
Design Principles of the Component-Based
Robot Software Framework Fawkes

Tim Niemueller1, Alexander Ferrein2, Daniel Beck1, and Gerhard Lakemeyer1

1 Knowledge-based Systems Group
RWTH Aachen University, Aachen, Germany

{niemueller, beck, gerhard}@kbsg.rwth-aachen.de
2 Robotics and Agents Research Lab

University of Cape Town, Cape Town, South Africa
alexander.ferrein@uct.ac.za

Abstract. The idea of component-based software engineering was pro-
posed more that 40 years ago, yet only few robotics software frame-
works follow these ideas. The main problem with robotics software usu-
ally is that it runs on a particular platform and transferring source code
to another platform is crucial. In this paper, we present our software
framework Fawkes which follows the component-based software design
paradigm by featuring a clear component concept with well-defined com-
munication interfaces. We deployed Fawkes on several different robot
platforms ranging from service robots to biped soccer robots. Following
the component concept with clearly defined communication interfaces
shows great benefit when porting robot software from one robot to the
other. Fawkes comes with a number of useful plugins for tasks like timing,
logging, data visualization, software configuration, and even high-level
decision making. These make it particularly easy to create and to de-
bug productive code, shortening the typical development cycle for robot
software.

1 Introduction

The idea of component-based software engineering (CBSE) dates back more
than 40 years with McIlroy’s demand to create reusable software entities [1]. It
follows three main ideas: (1) develop software from pre-produced parts, (2) reuse
software in other applications, and (3) be able to maintain and customize parts
of the software to produce new functions and features [2].

In [3], Brugali et al. discuss current trends in component-based robotic soft-
ware. Component-based robotic software deals with applying the principles of
component-based software engineering to robotic control software. Following [4],
they require four properties to be fulfilled for a robot software component suiting
the component-based approach: (1) a component is a binary (non-source-code)
unit of deployment, (2) a component implements (one or more) well-defined
interfaces, (3) a component provides access to an inter-related set of function-
alities, and (4) a component may have its behavior customized in well-defined



manners without access to the source code. In [3], the authors conclude that in a
component-based robotic software (CBRS) system, the used component model
allows for observing and controlling the internal behavior of the component, and
that each component has well-defined interfaces and data structures from which
the usage modalities follow. Moreover, a CBRS requires communication patterns
that enables the interconnection of reusable components, while the level of ab-
straction of the communication infrastructure must be such that heterogeneous
components can be connected. Finally, they demand for component repositories
which simplify documentation, retrieval, and deployment of a large number of
reusable components. Examples for systems which, at least, partially fulfill these
requirements, as stated by the authors are, for instance, [5–8].

In this paper, we propose the Fawkes robot software framework (RSF) which
follows the component-based approach. The aim is to provide a software en-
vironment which cuts short the development times for robot software compo-
nents. Our target platforms are wheeled service robots as well as humanoid
soccer robots. After an intensive study of available RSFs, we saw the need to de-
velop a component-based framework which could be used cross-platform for all
of our robots. Even frameworks like ORCA [8, 9] which follow the same software
paradigm, did not meet our demands, as we lay out below.

The key features of Fawkes are: (1) a well-defined component concept, (2) a
hybrid blackboard/messaging infrastructure for communication, (3) well-defined
interfaces, (4) run-time loadable plugin mechanisms inheriting certain predefined
aspects such as communication, configuration, logging, timing or integrating
computer vision and networking (following the aspect-oriented software design),
(5) utilizing multi-core computation facilities by deploying POSIX threads for
plugins, and (6) a network infrastructure for communicating with remote soft-
ware entities.

In the following, we present the Fawkes software framework. In particular, we
review recent existing approaches and related work in Section 2, before we state
in Section 3, what the design criteria are that we based our work on. In Section 4
we describe the concepts of Fawkes in detail. We present the general interface
structure, the communication middle-ware, software engineering concepts such
as guarantees, and show how the main application can be distributed. We want
to remark that Fawkes comes with a behavior engine [10], but is not limited
to the built-in one. In Section 5 we present the application of Fawkes on our
different robot systems. We conclude with Section 6.

2 Other Robot Software Frameworks

Several other robotics frameworks and middle-wares for robots exist. Here, we
want to give a brief overview of the most recent and related ones. Amongst them,
the Open Robot Control Software [11], Orocos for short, is driven by the desire to
standardize robotics software components and especially their interconnection.
The aim is to provide a comprehensive framework for robotics applications. For
communication, Orocos deploys CORBA. Several libraries for robotics applica-



tions are available for Orocos. The basic framework is defined in the Real-Time
Toolkit, further, there are libraries for Bayesian filtering, robot kinematics and
dynamics. A spin-off of Orocos is Orca [9]. Orca provides a communication in-
frastructure that uses ICE instead of CORBA, which is a successor development
of CORBA with a simplified API and where redundant features were left out.
Orca comes with drivers for a wide range of common hardware and solutions
for basic robotics problems such as path planning. Software components are run
as different processes which communicate with each other. However, it seems
that Orca as a framework is lacking coherence, as the overall design is only
loosely defined and fragmented into several pieces. The main benefits of using
a CORBA-based middle-ware is the possibility to use a variety of programming
languages and the ability to distribute computations over many hosts trans-
parently. For mobile robots, however, most if not not all of the computation
has to be done on the robot. Therefore it does not seem desirable to have a
purely network-based communication framework for these application domains.
Moreover, some general criticism on the use of CORBA states [12]: “First and
foremost the API is complex, inconsistent, and downright arcane and writing
any non-trivial CORBA application [is] surprisingly difficult.” Other technolo-
gies such as SOAP or XML-RPC are used as replacements, especially because
of their simplicity, but they are slightly less efficient.

Another recent and popular example for a robot software framework is the
Robot Operating System (ROS) [13]. The idea behind ROS was to develop a
framework for large-scale service robot applications. ROS offers a communica-
tion infrastructure which for one employs peer-to-peer messaging and for the
other provides remote procedure calls (RPC). It uses a central broker for service
registration and discovery. For one ROS processes, called nodes, communicate
directly with each other by exchanging messages following a topic-based pub-
lisher/subscriber philosophy. In contrast to this, so-called service communication
allows for strict request and answer message passing. In these messages, primitive
data types and structures are allowed which can be composed to more complex
messages. Communication with the broker and between nodes for connection ne-
gotiation employs XML-RPC. Topic communication and RPC is implemented as
a custom protocol over TCP or UDP. Besides the basic communication services,
ROS offers specialized packages such as predefined message ontologies (e.g. for
navigation or sensor data), or data filters. To facilitate the programming with
ROS, APIs for C++ and Python are offered. For ROS, a large number of third-
party libraries for standard tasks such as localization or navigation is available.
Although the ROS approach looks promising and seems to be very general, the
different design criteria suggest Fawkes as a viable alternative. Most notably,
ROS conveys systems of only loosely federated nodes, while Fawkes emphasis
es a closely integrated system. This is beneficial for synchronization of differ-
ent tasks, low latencies, and efficiency from embedded systems to multi-machine
service robots. ROS and Fawkes share the idea of a component-based design,
but in Fawkes this is set as a priority, e.g. by emphasizing re-use of well-known
interfaces as much as possible, while in ROS it is common for each module to
define its own message types.



3 Terminology and Design Criteria

In this section we present the design criteria for Fawkes. As our conceptual de-
sign follows the component-based software paradigm, we start with introducing
the terminology used by this paradigm in Sect. 3.1, before we review some char-
acteristics of robot software frameworks in Sect. 3.2. Finally, in Sect. 3.3 we
overview our design goals.

3.1 Terminology

According to Szyperski [2], different forms of reuse are possible at the design
level. He distinguishes between (1) sharing programming/scripting languages,
(2) libraries, (3) interfaces, (4) messages/protocols, (5) patterns, (6) frameworks,
and (7) system architectures. In the following, we briefly introduce the basic
terms and address the different sharing options.

A component is defined as a binary unit of deployment that implements one
or more well-defined interfaces to provide access to an inter-related set of func-
tionalities, configurable without access to the source code [8]. It adheres to a
specified “contract” and expects certain input data and produces and provides
specified output data. The contract also states what the component expects
from its context, e.g. certain timing constraints. If the requirements posed by a
certain system infrastructure are not met by an interface, it has to be wrapped
accordingly. A module or library is a coherent set of implemented functionalities,
using an object-oriented data encapsulation as a useful (but not necessary) de-
sign paradigm. A module can be compiled separately, and is portable to different
platforms given compatible compiler and operating system support. Modules in-
herently hardware-dependent, such as device drivers, are often not portable [9].
The system architecture is a specific choice of functional building blocks (compo-
nents), in order to build a software system that performs according to a specifi-
cation [14].[2] basically distinguishes between (strict) layered architectures and
the (strict) onion model. The disadvantage of strict layered architectures is that
the extensibility of the system is restricted. A framework is a design and an
implementation providing a possible solution in a specific problem domain. It is
used to model a particular domain or an important aspect thereof. Frameworks
are similar to software libraries, which means they are reusable abstractions
of code wrapped in a well-defined API. Unlike libraries, however, the overall
program’s flow of control is not dictated by the caller, but by the framework.
This inversion of control is a distinguishing feature of software frameworks [15].
Finally, a component architecture determines the internal design of one single
component in order to guarantee that the component performs according to its
external interface/contract.

3.2 Characteristics of a Mobile Robot Software Framework

There exists a plethora of different robot frameworks today. On the one hand,
different approaches how a robot should be controlled emerged and on the other



hand, different methods how modules are combined and connected were devel-
oped during the last decades. In [16], certain characteristics are defined for the
evaluation of software frameworks that we summarize and extend below:

– Robot hardware abstraction. The framework should not be tailor-made for
a specific robot platform, but it should rather be portable to a variety of
platforms.

– Extensibility and scalability. The robot framework must be able to easily
incorporate new software modules and to use hardware newly added to the
robot.

– Limited run-time overhead. The run-time overhead can be measured in
terms of memory and CPU requirements, i.e. the frequency by which the
control loops are executed, and end-to-end latency, meaning the time that
is required for a sensor reading to have an effect on the actuator command.

– Actuator control model. The actuator control model is twofold. For one,
the overall structure of a robot software system imposes a certain preferred
model of control (deliberative vs. reactive), for another different actuator
control models must be available depending on the type of actuator.

– Software characteristics. Software for mobile robots shares the common
requirements for good software, like completeness, simplicity, correctness,
and consistency.

– Tools and methods. The complexity of robotics tasks demands for data
introspection, monitoring, or debugging tools provided by the framework in
order to allow efficient software development.

– Documentation. To achieve wide acceptance for a software platform rigorous
documentation is crucial and has to be provided in forms of reference manuals
and API documentation.

3.3 Design Goals of Fawkes

Inspired by the component-based software design paradigm, with Fawkes we
tried to combine these with the requirements of a robot software framework.
Moreover, we were influenced by our personal experience of having programmed
robots in service robotics and robotic soccer domains for nearly a decade. Our
goal was to design a software framework that is as flexible as possible and
portable to our various robot platforms ranging from domestic service robots
to biped soccer robots. Across the different platforms a consistent environment
must be provided. The software must scale from embedded systems to multi-
machine robotic applications. The number of concepts that a user needs to know
should be as few as possible to minimize the overhead to get familiar with the
framework. Finally, the run-time overhead needed to be as small as possible as
we wanted to deploy Fawkes in real-time domains such as robotic soccer. The
framework must be extensible to add new functionality over time.

In a nutshell, the framework has the following features. Each functional en-
tity in Fawkes is a component, which can make use of several predefined aspects.
Each component, implemented as a plugin that can be loaded at run-time, needs



to inherit a communication aspect to communicate with other components. Plu-
gins are realized as threads in a monolithic program. However, distributed design
is possible by synchronizing the data between multiple instances via a network
protocol with a minimal timing overhead. Via synchronization among the com-
ponents we ensure that no superfluous work is performed.

4 The Fawkes Robot Software Framework

In the following, we describe the Fawkes framework in detail. In order to do so,
we start by showing the general structure of a Fawkes application in Sect. 4.1,
and derive from there the different properties which qualifies Fawkes to be a
component-based design. In particular in Section 4.2, we show the interface de-
sign and the communication infrastructure. Section 4.3 overviews the predefined
software patterns that comes with Fawkes, so-called aspects. These predefined
aspects allow for introducing the concept of guarantees, which provide some
basic guarantees of the quality of service of the application.

4.1 The Framework Architecture

Following the component-based approach, we define components in Fawkes as
logical elements. They manifest in the form of plugins. Generally, a single plugin
implements one component.3 The Fawkes core application only provides the
basic infrastructure. The most important elements of that infrastructure are a
central blackboard used for exchanging data between plugins, centralized logging
facilities that allow for parallel logging to multiple logging targets (i.e., console
output, log-files, etc.), and a centralized configuration database that is intended
to store the configuration parameters for all components of the system. Moreover,
it provides a default implementation of a main loop that might be replaced with
a custom main loop at run-time. Generally, the main loop controls the execution
order of the threads and ensures that certain timing criteria are met. Each run
of the main loop is fractured into multiple stages; the default implementation
represents a refined sense-think-act cycle: in the first stages in the loop the
threads acquiring new data from the robot’s sensors are run, afterwards the
threads implementing deliberative or reactive decision-making components, and
lastly the threads which send commands to the actual hardware.

The actual functionality that makes an arbitrary framework a robot software
system is provided by plugins. The plugins are implemented as dynamically load-
able libraries—shared objects on Linux systems. They implement a particular
interface which gives access to descriptive and dependency information and a
set of threads. Plugins can be loaded and unloaded at run-time. This allows for
a fast development cycle. Usually a developer works on one plugin at a time.
With the ability to reload only this plugin the program-compile-test cycle can

3 There are situations where it is useful to combine multiple components into a single
plugin for efficiency or direct synchronization, which is supported by the framework.



4.2. THE FAWKES FRAMEWORK

Fawkes Application

BlackBoard

Interface B

Interface A

Thread 2

Thread 1Remote App

local
remote
messages
invalid
writing
reading

Figure 4.4: Fawkes BlackBoard – Conceptual Overview

of interfaces when the blackboard is accessed over the network. This prevents
errors and confusion when an interface is changed on the robot, but not all
developers working on the robot have updated to the latest version, yet.

The blackboard supports observers and listeners to directly react to black-
board events. Both are implemented using the observer pattern [64]. They pro-
vide specific virtual methods that are called on the appropriate event. Black-
board observers react to global blackboard events, like a created or destroyed
interface. It can be used for example to open new interfaces of a certain group,
like object position information about obstacles. The listener reacts to events
for a specific event, like opening or closing of the interface for reading or writ-
ing by another thread, or a modification of the data.

A conceptual view of the blackboard is depicted in Figure 4.4. In the given
scenario the blackboard has been instantiated by the core application. Two
threads with the BlackBoardAspect access the blackboard internally, a remote
application uses the network facilities for external access to the blackboard.
There are two interfaces with different unique identifiers, having different
types or IDs. The continuous lines denote access to the memory segment, red
lines for writing and orange line for reading access. The curly lines denote
remote access, but are otherwise similar to the local access. The dotted line
shows a connection that would violate the single writer constraint, it would
be rejected by the framework. The dashed lines show possible message direc-
tions. As we see with Thread 2 and Remote App there can be multiple senders
for an interface, Interface A in the example. The writer Thread 1 receives the
messages.

An example is an object position interface, which provides access to posi-
tion information of an object, like the position of the robot itself or the ball on
the field. A message could be the explicit setting of the position, for example
to provide a hint of the current location to a localization module by the user.

4.2.7 FireVision

FireVision is a computer vision framework (CVF) which has been transferred
almost unchanged from the former RSF. Its development had started later than

40

Fig. 1. Accessing the Fawkes blackboard.

be quicker, because only the changed plugin has to be reloaded, not the whole
system.

Threads are one of the key elements of the Fawkes RSF. With the advent of
modern multi-core CPUs it is considerably worthwhile to provide simple ways
to exploit the multi-processing capabilities. With the decision to make every
functional entity of plugins a thread, it is reasonably easy to exploit this feature.
Threading is implemented based on the POSIX Threads API. They can operate
in two different modes, either in continuous or in wait-for-wakeup mode. In the
continuous mode, the thread runs all the time, until it exits or is terminated by
another thread. In the wait-for-wakeup mode, the thread blocks, until it is woken
up. When woken up, it executes a single iteration. Precisely, a plugin in wait-
for-wakeup mode registers for a certain stage provided by the main loop. When
all threads of the current stage in the main loop have finished their iteration
(or if certain timing constraints are not met, i.e., a plugin runs longer than it is
supposed to) the main loop proceeds to the next stage and wakes up all plugins
registered for that stage. Note, the plugins registered for the same stage in the
main loop run concurrently.

4.2 Interface Design and Communication Infrastructure

As already mentioned above the Fawkes core provides a blackboard that serves
as a centralized storage unit that plugins can read data from and write data to
(cf. Fig 1). The access to the data stored in the blackboard is managed using
instances of interfaces whose types are known to all plugins. An interface defines
a number of fields; the definition of each field consists of a basic data type and
an unique identifier. For instance, an interface of type Position2D may contain
fields of type float with the names x and y. To facilitate the design, tool support
for creating and maintaining interfaces exists.

The plugins may request to open an interface of a certain type with a certain
(unique) identifier at run-time. Additionally, the plugin may either open the in-
stance as a writer or as a reader. Whereas multiple readers may attach to an
instance of an interface, only a single writer is allowed to do so. This ensures
the integrity of the data stored in the blackboard. With saying a plugin “opens
an interface”, we actually mean that it is first checked whether an instance of



that type of interface with the given identifier already exists in the blackboard.
In that case, a proxy of the interface in the blackboard, i.e. a local copy (outside
of the blackboard), is created for the plugin. In case no instance of an interface
conforming to the request of the plugin exists the necessary memory is allocated
by the blackboard first. The plugins can synchronize their proxies with the orig-
inal in the blackboard either by copying the current data from the blackboard
to the proxy or the other way around.

This reader-writer model allows to pass data from the writer to the reader.
Readers may send commands to the writer of an interface instance by means
of messages. Associated with each writing instance of an interface is a message
queue that stores the messages sent by the readers in the order they have been
sent and thus allows the writer to process the messages in the correct chronolog-
ical order. Although neglected above, a definition of message types accepted by
an interface is also part of the interface definition besides the definition of the
data fields provided by an interface.

4.3 Aspects and Soft Guarantees

Plugins need to access features provided by the Fawkes framework, for instance,
accessing the blackboard. In order to reduce the implementation effort we bor-
rowed ideas from aspect-oriented programming. A so-called aspect denotes a
specific ability or requirement. Now, when a thread of a plugin wants to make
use of such an ability, it is “given that aspect”. In our C++ implementation this
means that we have a class implementing each aspect; a thread “is given an as-
pect” by inheriting from that class. In a sense, we lift the classic aspect-oriented
programming paradigm onto the framework level and aspects assert concerns of
threads regarding particular framework functions like centralized logging.

The framework allows to specify dependencies between different aspects. For
instance, there is the vision-master aspect that is given to threads that provide
access to cameras; the vision aspect is given to threads that need to access the
images captured by the cameras. A modeled one-to-many dependency guarantees
that a plugin which has at least one thread with a vision aspect can only be
started when another having the vision-master aspect is already running; as long
as at least one thread with a vision aspect is running it is not allowed to unload
the plugin which owns the thread having the vision-master aspect.

Besides the vision-master - and vision aspect, the Fawkes framework imple-
ments aspects (among others) which allow to access the blackboard, the central
configuration database, and the centralized logging facilities. Furthermore, there
is a central clock in the Fawkes framework (accessible via the clock aspect). The
time-source aspect allows threads to provide a proprietary clock which espe-
cially comes in handy when working with a simulation which might not run at
real-time. In such a case a thread with the time-source aspect can provide the
simulation time to all threads that have the clock aspect via the central clock.

Above we already mentioned a couple of (soft) guarantees. The idea behind
those guarantees is that they provide a simple exception handling mechanism on
the framework level. For example with the framework knowing the requirements



of threads because of its aspects it can ensure that all requirements and de-
pendencies are fulfilled. These guarantees are called “soft” because they are not
checked all the time but only at certain moments. Dependencies, for instance,
are only checked during initialization/finalization of the respective threads but
not in between.

5 Evaluation and Case Studies

In this section evaluate the framework by the characteristics provided in Sec-
tion 3.2 and show two configurations of Fawkes in different application domains.
We start with our service robots and show how legacy software from our previous
software framework is intertwined with Fawkes. When integrating legacy soft-
ware, the component-based approach clearly pays off. The second domain is the
robotic soccer domain. In this domain we participate in RoboCup competitions
in the Middle-size league with wheeled robots, and in the Standard Platform
League with the biped humanoid robot Nao.

5.1 Evaluation of Framework Characteristics of Fawkes

As mentioned in Section 3.2, certain characteristics can be used for a qualitative
evaluation of RSFs. In this section we apply these to Fawkes.

Hardware abstraction is accomplished by encapsulating hardware-specific
functions into separate plugins. Data is shared and commands are sent via the
blackboard. Therefore, adapting to a new platform is done by implementing and
loading the set of plugins that matches the chosen hardware. Extensibility is ac-
complished by the component-based approach. This makes it easy to use existing
components and add new ones. For Fawkes scalability is especially targeted to-
wards singular machines assuming all computation is done on the robot. Since
Fawkes makes use of multi-threading at its core, there is a high potential for
exploiting today’s multi-core machines. Experiments suggest that the run-time
overhead of the base system in relation to the functional plugins can be con-
sidered negligible. High frequency main loop iterations are achieved as long as
the individual threads are bounded appropriately in time. In the future, a closer
comparison to ROS might be performed. The actuator control model that is im-
plemented by a plugin can be freely chosen. For the overall framework the hybrid
deliberative-reactive paradigm is presumed. Tool support is very important when
developing software in general, and for complex systems like a robot in particu-
lar. We have carefully designed the software to interact well with debuggers and
performance analysis tools. Documentation of all public APIs is enforced in the
development process. A wiki provides usage and developer documentation.

The Fawkes RSF is complete in the sense that it provides the basic infras-
tructure to implement and interconnect a set of components to control a certain
robot. For a particular platform and domain the applicable components must
be developed and integrated. The correctness is not automatically verified. For
several parts of the software quality assurance applications have been written,



that can be used to manually test parts of the software. To achieve consistency
functional blocks have been bundled into appropriate libraries and well-known
interfaces are used for communication wherever feasible.

5.2 Service Robots

Our service robot employs a differential drive; it is equipped with 360° laser range
finder, a 6 DOF robotic arm, and a stereo camera. Additionally to two computers
in the base (900 MHz Pentium III) which handle localization, navigation, and
processing of the laser distance readings we added another computer (2 GHz
Core 2 Duo) that runs vision applications (object and face recognition), speech
recognition, people tracker, and the control software for the robotic arm and
the pan-tilt unit on which the stereo camera is mounted. As such this robot
is a multi-node system on which a multitude of (partially) quite demanding
applications is run.

Fawkes runs distributed on the three machines, and data and commands
are transferred between the machines using the remote blackboard mechanisms
provided by the framework. A specialty is that we integrated several applications
developed for our old framework into the system (localization and navigation).
This could be easily accomplished by extending the “old” applications by means
of small adapters to exchange data and commands with Fawkes applications,
again, using the remote blackboard mechanism. This shows that third-party
software can be easily integrated into Fawkes and that even two frameworks that
build on different design concepts can be used side-by-side. It has to be noted,
though, that applications which are integrated in such a way are not equivalent to
Fawkes plugins as their execution is not synchronized via the main loop, external
applications cannot be given any aspects, and guarantees cannot be made for
such external applications. These are no limitations of the Fawkes framework
but a tribute one needs to pay due to different design principles underlying
different frameworks. In our case, for example, the applications from the old
framework handled their timing on their own. Consequently, it is not possible
to synchronize them with the other plugins without major modifications which
basically coincide with re-implementing the old applications as Fawkes plugins.

5.3 Humanoid and Wheeled Soccer Robots

Figure 2 gives an overview of the components and interfaces that are running
on our wheeled soccer robots. On the left-hand side of the figure, hardware
components can be found such as driver for the kicker mechanism (kicker),
the motors (navigator), or the camera (fvbase). The kicker serves the kicking
interface, while the navigation component fills the odometry and the navigation
interfaces. The camera drivers (we have two camera systems mounted on the
platform) provide images in a special interface. These images are used by several
medium-level components, such as the localization with the installed omni-visual
camera (omni-loc), the ball detection (omni-ball), and the obstacle detection
(omni-field and stereo-obs). All these modules feed their particular interfaces



CHAPTER 4. THE FAWKES ROBOT SOFTWARE FRAMEWORK

mot odo nav

w
or

ld
m

od
el

Im
ag

e

Network

kicker

fvbase
stereo-obs

omni-field

navigator

skiller

agent

omni-loc

omni-ball

kicking

odometry

navigation

obstacles

obstacles

robot pose

ball pos

in
fo

w
or

ld

orders

Figure 4.6: Fawkes Component Configuration for the MSL Robot

describe the components specific to the MSL robot. For the fvbase, worldmodel,
skiller, and agent see Section 4.3.1, as they are the very same components.

kicker. The kicker plugin controls the pneumatic kicking device as described
in Section 2.1.4. It allows for executing kicks on any combination of the three
kickers, where the middle kick can be controlled in strength by regulating the
air pressure applied to the cylinder. Secondary the ball guidance arms can be
extended as necessary. It is a structurally simple plugin, which can be regarded
as a hardware driver plugin.

navigator. Especially in the very speedy MSL environment the navigator plu-
gin is very important for good game play. The MSL robot plugin combines
local and global approaches for collision avoidance and path planning. It em-
ploys a landmark-based representation of the environment that contains static
landmarks as well as dynamic obstacles detected via sensors. Based on a De-
launey tesselation over all obstacles a traversal graph is constructed. This
traversal graph is a topological representation of all paths through the per-
ceived obstacles to the target position. On this space A* search [81] is applied
to find a short and safe path. The safety of a path is accounted for by incorpo-
rating the distances between obstacles passed along the path into the A* cost
function [82].

The motor sub-component for hardware access has been directly integrated
into the plugin. This makes synchronization easy and fast. For the com-
munication of the path-planning navigation sub-component and the motor-
component an internal blackboard interface is used. This allows for sending
motor commands from the outside, for example for manual input with a joy-
stick, and peeking into the communication to analyse problems. This also al-

49

Fig. 2. Fawkes components of our wheeled soccer robot

which are amalgamated into a consistent world model. Note that the world
model also has a link to the robot’s network to integrate data from other robots.
The world model in turn feeds the world info interfaces which is used by the
high-level decision making (the skiller to execute and monitor basic actions, and
the agent to take decisions which action to perform). The architecture layout for
our biped soccer robot Nao looks similar, although the platform is very different.

6 Conclusion

In this paper, we presented the Fawkes RSF and its design principles, which
follow the component-based software paradigm. This paradigm turned out to
be very beneficial, as we applied Fawkes to several of our robot platforms and
the component-based approach facilitated this endeavor. Our evaluation and the
examples in Sect. 5 suggest that the framework meets the requirements outlined
in Sect. 3.2. It can be applied to different hardware systems, benefits from the
component-based approach for its extensibility and is scalable across multiple
machines. Experiments showed a negligible run-time overhead of the framework.
We omitted figures here, but the fact that we deploy Fawkes on very different
platforms such as our wheeled soccer robots or the Nao, which in particular has
restricted computing facilities, shows that the run-time overhead is feasible. The
project’s website can be found at http://www.fawkesrobotics.org.

For our future work, we need to get even more experience with applying
Fawkes to different platforms, acquiring more scalability and run-time overhead
results, and with offering more sensor and actuator plugins for common robot
hardware, in order to serve a broader user community. Other areas of future
work are to interface with ROS, as the Robot Operating System is widely used
by number of groups. Finally, we want to offer plugins for high-level reasoning.
In particular, we are working on a lightweight implementation of Golog [17] and
an interface between Golog and Fawkes.



Acknowledgments

A. Ferrein is currently a Feodor Lynen fellow supported by a grant of the Alexan-
der von Humboldt Foundation. T. Niemueller was partly supported by the Ger-
man National Science Foundation (DFG). We thank the anonymous reviewers
for their helpful comments.

References

1. Mcilroy, M.D.: ’mass produced’ software components. Software Engineering: Re-
port On a Conference Sponsored by the NATO Science Committee (1968) 138–155

2. Szyperski, C.: Component Software – Beyond Object-oriented Programming. Ad-
dison Wesley (2002)

3. Brugali, D., Brooks, A., Cowley, A., Côté, C., Domı́nguez-Brito, A.C., Létourneau,
D., Michaud, F., Schlegel, C.: Trends in robot software domain engineering. In
Brugali, D., ed.: Software Engineering for Experimental Robotics. Volume 30 of
Springer Tracts in Advanced Robotics. Springer-Verlag (2007) 135–142

4. Collins-Cope, M.: Component based development and advanced OO design. Tech-
nical report, Ratio Group Ltd. (2001) http://www.markcollinscope.info/W7.html.

5. Chaimowicz, L., Cowley, A., Sabella, V., Taylor, C.: Roci: a distributed framework
for multi-robot perception and control. In: Proceedings of the 2003 IEEE/RSJ
International Conference on Intelligent Robots and Systems. (2003) 266–271

6. Dominguez-Brito, A., Hernandez-Sosa, D., Isern-Gonzalez, J., Cabrera-Gamez, J.:
Component software in robotics. In: Proceedings of the 2004 2nd International
IEEE Conference on Intelligent Systems. Volume 2., IEEE Press (2004) 560 – 565

7. Côté, C., Brosseau, Y., Létourneau, D., Räıevsky, C., Michaud, F.: Robotic soft-
ware integration using marie. International Journal of Advanced Robotic Systems
3(1) (March 2006)

8. Brooks, A., Kaupp, T., Makarenko, A., Williams, S., Orebäck, A.: Towards
component-based robotics. In: Proc. IROS-05, IEEE Press (2005) 163–168

9. Brooks, A., Kaupp, T., Makarenko, A., Williams, S., Oreback, A.: Orca: a com-
ponent model and repository. In Brugali, D., ed.: Software Engineering for Exper-
imental Robotic. Springer Verlag (2007) 231–251

10. Niemueller, T., Ferrein, A., Lakemeyer, G.: A Lua-based Behavior Engine for
Controlling the Humanoid Robot Nao. In: RoboCup XIII, Springer (2009)

11. Soetens, P.: A Software Framework for Real-Time and Distributed Robot and
Machine Control. PhD thesis, Department of Mechanical Engineering, Katholieke
Universiteit Leuven, Belgium (May 2006)

12. Henning, M.: The rise and fall of corba. Queue 4(5) (2006) 28–34
13. Quigley, M., Conley, K., Gerkey, B., Faust, J., Leibs, T.B.F.J., Wheeler, R., Ng,

A.Y.: ROS: an open-source Robot Operating System. In: Proc. of the Open-Source
Software workshop at the International Conference on Robotics and Automation.
(2009)

14. Mowbray, T.J.: Architecture in the large. Object Mag. 7(10) (1997) 24–26
15. Riehle, D.: Framework Design – A Role Modeling Approach. PhD thesis, ETH

Zürich (2000)
16. Orebäck, A., Christensen, H.: Evaluation of architectures for mobile robotics.

Autonomous Robots 13(1) (2003) 33–49
17. Levesque, H., Reiter, R., Lespérance, Y., Lin, F., Scherl, R.: GOLOG: A Logic

Programming Language for Dynamic Domains. J. of Logic Programming 31 (1997)


