
Using BPEL Process Descriptions for

Building up Strategic Models of
Inter-Organizational Networks

Dominik Schmitz1, Gerhard Lakemeyer1, Günter Gans1, and Matthias Jarke12

1 RWTH Aachen, Informatik V, Ahornstr. 55, 52056 Aachen, Germany
2 Fraunhofer FIT, Schloss Birlinghoven, 53754 Sankt Augustin, Germany

{schmitz,lakemeyer,gans,jarke}@cs.rwth-aachen.de

Abstract. In previous work, we proposed the prototype environment
SNet for the representation and dynamic evaluation of agent-based de-
signs for inter-organizational networks. A key feature of SNet is the au-
tomatic translation of extended i* models into the action language Con-
Golog. An issue we have not yet considered is how to arrive at the foun-
dational and hopefully realistic i* model. Currently there is no support
to incorporate information from already existing descriptions of business
processes in an enterprise. BPEL is expected to play an important role
in the future by enabling interoperability of different partners’ business
processes – not only in the web service domain. Once standardized a
wide-spread availability of BPEL-based process descriptions can be ex-
pected. In this paper we suggest how to map BPEL descriptions into
i* descriptions, thus opening the door to generating SNet simulations of
business processes from BPEL descriptions.

1 Introduction

In previous work, we proposed the prototype environment SNet to model strate-
gic inter-organizational networks, which are comprised of human, organizational,
and technological actors [1]. A crucial aspect of these networks are the interde-
pendencies among the various actors, which result, for example, from the need to
delegate certain activities, which in turn requires a certain level of trust between
the (human) members of the network. The agent-based graphical modeling lan-
guage i* [2], which was developed for early requirements engineering, has proven
to be particularly suitable as a modeling means in this context, because it ex-
plicitly deals with dependency relations, besides other notions like actors, goals,
resources, and tasks. To capture the dynamic aspects of agent networks we pro-
posed to amalgamate i* and the action formalism ConGolog [3]. To bridge the
gap between the two formalisms we extended i* by features to describe task
preconditions and effects. These extended i* diagrams are automatically trans-
lated into executable ConGolog programs, supported by the metadata manager
ConceptBase [4]. Running simulations for different scenarios within a network is
useful for analyzing its properties and can provide the foundation of a decision-
support tool for network members.



In recent work [5] we introduced a decision-theoretic planning component for
each network representative to run even more realistic simulations and improved
the modeling facilities among other things by introducing a role concept [6]. The
main current research effort concentrates on a closer contact with the real world:
in [6] we considered already a real world entrepreneurship network. In this pa-
per, we investigate now the possibility to use BPEL (Business Process Execution
Language for Web services) [7] process descriptions as a starting point for build-
ing up the detailed i* model we need for analyzing strategic inter-organizational
networks. The consideration of BPEL process descriptions results from the in-
sight that it is very unlikely that a modeler will start the modeling of an inter-
organizational network and the processes therein from scratch. He will base his
work on existing process models and more general all experiences he has had so
far.

Although BPEL is not undisputed (see [8],[9] for competing efforts) it must
be considered as the most promising candidate for describing business processes
– esp. in an inter-organizational setting – in a standardized way. Additionally
there are already suggestions to combine agent technology and web services to
finally realize the promise of a virtual enterprise [10]. Once the standardization
effort is successful and if the trend towards web services continues this leads
to the expectation that in the near future many business software products
will be able to produce BPEL descriptions as an output. Thus providing an
interface to BPEL is a natural step to support building up realistic i* models of
an inter-organizational setting and the first step to incorporate already existing
information on business processes in an enterprise in a systematic way. In this
paper, we suggest how to map BPEL descriptions into the i* model. The goal is to
eventually turn this into a completely formal mapping which can be automated.

The rest of the paper is organized as follows. In Sect. 2 we introduce our
SNet simulation and modeling tool. In the following section (Sect. 3) we provide
a short introduction into the usage of BPEL. The main contribution is then
presented in Sect. 4 where we describe how and which parts of BPEL process
descriptions can be mapped to extended i*. After shortly discussing some related
work Sect. 5 ends the paper with a conclusion and a brief outlook on future work.

2 The Modeling and Simulation Environment SNet

2.1 The Architecture of the SNet Tool

We base our modeling and simulation environment SNet for inter-organizational
networks on a combination of two formalisms: i* – a graphical modeling language
originally intended for describing early requirements – for statically modeling the
network and ConGolog – a logic-based high-level programming language – for
simulations so that dynamic aspects such as trust can be analyzed. We take
an agent-oriented view in that each actor of an inter-organizational network
is represented by a deliberative agent. We will discuss the features of the two
formalisms in more detail later on. First we give a short overview of their overall
interplay. The SNet architecture is depicted in Fig. 1.



Concept
Base

OME/
i*

Telos

SNet Simulation
Viewer

Congolog
Interpreter

adaptations

available
models

real world

modeled world

User User

store

analyze

transformation

future:
store simulations

refinement

Fig. 1. SNet Architecture

We use OME3 (Organization Modeling Environment) – a graphical model
editor developed at the University of Toronto [11] – to build up static models of
inter-organizational networks in the modeling language i* [2]. The semantics of
i* is defined in the knowledge representation language Telos [12] which is also
the formalism underlying ConceptBase [4], a deductive metadata repository. The
ConceptBase query-language can be used for static analyses and especially for
the transformation into ConGolog. The execution of the resulting ConGolog
program is shown in a step by step view by the simulation viewer, which also
provides access to control the simulation run, i. e. the user creates scenarios by
simulating the pro-activity of network members and investigates how this and
resulting delegations affect relationships (especially trust). Conclusions derived
by the user from such simulations might lead to modifications of the model or
scenario conditions which provide the basis for new simulation runs.

2.2 An Extended Version of i*

The i* framework is a graphical language and includes the strategic dependency
(SD) model for describing the network of relationships among actors and the
strategic rationale (SR) model, which, roughly, describes the internal structure
of an actor in terms of tasks, goals, resources, etc. Compared to Yu’s original
formulation we added a few new features to SR models such as task precondi-
tions. Figure 2 shows part of an extended SR model from the entrepreneurship
domain with a focus on the roles Venture Capitalist, Entrepreneur, and Faculty
Member.

The venture capitalist’s task choose promising entrepreneur is decomposed
into three subtasks, which are ordered using sequence links (an easy to use form
of a task precondition). The task suggest business idea is delegated to the actor
Entrepreneur. Goals like ask evaluation provide a means to specify alternatives
from which the instantiated agent (respectively represented network member)



role

faculty
memberevaluation

do

decomposition

sequence

means−ends

contribution

goal

Legend

task

report
quality

entre−
preneur

idea
business
suggest

evaluation
do

venture
capitalist

decide

evaluation
ask

choose

entrepre.
promising

30 70

softgoal

Fig. 2. Modeling in i*/SNet

can choose at run-time. In this example the venture capitalist can choose to do
the evaluation himself or delegate this to a Faculty Member. Softgoals are used to
specify the criteria on which the deliberative component bases its decision, e. g.
report quality. Tasks can have preconditions and effects, represented by their own
model element denoted as a triangle (but not occurring in the example above),
and produce or consume resources.

2.3 Mapping the i* Model to a ConGolog Program

ConGolog based on the situation calculus [13] is a language for specifying com-
plex actions (high-level plans). For this purpose constructs like sequence, pro-
cedure, if-then-else, but also non-deterministic and concurrency constructs are
provided. ConGolog comes equipped with an interpreter which maps these plans
into sequences of atomic actions assuming a description of the initial state of the
world, action precondition axioms, and successor state axioms for each fluent.
For details see [3].

To enable simulations the abstract roles defined in the i* model have to be
instantiated. The instances of a role (agents) differ in details as for example
duration of tasks and softgoal contributions. We have to omit the details of the
mapping here but simply mention that in addition to the ConGolog interpreter
we provide an environment which equips each agent with a decision theoretic
planning component to reason about which alternative (or partner) to choose
according to the specified criteria (softgoals). See [5] for details.

3 BPEL

BPEL [7] the Business Process Execution Language for managing interoper-
ability of business processes is currently under evaluation at the standardizing
committee Oasis. It builds upon the web service stack (including SOAP, WSDL,
etc.). BPEL’s main idea is that while WSDL allows for the functional description



of web services, this is not enough if it comes to supporting business processes.
Besides the interface of each web service the orchestration of services (requir-
ing some stateful knowledge) has to be enabled. Accordingly BPEL provides
the means to combine several web services into a new web service with all the
necessary considerations of states and information exchange while avoiding to
explicitly refer to instances of web services within this description. A suitable
instance is supposed to be chosen at run-time (e. g. with the help of UDDI).

In the following we provide a brief introduction into BPEL by considering a
small example. Due to limited space we cannot cope with all BPEL constructs.
See Sect. 4.3 for some considerations about omitted parts.

The Loan Service Example. In the example the approval of a loan is provided
as a web service. A customer enters some personal information and the amount
of money he needs, the web service evaluates the request with the help of other
web services, and eventually approves or rejects the request. To fulfill its task
the loan approval service can make use of two other services: one for simple risk
assessment and one for a more detailed approval analysis. Whether and which of
these services are invoked for a given request at run-time depends on the request
itself and exactly this is described in the business process description. So if the
requested amount is higher than $ 10.000 the approval service is contacted. If it
is below or equal to $ 10.000 first the simple risk assessment service is fed. If this
service assumes a low risk the loan approval service immediately approves the
request whereas in case a medium or high risk level is identified the approval
service is contacted again.3

1:<process name="loanApprovalProcess" ...>
2: <partnerLinks>
3: <partnerLink name="customer" myRole="loanService"
4: partnerLinkType="loanPartnerLinkType"/>
5: <partnerLink name="approver" partnerRole="approver"
6: partnerLinkType="loanApprovalLinkType"/>
7: <partnerLink name="assessor" partnerRole="assessor"
8: partnerLinkType="riskAssessmentLinkType"/>
9: </partnerLinks>

10: <variables>...</variables>
11: <faultHandlers>...</faultHandlers>
12:
13: <flow>
14: <links><link name="receive-to-assess"/>
15: ...omitted...</links>
16: <receive partnerLink="customer" portType="loanServicePT"
17: operation="request" variable="request"
18: createInstance="yes">

3 BPEL assumes a specification of the appropriate services (port type and operation)
together with a suitable set of <message>s to be defined in WSDL.



19: <source linkName="receive-to-assess"
20: transitionCondition="amount=<10000"/>
21: <source linkName="receive-to-approval"
22: transitionCondition="amount>10000"/>
23: </receive>
24: <invoke partnerLink="assessor" portType="riskAssessmentPT"
25: operation="check" inputVariable="request"
26: outputVariable="risk">
27: <target linkName="receive-to-assess"/>
28: <source linkName="assess-to-setMessage"
29: transitionCondition="risk-level=low"/>
30: <source linkName="assess-to-approval"
31: transitionCondition="risk-level!=low"/>
32: </invoke>
33: <assign>
34: <target linkName="assess-to-setMessage"/>
35: <source linkName="setMessage-to-reply"/>
36: <copy><from expression="’yes’"/>
37: <to variable="approval" part="accept"/></copy>
38: </assign>
39: <invoke partnerLink="approver" ...>
40: <target linkName="receive-to-approval"/>
41: <target linkName="assess-to-approval"/>
42: <source linkName="approval-to-reply"/>
43: </invoke>
44: <reply partnerLink="customer" portType="loanServicePT"
45: operation="request" variable="approval">
46: <target linkName="setMessage-to-reply"/>
47: <target linkName="approval-to-reply"/>
48: </reply>
49: </flow>
50:</process>

Fig. 3. BPEL Description of Loan Service

Separately from the above process description BPEL allows for the spec-
ification of <partnerLinkType>s by specifying at maximum two roles (mini-
mum 1 role) which are involved in a partnership. A <role> refers to the port
type of a web service. If there is only one role specified this means that there
is no constraint placed on the other partner. In the example the following
<partnerLinkType>s exist: loanPartnerLinkType, loanApprovalLinkType, and
riskAssessmentLinkType. The details of the first are given below:

<partnerLinkType name="loanPartnerLinkType">
<role name="loanService"><portType name="loanServicePT"/></role>

</partnerLinkType>
Fig. 4. <partnerLinkType> Definition



In the process definition these <partnerLinkType>s are instantiated (see
Fig. 3, lines 2–9). But with instantiation it is not meant here to assign a ded-
icated service but to specify which of the roles is played by the described
business process. In our example this is the role loanService concerning the
<partnerLinkType> loanPartnerLinkType whereas concerning the two other
<partnerLinkType>s the business process is only client and the partners play
the only specified roles approver resp. assessor.

Providing and Invoking Web Services. Concerning communication i. e. web
service interaction the three most important activities are <invoke>, <receive>,
and <reply>. <invoke> is used to start a request to another service (e. g. Fig. 3,
lines 24–26). BPEL allows for synchronous as well as asynchronous requests. A
synchronous invocation is blocking, i. e. the process does not proceed any further
until the requested service has provided its answer. In the example it is assumed
that all services run fast enough to let synchronous requests be sufficient. In
case an asynchronous request needs to be modeled the reply is gathered by a
callback interface on which the process waits via a <receive> statement. The
<receive> construct is also used for the provision of a service, i. e. a process
description usually starts with a <receive> construct (Fig. 3, lines 16–18).4

The <reply> construct is needed to answer a synchronous request (Fig. 3, lines
44–45).

Flow Control. A key feature of BPEL is the possibility to describe how the
different invocations of services and answers to requests are timely related to
each other via so called structured activities. Activities grouped together in a
<sequence> construct are executed one after another. In contrast to this all
activities combined in a <flow> (see example) are in general executed in parallel.
But it is possible to specify arbitrary sequential relationships between these
activities via <link>s. Every activity can be source or target of such a link
and conditions can be associated with the sources which enable or disable the
corresponding links accordingly.5 The results of the link semantics as specified in
Fig. 3 will become clear when the mapping of the example process is considered
(see Sect. 4.2).

For simplicity and due to reasons of space we concentrate here on the con-
structs occurring in the example. BPEL provides some more constructs like
<switch>, <while>, another communication construct (<pick>) as well as event,
fault, and compensation handlers where the latter two belong to BPEL’s sophis-
ticated means to specify fault behavior.

4 The setting of the createInstance attribute reflects that for each request a new
process instance is created.

5 The transitionCondition in the example is simplified since normally this should be
a XPath1.0 expression referring to variables, message properties etc.



4 Mapping BPEL to Extended i*

Since BPEL claims to be sufficiently detailed so that an engine able to execute the
BPEL process description can provide the described service as a new combined
service, it has to cope with many nasty details which are not relevant to a more
strategic investigation we are interested in. For example only message parts
which have strategic effects esp. on the quality of a service must be regarded.
Thus in the following we want to analyze which aspects of a BPEL process
description provides valuable information for creating i* models.

4.1 Deriving Actors from BPEL Descriptions

The most high-level elements in i* are actors specialized into agents, roles and
positions. Since agents refer to individuals they correspond to an instance of a
service and thus are not relevant here neither on the i* modeling level nor in the
BPEL descriptions. In contrast to this the abstract definition of a web service
(via WSDL as a port type with an operation) can be mapped to an i* role since
it comprises a self-contained functionality. For the naming we suggest to refer
to the <role> specification within a <partnerLinkType> (see Fig. 4). Thus for
the example we arrive at the roles loan service, assessor, and approver.

Additionally the <partnerLinkType> definitions describe relationships be-
tween different roles on an SD model like level without detailing the type of
dependency (task, resource, goal, softgoal). While in general a task dependency
will be most suitable it is up to the modeler to semantically analyze how much
freedom is left to the delegatee and thus choose an appropriate dependency type.
For the example we assume a task dependency to be adequate for all relation-
ships. Altogether we arrive at the situation pictured in Fig. 5. Note that we
added the role of a customer not explicitly mentioned as the partner role for a
loanPartnerLinkType.

approverapprove

assessorassess

approval
loan

service
loancustomer

Fig. 5. Strategic Dependency Diagram

Introducing a role for each web service might be too detailed, but a later
merging is not excluded so its a good starting point. Especially in case of repeated
communication between business partners a continuous business process on both
sides must be assumed which must be reflected in the model (re- and back-
delegations). Another type of grouping which also exists in BPEL does not occur
in the example but can also nicely be mapped to i*. Using the <partners>



element several <partnerLink>s (recall in a <process> <partnerLinkType>s
are instantiated) can be grouped together to put an additional constraint on the
web service chosen at run-time in that it must fulfill all the partner roles in the
specified <partnerLink>s. This is much in the same spirit as i* combines several
roles into a position if they are commonly played together.

4.2 Mapping the Process Body

After we have got now our basic actors available, we can focus on detailing
their internals. Since a BPEL document describes only the details of one of
the business partners involved we must in general expect several of such detailed
descriptions to be combined into one i* model. Naming conflicts are not expected
since we assume an i* model to be built out of the subjective view of one of the
business partners. Accordingly the knowledge about the other actors is limited
since they will not provide him with all the details about their internals. Instead
he himself has to revise the models of their behavior according to his knowledge
and experiences so far. Thus he has got to a large extent control over the naming
and can avoid naming conflicts.

The body of the process has to be mapped onto the specification of the
internal behavior of a role. To subsume all the activities we first have to generate
a top level task element whose name can originate from the name attribute of
the <process> element. For our example we have chosen loan approval.

Mapping of Basic Activities. Concerning inter-service communication only
the <invoke> activity automatically results in an i* task element because due to
the higher modeling level the receipt of a message and the provision of a reply
need not be considered in i* models separately. Thus the starting <receive>
activity is not mapped to an SR model element, but instead strategically rel-
evant message parts are mapped to parameters of the top level task element.
Accordingly the corresponding <reply> activity is also not mapped to an SR
model element. But since SNet currently does not support return values for del-
egated tasks6 if the return value is needed for the process description it must
be mapped to a precondition/effect element which then can again be used as a
precondition for other tasks.

The <invoke> activity is mapped to a task, but following its semantics this
task is not associated with the current role, but with the one of the invoked
service. Thus this is a delegation in the SNet naming and it is graphically repre-
sented by a decomposition link which crosses role boundaries. If – as suggested
– a more detailed process description for this business process at the business
partner is given this is used to detail it. If such a description does not exist
the resulting top level task element is simply primitive and the naming must be
derived from the associated operation attribute.

6 It can only be decided whether the delegation was successful or not and possibly its
contributions on accompanying softgoals.



The effects (and sequential relationships) of a <receive> activity correspond-
ing to an asynchronous request must be associated with the task element result-
ing from the transformation of the matching <invoke> activity. Notice that
SNet innately assumes asynchronous i. e. non-blocking communication. To em-
ulate synchronous communication a suitable set of sequence links needs to be
added.

The means to specify internal local activities in BPEL is limited – BPEL
focuses virtually exclusively on orchestration. Only the <assign> activity which
sets the value of a variable (see Fig. 3, lines 33–38) can be seen as some internal
activity. But whether it should be mapped to its one primitive task depends on
whether it has any strategic impact. In the example the local decision to approve
a loan if the amount is below $ 10.000 and risk is low is mapped onto a primitive
task. A name for this task can be derived from the destination variable possibly
in connection with the names of links arriving at or leaving this activity. In the
example we simply suggest setMessage.

Mapping of Structured Activities. Equally important to the transformation
of basic activities is their timely relation to each other as specified using the
<sequence> and the <flow> construct together with <link>s. A <sequence>
relationship between activities can simply be reflected on the side of i* via usage
of sequence links which have exactly the same meaning. Attention must only be
paid if there are activities which do not have an equivalent on the side of i* (see
above <receive>, <reply>). In this case the destination of the sequence links
must be adjusted accordingly.

The default semantics of the <flow> construct is also the default of the
combination of sub tasks (or goals) on the side of i*, i. e. everything is executed in
parallel. Unconditioned links can again be mapped onto sequence links whereas
conditioned links should be mapped to the more general precondition/effect
element. This means the source activity has got some effect and the described
condition is checked as a precondition for the target activity. In fact the modeler
should make use of the separate specification of conditions to avoid doubling
conditions as in the example: the check whether the amount exceeds $ 10.000 or
not should be represented only as one precondition/effect element and a negated
precondition link can be used as the precondition for the invocation of the simple
risk assess service.

The above description does not yet reflect one property which makes the
<link> semantics different from the <sequence> semantics. This is if the join-
Condition of an activity (which per default combines incoming <link>s via OR)
is not fulfilled the activity is simply skipped.7 This corresponds to an ’if needed’
style of task decomposition (denoted by dashed decomposition links) we already
proposed in earlier versions (OR-task decomposition).

7 In fact we assume here, that the suppressJoinFailure attribute of <process> is set
to yes. If this is not the case a lot of fault behavior invocation has to be regarded
which we omit here (see Sect. 4.3).



The result of the mapping of the loan service description to an SR model is
given in Fig. 6.

<10000
amount

risk=low

set
message

approver

service
loan

approveassess

assessor

approval
loan

Fig. 6. Strategic Rationale Diagram Resulting from Transformation

It is important to mention, that it is not a necessity that every basic activity
within a process description becomes a direct sub task of the top level task.
Indeed it is much nicer to preserve the groupings resulting from the usage of
structured activities like <sequence> and <flow>. In case a name is given (via
the corresponding default attribute) it can be used to name this complex sub
task. Otherwise we suggest to generate a dummy name (e. g. flow 23 ) and leave
it to the modeler to choose a more suitable one later on.

4.3 Preliminary Evaluation of the Suitability of BPEL

As the previous presentation already suggests, BPEL is to some extent too de-
tailed (e. g. explicit <receive> and <reply> activities) and thus parts of it are
and should not be mapped to the strategic models. A major disadvantage are
the poor means to describe the (local) internals of a process. Their effect can
only be represented via an <assign> activity and its duration via a <wait> ac-
tivity. Thus we expect the modeler to detail the internal behavior manually if
such knowledge is available. In particular BPEL does not support the soft choice
of process paths. If there are different paths to choose from the conditions are
deterministic. Something comparable to the i* goal element is missing. If such
considerations do make sense for the described process the modeler has to add
them manually. It might also be the case that some deterministic choices can be
relaxed to such more free choices. The lack of a goal-like construct causes also
the lack of softgoal-like aspects and corresponding contributions.

The other way round we find some constructs in BPEL which are most suit-
able but currently not supported by SNet. Especially all the sophisticated means
to handle (run-time) fault behavior which we had to omit here. We are looking
forward to incorporate this and especially connect these behavioral rules to our
monitoring component (cf. [6]). Concerning the <while> construct we are cur-
rently investigating whether we shall incorporate this already on the i* level. On



the side of ConGolog a corresponding construct (with the same name) of course
already exists.8

Eventually we want to emphasize a nice property of BPEL which is the
inherent subjective view from which the processes are described. While this
can also cause some problems for deriving a combined model it nicely stresses
that the whole modeling procedure is subjective: the business partner who is
modeling the scenario can include only as many details about its partners and
other enterprises involved as he knows.

5 Discussion and Conclusion

There exists already an approach [14] to map BPEL descriptions to Petri nets
with the intended goal to allow for a detailed analysis. Although we think that
a formal and exact transformation of BPEL into ConGolog is possible and com-
parable to the one into Petri nets we concentrated here on the strategic and
hence more abstract level of extended i*. The reason for this is that we do not
want to debug BPEL descriptions but to use them for building up models to run
long-term prospective studies of the evolution of inter-organizational networks.

Another branch of work concerning the area of “adapting Golog for composi-
tion of semantic web services” is carried out by Sheila McIlraith and others [15].
They have shown that Golog might be a suitable candidate to solve the planning
problems occurring when services are to be combined dynamically at run-time.
Additionally they related their work also to BPEL(4WS) [16] explicitly by stat-
ing that the semantic web efforts in the research area are disconnected from the
seamless interaction efforts of industry and thus propose to “take a bottom-up
approach to integrating Semantic Web technology into Web services”. But they
mainly focus on introducing a semantic discovery service and facilitate semantic
translations.

To summarize we have seen that it is indeed possible to use BPEL process de-
scriptions for building up extended i* models. BPEL provides several constructs
which are similar to the ones used in i* as for example service definitions corre-
late with roles, <partnerLinkType>s with strategic dependencies, <partner>s
with positions. Furthermore the structuring of the process body via <sequence>,
<flow> etc. can be mapped to ordering constraints of sub tasks in ext. i*. The
modeler might have to provide additional information to nicely group tasks to
complex sub tasks and neither goals nor softgoals with contributions result from
a BPEL description. Such more strategic considerations must be added to the
very detailed, executable process description. Other aspects like fault behavior
and the <while> construct are not yet covered in SNet but would fit in.

For the future we expect to be able to provide a better support for deriving
i* models from BPEL descriptions by generating corresponding Telos frames
(textual representation of i* models) automatically. And of course we are looking
forward to apply the transformation procedure to real world BPEL descriptions.
8 The <switch> construct can be mapped to a task decomposition of ’if needed’ sub

tasks with suitable precondition/effect elements checking the conditions.



Additionally, we have to watch out also for the rivals of BPEL as there are
BPML, BPMN, WS-CDL, etc. maybe also enabling to derive useful information
from descriptions written in these languages.

Acknowledgment. This work was supported in part by the Deutsche Forschungs-
gemeinschaft in its Priority Program on Socionics, and its Graduate School 643
“Software for Mobile Communication Systems”.

References

1. Gans, G., Jarke, M., Kethers, S., Lakemeyer, G.: Continuous requirements man-
agement for organization networks: A (dis)trust-based approach. Requirements
Engineering Journal, Special Issue RE’01, Springer 8 (2003) 4–22

2. Yu, E.: Modelling Strategic Relationships for Process Reengineering. PhD thesis,
University of Toronto (1995)

3. de Giacomo, G., Lespérance, Y., Levesque, H.: ConGolog, a concurrent program-
ming language based on the situation calculus: language and implementation. Ar-
tificial Intelligence 121 (2000) 109–169

4. Jarke, M., Eherer, S., Gallersdörfer, R., Jeusfeld, M.A., Staudt, M.: ConceptBase
- a deductive object base for meta data management. Journal of Intelligent Infor-
mation Systems, Special Issue 4 (1995) 167–192

5. Gans, G., Jarke, M., Lakemeyer, G., Schmitz, D.: Deliberation in a modeling and
simulation environment for inter-organizational networks. In: Proc. of CAiSE03.
LNCS 2681, Klagenfurt, Austria (2003) 242–257

6. Gans, G., Schmitz, D., Jarke, M., Lakemeyer, G.: SNet reloaded: Roles, monitoring
and agent evolution. In: Proc. of AOIS@AAMAS-2004 Workshop. (to appear)

7. Andrews, T., et al.: Business process execution language for web services, IBM,
version 1.1, 2nd public draft release. www.ibm.com/ developerworks/ webservices/
library/ ws-bpel (2003)

8. Arkin, A.: Business process modeling language 1.0. Technical report, BPMI Con-
sortium, http://www.bpmi.org/ (2002)

9. Kavantzas, N., Burdett, D., Ritzinger, G.: Web services choreography description
language 1.0. working draft. http://www.w3.org/TR/ws-cdl-10/ (2004)

10. Petrie, C., Bussler, C.: Service agents and virtual enterprises: A survey. IEEE
Internet Computing (2003) 68–78

11. Liu, L., Yu, E.: Organziation Modeling Environment (OME). WWW ([Accessed
2004/08/18]) http://www.cs.toronto.edu/km/ome.

12. Mylopoulos, J., Borgida, A., Jarke, M., Koubarakis, M.: Telos - representing knowl-
edge about information systems. ACM Transactions on Information Systems 8
(1990) 325–362

13. McCarthy, J.: Situations, actions and causal laws. Tech. report, Stanford (1963)
Reprinted 1968 in Minsky, M.(ed.): Semantic Information Processing, MIT Press.

14. Vidal, J.M., Buhler, P., Stahl, C.: Multiagent systems with workflows. IEEE
Internet Computing (2004) 76–82

15. McIlraith, S., Son, T.C.: Adapting Golog for composition of semantic web ser-
vices. In: Proc. of the 8th Int. Conf. on Knowledge Representation and Reasoning
(KR2002). (2002) 482–493

16. Mandell, D.J., McIlraith, S.A.: Adapting BPEL4WS for the semantic web: The
bottom-up approach to web service interoperation. In: Proc. of the 2nd Int. Se-
mantic Web Conf. (ISWC). (2003)


