on both e and w because of the
definition ofWe,w,z

α . As a result, even if e is kept fixed, once
w changes, beliefs can vary. For example, consider a fluent
lightOn, which indicates whether a light is on or off. In DS,
using functions as in DS∗ instead of predicates, we obtain:

Example 1. Let Σoi be �oi(a, a′) = > ≡ lightOn =
⊥ ∨ lightOn = > ∧ a = a′. 5 Let w,w′ be two worlds such
that w |=DS lightOn = > and w′ |=DS lightOn = ⊥. Ad-
ditionally, suppose e, w |=DS KΣoi and e, w′ |=DS KΣoi.
Then it follows that e, w |=DS K(lightOn = >) and
e, w′ |=DS K(lightOn = ⊥).

In English: Σoi says actions are mutually distinguishable
if the light is on. There are two worlds w,w′ where the light
is on and off, respectively. The agent with epistemic state e
knows Σoi in both worlds. Then it follows that in world w the
agent knows that the light is on while in w′ the agent knows
that the light is off. This seems counter-intuitive, especially
since the agent has not performed any actions.

This is the main reason why in DS∗ the definition ofWα

does not refer to the real world. We remark for the same rea-
son we require the r in B(α : r) to be rigid and hence world-
independent (and similarly for O). But note that r can oth-

5Free variables are implicitly universal quantified outside. The
modality � has lower syntactic precedence than the connectives, and
[·] has the highest priority.

erwise be an arbitrary mathematical function, allowing us to
express things like distributions as in ∀u.B(h = u : G(u, 1

2 )).
Lastly, notice that in the definition of B and O, we use

W{d},zα instead of We,z
α (or We,w,z

α as in DS∗). While this
makes no difference when it comes to believing objective sen-
tences, it does impact beliefs about beliefs in important ways,
in particular introspection, as discussed below. Perhaps the
greatest benefit of this change is that only-believing a sen-
tence becomes uniquely satisfiable in DS∗. Among other
things, this allows us to model agents which are unsure about
their beliefs. For example, if p is an atomic sentence, then
O(B(p : .3) ∨B(p : .4)) is satisfied by the set of all regular
distributions where the degree of belief in p is either .3 or .4.
Yet, in DS the above sentence is unsatisfiable.

3 Properties of Belief and Only-believing
The new logic shares many properties withDS like additivity,
and the Barcan formula. Formally, we have:

Proposition 1. for any formula α, β and rigid terms r, r′, r′′:

1. If |= �(α = β) then |= (B(α : r) ≡ B(β : r));

2. |= �(B(α ∧ β : r) ∧B(α ∧ ¬β : r′) ⊃ B(α : r + r′));

3. |= �(B(α : r) ∧B(β : r′) ∧B(α ∧ β : r′′)
⊃ B(α ∨ β : r + r′ − r′′));

4. |= �(Kα ∧K(α ⊃ β) ⊃Kβ);

5. |= �(∀xKα ⊃K∀xα);

6. |= �(∃xKα ⊃K∃xα).

Introspection, which is valid in DS, is not valid in DS∗ in
general. However, as we will see below, it does hold under
certain assumptions.

3.1 Introspection
In the static case, for positive introspection, we have:

Theorem 1. For any α and r, |= B(α : r) ⊃K (B(α : r)).

Negative introspection like ¬B(α : r) ⊃ K (¬B(α : r))
does not hold. For example, let {d1} |= B(α : r) and
{d2} 2 B(α : r), then for e = {d1, d2}, we have e |=
¬B(α : r). Yet, e 2 K¬B(α : r) due to W{d1}¬B(α : r) = ∅
and NORM(d1,W{d1}¬B(α : r),W

{d1}
TRUE, 0).

Besides, �(B(α : r) ⊃ K(B(α : r)) is not valid in gen-
eral. This is because we allow worlds with different observa-
tional indistinguishability in Wα, and as pointed out in DS,
the consistency of observational indistinguishability between
worlds and actions inWα (≈oi) are crucial for introspection.
However, when oi is rigid, positive introspection holds.

�oi(a, a′) = > ≡ ψ (1)

where ψ is a rigid formula. Then we have:

Theorem 2. Let Σoi be as above. Then for any α and r,
K(Σoi) |= �B(α : r) ⊃K (B(α : r))



Let us now consider a case where negative introspection
also holds. By a belief distribution we mean the joint dis-
tribution of a finite set of random variables. Formally, as-
suming a finite set of nullary fluents ~h = {h1, . . . hm},6
a belief distribution Bf

init of ~h is a formula of the form
∀~u.B(~h = ~u : f(~u)) , where ~u is a set of variables, ~h = ~u
stands for

∧
hi = ui, f is a rigid function of sort number

with free variables ~u. Taking our robot example, a belief dis-
tribution might be Bf

init (for the single fluent h), where f is
given by

f(u) =

{
1
3 u ∈ {3, 4, 5}
0 o.w.

(2)

Such belief distributions will play an important role later.

Lemma 1. Let Bf
init be a joint belief distribution and α a

subjective static formula whose fluents are all in Bf
init, then

Bf
init |= α or Bf

init |= ¬α.

The proof is by induction on the size of formula α. The
lemma says, roughly, that Bf

init determines completely what
the agent believes and does not believe.

Theorem 3. For any α, r, let Bf
init be a belief distribution of

fluents in α and Σoi as before:

• Bf
init |= ¬B(α : r) ⊃K(¬B(α : r));

• Bf
init ∧K(Σoi) |= �¬B(α : r) ⊃K(¬B(α : r)).

The first part holds as a direct consequence of Lemma 1:
once an epistemic state satisfies Bf

init and ¬B(α : r), then
all distributions considered must satisfy ¬B(α : r), hence
K(¬B(α : r)) is satisfied. The proof of the second is rather
similar to its counter-part of the positive introspection.

3.2 Only-believing
Let us now turn to the notion of only-believing, which is in-
tended to capture the beliefs of an agent’s probabilistic KB.

Proposition 2. Let αi be arbitrary sentences and ri arbitrary
rigid terms of sort number, we have

1. |= O(α1 : r1; . . . αk : rk) ⊃
∧
B(αi : ri);

2. |= O(α : r) ⊃ ¬B(h(~n) = m : r′) for all r, r′, and α,
where ~n and m are std. names and h is a fluent not in α;

3. |= O(α1 : r1;α2 : r2) ≡ O(B(α1 : r1) ∧B(α2 : r2)).

The second part says that the agent has no beliefs about
things not mentioned in the KB. Note that this is not true if O
is replaced by B. The third part says only-believing reduces
to only-believing a single subjective sentence with certainty.

Theorem 4 (Unique Model Theorem). For arbitrary αi and
ri, there is a unique set of regular distributions e such that
e |= O(α1 : r1; . . . αk : rk).

6As discussed in [Belle and Levesque, 2018], allowing fluents
with arguments would result in joint distribution over infinitely
many random variables, which is generally problematic in proba-
bility theory.

Proof. Let e = {d |NORM(d,W{d}αi ,W
{d}
TRUE, ni), ni = |ri|,

1 ≤ i ≤ k}. Clearly e |= O(α1 : r1; . . . αk : rk), and there
cannot be any other e with that property.

While only-believing is always uniquely satisfied by an e,
it may be the case that e is empty. For example, ∅ |= O(p ∧
¬p : .6) and ∅ |= O(O(p)). For the latter this is because no
single distribution only-believes p.

Corollary 1. |= O(α : r) ⊃ B(β : r′) or |= O(α : r) ⊃
¬B(β : r′) for arbitrary α, β and all r, r′.

We remark that in DS the unique-model property for O
only holds for objective sentences. In the case of non-
objective sentences, there may be multiple epistemic states
that only-believe them or none at all. For example and as
mentioned earlier, O(B(p : .3)∨B(p : .4)) is not satisfiable
in DS. Such feature makes DS∗ much more expressive than
DS and many other probabilistic formalism. For example,
O(∃x.∀u.B(h = u : G(u, x))) says the agent only-believes
that the distance is geometricly distributed.

4 Reasoning by Regression
An important reasoning task for the agent is to determine
what holds after actions. Regression is a powerful technique
to solve this problem by transforming a query about the fu-
ture to a query about the initial state [Raymond, 2001]. In
this section, we first introduce the notion of basic action the-
ories (BATs) that are required for regression. Thereafter, we
explore how regression works in the setting of beliefs.

4.1 Basic Action Theories
BATs were first introduced by Reiter [2001] to encode the
effects and preconditions of actions. In a dynamic uncertain
setting, BATs additionally have to specify the observational
indistinguishability among actions and likelihoods of actions.
Formally, given finite action types A1, . . . Ak, Σ = Σpre ∪
Σpost ∪ Σoi ∪ Σl consists of the union of these sets:

• Σpre: A set consisting of a single axiom of the form
�poss(a) = > ≡

∨
i ∃~xi.a = Ai(~xi) ∧ πi to character-

ize action preconditions.

• Σpost: A set of successor state axioms, one for each flu-
ent, of the form �[a]h = u ≡

∨
i ∃~xi.a = Ai(~xi) ∧

γi ∨
∧
i ∀~xi.a 6= Ai(~xi) ∧ h = u to characterize action

effects, also providing a solution to the frame problem
[Raymond, 2001].

• Σl: A single axiom of the form �l(a) = q ≡
∨
i ∃~xi.a =

Ai(~xi) ∧ φi to capture action likelihoods.

Here πi, γi, φi are fluent formulas with free variables
among ~xi. γi (respectively, φi) has free variable u (q) and
are functional in u (q). Moreover, Σoi consists of a single
axiom as in Eq. 1, which forces oi to be rigid (Σoi is also in
form of disjunctions wrt action types A1, . . . Ak).

Example 2. In our robot example, besides the stochastic ac-
tion fwd(x, y), assume the robot can perform a noisy sensing
sonar(z) to locate itself, where z denotes the observed value



of sonar. Then the following is a possible BAT:

�poss(a) = > ≡ TRUE

�[a]h = u ≡ ∃x, y.a = fwd(x, y) ∧ u = h− y
∨ ∀x, y.a 6= fwd(x, y) ∧ h = u

�oi(a, a′) = > ≡ ∃x, y, z.a = fwd(x, y) ∧ a′ = fwd(x, z)

∨ a = sonar(z) ∧ a′ = a

�l(a) = q ≡ ∃x, y, z.a = fwd(x, y) ∧ q = θ(x, y, .1, .8)

∨ a = sonar(z) ∧ q = θ(z, h, .2, .6), where

θ(x, y,m, n) =

{
m |x− y| = 1
n x = y
0 o.w.

In English: actions are always executable; distance h can
only be affected by fwd(x, y) and the value is determined
by value y, not the intended value x; two actions are obser-
vationally indistinguishable if and only if they are both for-
ward actions with the same intended value or they are identi-
cal sensing action; action likelihood is specified by θ.

4.2 Regressing Objective Formulas
The regression of objective formulas is similar to [Claßen,
2013]. A formula where each quantifier has a distinct variable
is called rectified. Let TΣ be the set of action terms that can
be generated by the finite action types of BAT Σ, i.e. TΣ =
∪i{Ai(~r)|~r are standard names or variables}. In the rest of
the paper, action terms and action sequences refer to terms in
TΣ and sequences in (TΣ)∗.

An objective formula is called regressable if it is bounded,
rectified and every function fluent has the form h = r′, where
r′ does not mention any fluent. In addition every poss and
oi is of the form poss(t) = >, oi(t, t′) = > s.t. t, t′ ∈ TΣ.7
Apart from being bounded, all other syntactic restrictions on
regressable formulas are only introduced for convenience in
order to simplify the following definition. Unbounded for-
mulas such as �α are not regressable because � represents
an infinite number of action sequences.

We define R[α], the regression of α wrt Σ, to be R[〈〉, α],
with R[z, α] for any action sequence z ∈ (TΣ)∗ defined as:

• R[z, α] = α if α is rigid;

• R[z,¬α] = ¬R[z, α], and similarly for ∧,∀;
• R[z, [Ai(~r)]α] = R[z ·Ai(~r), α];

• R[z, poss(Ai(~r)) = >] = R[z, (πi)
~xi

~r ], πi is from
Σpre’s RHS, and similarly for l and oi;

• R[z, h = r′] is defined inductively:

1. R[〈〉, h = r′] = (h = r′);
2. R[z · Ai(~r), h = r] = R[z, (γi)

~xi,u
~r,r′ ], where γi is

from Σpost’s RHS.

Note that R[α] always results in a fluent formula if α is re-
gressable.

7It is easy to see that every formula can be rewritten this way,
e.g. |= h = h′ ≡ ∃x.h = x ∧ h′ = x, for fluents h, h′.

Theorem 5 (Regression Theorem). Let D be a set of fluent
sentences (describing the initial state), Σ a BAT, α a regress-
able sentence. Then D ∪ Σ |= α iff D |= R[α].

The proof follows the same argument as the proof a corre-
sponding theorem in [Claßen, 2013]. As an illustration, con-
sider the BAT Σ of the robot example. R[[fwd(1, 1)]h =
10] = (h = 9). So to determine whether [fwd(1, 1)]h = 10
is entailed by some D ∪Σ, we only need to check whether D
entails h = 9.

4.3 Regressing Beliefs
To reason about future beliefs, besides basic action theories,
we need to specify what is believed initially. By the notion of
a belief distribution, our initial KB is expressed via a single
sentence of the form O(Bf

init ∧ Σ), where Bf
init is a belief

distribution of fluents mentioned by BAT Σ.
The regression operator now takes a single belief distribu-

tion Bf
init as a parameter, namely R[Bf

init, z, α].
A formula is called regressable wrt Bf

init if all fluents are
mentioned in Bf

init, it does not mention O, and otherwise
satisfies the constraints for objective regressable formulas.

Taking the Bf
init of the robot example (see Eq. 2), [fwd(1,

1)]K(h = 1) and [sonar(2)]K([fwd(1, 1)]B(h = 3: 1
2 ))

are regressable, while �K(h = 1) and B(h = h′ : .6), are
not, assuming h, h′ are fluents. If the context is clear, we
leave out Bf

init. Given a BAT Σ and z = t1 · t2 · . . . · tk where
ti ∈ TΣ, if Bf

init is compatible with z,Σ (Def. 4 below), the
regression of belief is defined as:

R[z,B(α : r)] = (r = 1
η

∑
~u f(~u)

∑
z′∈Ψ T[z′, ~u]I(~u,R[z′, α]))

where η is the normalizer, which has the same form as the
numerator but replacing α with TRUE,

∑
z′∈Ψ is an abbrevia-

tion of
∑
t′1∈{t′′1 | |=ψ1} . . .

∑
t′k∈{t

′′
k | |=ψk}, and ψi is the RHS

of Σoi instantiated by ti and t′′i . z′ = [t′1] . . . [t′k]. ~u ranges
over (NO)m where m is the number of fluents and t′i ranges
over NA.8

T[z, ~u] is recursively defined as:

1. T[〈〉, ~u] = 1;

2. T[z · t, ~u] = LH(z, t, ~u)× T[z, ~u],

Where I(~u, α) = IF α
~h
~u THEN 1 ELSE 0, LH(z, t, ~u)

= λ(R[z, l(t) = qt]
~h
~u) and λ is a function that extracts the

value of qt after regression. Essentially LH(z, t, ~u) returns
the likelihoods of action t after action sequence z, T[z, ~u] re-
turns the likelihoods of z when the initial state satisfies~h = ~u,
and I(~u, α) indicates whether α follows from the initial state
~h = ~u. For space reasons, we leave out the details of how to
specify λ, but the ideas are essentially the same as in [Belle
and Levesque, 2020]. See the regression ex. below.

Definition 4. Belief distribution Bf
init is compatible with

z,Σ iff |=
∑
~u f(~u)×

∑
z′∈Ψ (T[z′, ~u]) 6= 0.

8Note that summation is treated here like any other rigid mathe-
matical function for simplicity. It can be defined using second-order
logic as shown in [Belle and Levesque, 2018], for example.



Basically, f is compatible with z,Σ if and only if z has
non-zero likelihood under f and Σ. In case Bf

init is not com-
patible with z,Σ, we define: R[z,B(α : r)] ≡ TRUE

Theorem 6. Let D,Σ,Bf
init be as before, then for all re-

gressable formulas α,
D ∪ Σ ∪O(Bf

init ∧ Σ) |= α iff D |= R[α].

Example 3. Let Σ be as in Ex. 2 and Bf
init as in Eq. 2. Then

O(Bf
init ∧ Σ) |=

[fwd(1, 2)]B(h = 2 ∧ [sonar(3)]∃x.B(h = x : 5
8 ) : 3

10 )

R[fwd(1, 2),B(h = 2 ∧ [sonar(3)]∃x.B(h = x :
5

8
) :

3

10
)]

≡ 3

10
=

1

η

∑
u,y

f(u)

 T[fwd(1, y), u]×
I(u,R[fwd(1, y), h = 2

∧[sonar(3)]∃x.B(h = x : 5
8 )])


≡ 3

10
=

1

η

∑
u,y

f(u)

(
θ(1, y, .1, .8)×
I(u, h− y = 2)

)
≡ 3

10
=

1

η
× .3 ≡ TRUE

The first equivalence is because Σoi declares an observational
indistinguishability among fwd(x, y) for all y.

Note that LH(〈〉, fwd(1, y), u) = θ(1, y, .1, .8) and LH
(fwd(1, y), sonar(3), u) = θ(3, u− y, .2, .6):

R[fwd(1, y), l(sonar(3)) = qt]

≡R[fwd(1, y), qt = θ(3, h, .2, .6)]

≡R[fwd(1, y),∃u′.h = u′ ∧ qt = θ(3, u′, .2, .6)]

≡∃u′.h = u′ + y ∧ qt = θ(3, u′, .2, .6)
Therefore λ(∃u′.u = u′ + y ∧ qt = θ(3, u′, .2, .6)) =

θ(3, u − y, .2, .6)). The second equivalence is because
R[fwd(1, y), [sonar(3)]∃x. B(h = x : 5

8 )] (denoted as
R[IN]) returns TRUE in the same vein as the outer regression:

R[IN] ≡ ∃x.R[fwd(1, y) · sonar(3),B(h = x :
5

8
)]

≡∃x.5
8

=
1

η′

∑
u,y′

f(u)

(
θ(1, y′, .1, .8)θ(3, u− y′, .2, .6)

I(u, h− y′ = x)

)

≡

 ∃x.x = 2 ∧ 5
8η
′ = .06∨

x = 3 ∧ 5
8η
′ = .2 ∨ x = 4 ∧ 5

8η
′ = .06∨

x 6= 2 ∧ x 6= 3 ∧ x 6= 4 ∧ 5
8η
′ = 0


≡∃x.x = 3 ≡ TRUE

Here, the second line holds because I(u, h− y′ = x) is non-
zero only if u − y′ = x and θ(3, u − y′, .2, .6) is non-zero
only if u − y′ is among {2, 3, 4}. The third line is due to
η′ = .32 by computation. Hence |= R[IN] and moreover |=
R[fwd(1, 2),B(h = 2∧ [sonar(3)]∃x.B(h = x : 5

8 ) : 3
10 )],

By Theorem 6, O(Bf
init ∧ Σ) |= [fwd(1, 2)]B(h = 2 ∧

[sonar(3)]∃x.B(h = x : 5
8 ) : 3

10 ).

5 Related Work
Our logic builds onDS [Vaishak and Gerhard, 2017], a modal
logic of degrees of belief based on a modal variant of the sit-
uation calculus [Lakemeyer and Levesque, 2011]. In particu-
lar, our logic allows to express belief distributions, while the

degree of belief in DS is restricted to numbers. BHL define
Bel via a special fluent p and belief distributions can be ex-
pressed axiomatically, but they leave the question of how to
represent an agent’s KB open.

The concept of only-believing to capture the beliefs of a
KB was first introduced by Levesque [1990], from which the
version inDS derives. Only-believing without full introspec-
tion was studied in [Humberstone, 1987].

Reasoning about knowledge and probability has been ad-
dressed in many domains: in computer science [Nilsson,
1986; Fagin and Halpern, 1994] , in game theory [Monderer
and Samet, 1989; Aviad and Philippe, 2001] among others
[Halpern, 2003]. The work of [Fagin and Halpern, 1994] is
at the heart of BHL and this work. Most recently, [Belle and
Levesque, 2018] reconsiders the BHL framework and extends
it to continuous domains.

In terms of belief regression, our ideas are inspired by
[Belle and Levesque, 2014b], an extension of [Belle and
Levesque, 2013a; Belle and Levesque, 2013b] where regres-
sion is proposed for the BHL framework. What distinguishes
us perhaps most is that our regression operator works for
meta-beliefs as well.

The main challenge of regression in stochastic domains is
how to address noisy sensor and effectors. This has been stud-
ied in standard probabilistic frameworks [Fox et al., 2003;
Thrun et al., 2005; Boyen and Koller, 1998], and in symbolic
programming [Boutilier et al., 2001; Boutilier et al., 2000].

6 Conclusions
We proposed a logic of belief for the specification of very ex-
pressive KBs in uncertain dynamic domains. Our main result
is a novel form of regression which applies to beliefs about
beliefs, including quantifying-in. We remark that, while our
result assumes a single initial belief distribution, we believe
that it can be extended to multiple distributions.

For future work, projection by progression, that is, by
modifying the initial beliefs, is an interesting avenue. Ex-
isting work on progression like [Belle and Lakemeyer, 2011;
Belle and Levesque, 2014a] may be a good starting point. An-
other direction would be to use the logic for the verification
of belief programs [Belle and Levesque, 2015].
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