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Abstract

Plan execution on a mobile robot is inherently
error-prone, as the robot needs to act in a physical
world which can never be completely controlled by
the robot. If an error occurs during execution, the
true world state is unknown, as a failure may have
unobservable consequences. One approach to deal
with such failures is diagnosis, where the true world
state is determined by identifying a set of faults
based on sensed observations. In this paper, we
present a novel approach to explanatory diagnosis,
based on the assumption that most failures occur
due to some robot hardware failure. We model the
robot platform components with state machines and
formulate action variants for the robots’ actions,
modelling different fault modes. We apply diagno-
sis as planning with a top-k planning approach to
determine possible diagnosis candidates and then
use active diagnosis to find out which of those can-
didates is the true diagnosis. Finally, based on the
platform model, we recover from the occurred fail-
ure such that the robot can continue to operate. We
evaluate our approach in a logistics robots scenario
by comparing it to having no diagnosis and diagno-
sis without platform models, showing a significant
improvement to both alternatives.

1 Introduction
The execution of an action plan on a mobile robot is inher-
ently error-prone: As a robot acts in the physical world, its
actions may fail or have unexpected effects, and there may
be interference by exogenous actions, e.g., by a human. Con-
sider a mobile robot with a manipulator as shown in Figure 1
that is supposed to operate a machine, e.g., by placing an ob-
ject onto its conveyor belt: If the robot is mislocalized, it may
put the object next to the conveyor belt instead. If the arm is
miscalibrated, it may even collide with the machine, possibly
dropping the workpiece. If the robot is not equipped with a
suitable sensor, it may not immediately detect that it dropped
the workpiece, and proceed as if everything went as planned.

If such a fault occurs, the agent needs to determine the true
world state, based on partial observations it can make. One

Figure 1: A robot placing a workpiece onto a machine.

approach is to find out what is wrong by applying diagno-
sis (e.g., [Reiter, 1987; de Kleer and Williams, 1987]). In
diagnosis, the goal is to identify a set of faults, based on a
model of the system and a set of observations. In a robotics
application, it is often useful to determine what happened
by explaining the observations with a sequence of (exoge-
nous) actions [Cordier and Thiébaux, 1994; Mcllraith, 1999].
History-based diagnosis [Iwan, 2001] determines the true se-
quence of events based on an expected action history, e.g.,
the actions that the robot was supposed to execute. Unex-
pected events are modeled by action variants and exogenous
actions, e.g., an action put-drop that drops the object in-
stead of putting it onto the conveyor belt. During diagnosis,
those action variants may occur randomly, i.e., there is no
modeled underlying cause. Any adapted sequence of events
that is consistent with the observations form a possible expla-
nation about what might have happened.

However, on a mobile robot, such action variants often do
not occur randomly, but have an underlying cause. As an ex-
ample, a failed put action is often caused by a miscalibrated
gripper. If the agent tries the action again, it will just fail
again with the same error. Thus, we propose to combine di-
agnosis as fault analysis in the sense of Reiter [1987] with
history-based diagnosis. Instead of letting action variants oc-
cur randomly, we propose to explicitly model the robot plat-
form as state machines and determine the state of the plat-
form during diagnosis. Action variants then depend on the
state of a platform component, e.g., put-drop may only oc-
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cur if the gripper is miscalibrated. This approach has two
advantages: First, the robot no longer re-tries actions that are
bound to fail; instead, it can avoid using the faulty compo-
nent altogether. Second, the robot can try to recover from the
underlying cause, e.g., by recalibrating the arm.

To determine a diagnosis efficiently, we make use of diag-
nosis as planning [Mcllraith, 1999; Sohrabi et al., 2010] and
combine it with history-based diagnosis. We do this by gener-
ating a PDDL domain that enforces the agent’s action history
and that allows for action variants based on the platform mod-
els. We apply a top-k planning approach [Katz et al., 2018]
to determine k cost-optimal diagnoses to focus on diagnosis
candidates with a minimal number of assumed faults.

Sometimes, the observations are not sufficient to provide a
unique explanation. In this case, active diagnosis [Sampath
et al., 1998] aims to distinguish the explanation candidates
with sensing actions. We combine active diagnosis with our
platform models. We assign probabilities to exogenous events
in the platform model (e.g., the arm getting miscalibrated),
which allows us to choose the next sensing action with the
maximal information gain.

In the following, we start by summarizing related work
in Section 2. We continue with the approach by describing
how to model the robot hardware platform (Section 3.1) and
how to generate a PDDL domain for history-based diagnosis
(Section 3.2), which can then be used with a top-k planner
(Section 3.3). In Section 3.4, we explain how to incorporate
knowledge about hardware faults into active diagnosis. We
evaluate our approach in Section 4 and conclude in Section 5.

2 Related Work
Model-based diagnosis [de Kleer and Williams, 1987] de-
scribes the process of determining a set of faults that ex-
plain a set of observations, given a model of the system
behavior. In consistency-based diagnosis, a diagnosis is
a minimal set of faults that are entailed by the observa-
tions [Reiter, 1987]. In contrast, in abductive diagnosis,
the assumptions must entail the observations [Poole, 1989a;
Poole, 1989b]. Sampath et al. [1995] describe a first diag-
nosis system based on discrete event systems, where the sys-
tem is modeled as finite automaton. If multiple explanation
candidates are viable, active diagnosis [Sampath et al., 1998;
Baral et al., 2000; Chanthery and Pencolé, 2009] determines
the correct explanation by actively controlling the system
to gather missing information. Mühlbacher and Steinbauer
[2014] distinguish active diagnosis candidates based on en-
tropy and noise sensors to find the least costly diagnosis plan.
In pervasive diagnosis [Kuhn et al., 2008], the system con-
troller is instead directly adapted to maximize diagnostic in-
formation during execution.

Similar to the proposed approach, the tool COMPASS [Boz-
zano et al., 2009; Bozzano et al., 2019] allows to extend
nominal component specification with error models. The ex-
tended model can be used for fault tree analysis to determine
the cause of observed faults [Bittner et al., 2016].

When diagnosing a robot agent, one is often interested
in what happened rather than what is wrong. In history-
based diagnosis [Baral et al., 2000; Gspandl et al., 2011;

Listing 1: PDDL definition of a move action
1 (:action move
2 :parameters (?r - robot
3 ?from - location ?to - location)
4 :precondition (at ?r ?from)
5 :effect (and (not (at ?r ?from)) (at ?r ?to))))

Delgrande and Levesque, 2012], the explanation is deter-
mined based on a history of actions and events. A possible
explanation may contain faulty variants of the robot’s actions
(e.g., picking up the wrong object) and exogenous events
(e.g., someone placing a new object on the table). A sim-
plification for consistency-based diagnoses is to assume that
a failed action may have any unknown effects [Witteveen et
al., 2005; Roos and Witteveen, 2009; Mühlbacher and Stein-
bauer, 2016]. Iwan [2001] describes an abductive diagnosis
approach that uses diagnosis templates for compact represen-
tation to speed up the diagnosis process.

While the above approaches determine diagnosis candi-
dates with algorithms specific to the diagnosis problem, Mcll-
raith [1999] shows that the search for an explanatory diagno-
sis can also be modeled as a planning problem. Based on
regression in the Situation Calculus, they determine an ex-
planation by planning for the observations made by the sys-
tem, which has also been extended to determine not one but k
cost-optimal candidates [Sohrabi et al., 2016]. By formulat-
ing the diagnosis problem as a PDDL planning problem, one
can make use of the well-developed heuristics for planning
[Sohrabi et al., 2010; Katz et al., 2018].

3 Approach
The goal is to find a unique explanation for observed faults

for two reasons: (a) to regain a consistent belief state, and
(b) to recover from any faults that may have occurred. An
overview of the approach is shown in Figure 2.

After executing an action sequence and making any ob-
servation that contradicts the expected world state, we use
the history of executed actions and a model of the underly-
ing hardware platform to generate alternated histories that ex-
plain the observations and thus result in a consistent belief. In
order to do so, we first model the robot platform using finite
state machines, which we then use to model action variants
that depend on an unexpected state of a platform component.
We assume that faults are independent and at least some of
them are recoverable. Next, we generate a PDDL domain
from a previously prepared template (containing all actions,
possible variants, and the platform model) that enforces the
executed action history (or a variant thereof), which can then
be used with a planner to generate explanation candidates for
the observation. Note that any intermediate observations can
be incorporated into the executed action history as exogenous
actions which only assert the observed fact as effect. This in-
cludes any self-diagnostic information gathered by the plat-
form components, which are modeled as exogenous compo-
nent state transitions. Once we have obtained a set of expla-
nation candidates, we use active diagnosis to determine the
most informative sensing action. That sensing action is exe-
cuted and any explanation candidates that contradict its sens-

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1909



Generate PDDL
diagnosis problemDetected fault

and history of
executed actions

PDDL domain template

Hardware component
models

Generate
diagnosis
candidates

Select most
informative

sensing action

Available
sensing actions

Execute sensing action
and exclude

diagnosis candidates

More than one candidate left?

Repair or reset
faulty or unknown

components
Only one candidate left

or no more
sensing actions available?

Continue execution

Ask for
human assistance

Figure 2: The diagnosis pipeline, starting with a detected fault and ending with a repair attempt.
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Figure 3: Models of the robot hardware components

ing result are removed. This is a useful approach in scenarios
where we can assume that the execution of sensing actions
does not lead to more serious failures. We continue with the
next sensing action until we have a unique explanation can-
didate or no other sensing action is possible. In this work,
we assume perfect sensing in the context of active diagno-
sis, however in general active diagnosis is able to cope with
sensing noise as well. Finally, based on that explanation, we
update the agent’s world model and try to recover from the
fault. If this is not possible, the robot disables itself and asks
a human for help.

3.1 Hardware Platform Model
We model the components of the robot platform, e.g., its nav-
igation unit, based on finite state machines, similar to [Hof-
mann et al., 2018]. We use two types of edges: (a) action
edges that the agent can decide to execute, e.g., localize()
to trigger the localization unit to re-initialize, and (b) exoge-
nous event edges that are triggered by the environment, e.g.,
lost(), which causes the localization unit to lose its known
pose. We also attach a probability to each exogenous edge
which will be used during active diagnosis to assign prob-
abilities to the explanation candidates and to determine the
most promising sensing action.

Two example components that are used by the move action
are shown in Figure 3. Figure 3a shows the navigation unit
of the robot. By default, it is in the state INIT (we simplify
the navigation and do not distinguish whether it is currently
idle or moving). However, it may get stuck, e.g., because it
hits an obstacle. If that is the case, the agent can abort the
current navigation goal and decide to back up, which sets the
navigation back to the INIT state. Similarly, the navigation
may suffer from a hardware failure, which completely blocks
the movement and from which the agent cannot recover. The

Listing 2: An exogenous state transition action in PDDL
1 (:action get-stuck
2 :parameters ()
3 :precondition (state NAVIGATION INIT)
4 :effect (and (not (state NAVIGATION INIT))
5 (state NAVIGATION STUCK))
6 (increase (total-cost) 1)))

Listing 3: An action with hardware component constraints
1 (:action move
2 :parameters (?r - robot
3 ?from - location ?to - location)
4 :precondition (and (at ?r ?from)
5 (state NAVIGATION INIT)
6 (state LOCALIZATION LOCALIZED))
7 :effect (and (not (at ?r ?from)) (at ?r ?to)))

localization unit in Figure 3b first needs to be initialized with
the localize() action. While it is in use, it sporadically
gets lost(), in which case it needs to be re-initialized with
another localize() action.

3.2 Creating a PDDL Diagnosis Domain
With the goal to take a diagnosis as planning approach, we
generate a PDDL domain that completely describes the diag-
nosis problem. We do this by (1) adding the nominal platform
state to the precondition of actions, (2) adding actions for the
exogenous events, following the platform model, (3) provid-
ing action variants of the original actions, depending on faulty
states of the platform, and (4) enforcing the history, i.e., any
solution of the problem must include each action (or one of
its variants) of the originally executed plan.

In order to incorporate the platform model into the PDDL
domain, we model the component states as PDDL domain ob-
jects and the current states as PDDL predicates (state ?c
- component ?s - state). Furthermore, we add exoge-
nous events as PDDL actions, as shown in Listing 2 for the
get-stuck transition of the navigation component. Using
these PDDL platforms models, we can model the dependen-
cies of the available actions on the hardware components. For
example, the move action as defined in Listing 1 depends on
the navigation component as well as the localization compo-
nent, as defined in Figure 3. Therefore, we add preconditions
for the required states of the component models to the PDDL
model of the move action, as shown in Listing 3.
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Listing 4: A faulty variant of the move action
1 (:action move-stuck
2 :parameters (?r - robot ?from - location)
3 :precondition (and (at ?r ?from)
4 (state NAVIGATION STUCK)
5 (state LOCALIZATION LOCALIZED))
6 :effect ())

Listing 5: Order action template
1 (:action order-i
2 :parameters ()
3 :precondition (last-ACT_i PARAM_i)
4 :effect (and (not (last-ACT_i PARAM_i))
5 (next-ACT_i+1 PARAM_i+1)))

Creating Action Variants
In general, an action variant models a fault mode of an ac-
tion in the original domain. While these are typically written
ad-hoc based on the experience with failed execution runs,
our platform models allow a more principled approach: As
we have already added the expected state of a platform com-
ponent to the original action, we can now also define an ac-
tion variant for each state that the platform component may
have reached by exogenous events. For example, the naviga-
tion component in Figure 3a contains an exogenous transition
from the INIT state to the STUCK state, which represents the
situation that the robot is not able to move. Therefore, as
shown in Listing 4, we add an action variant move-stuck
of the action move that models the behavior of the action if
the navigation is stuck. In move-stuck, the precondition is
adapted to require the navigation to be stuck. The effect mod-
els what happens if the robot executes a move action while it
is stuck, which is nothing in this case. In order to ensure that
the diagnosis process is able to determine the effects of all
hardware faults that might have happened, it is beneficial to
use the hardware models as a guide. Although different hard-
ware faults may result in the same action variant, using the
possible platform states as a guideline to create all variants
will result in a complete description of the faulty behaviour.

Enforcing the History
We are not merely interested in any sequence of actions that
is an explanation for the observation but rather only in action
sequences that represent an adapted version of the original ac-
tion sequence. For example, suppose an agent that executed
the actions A and B, starting from a world state S, and ob-
serves the contradicting fact F. A planner might determine
a plan consisting of the single action C as possible diagno-
sis. However, this does not take into account that the agent
executed A and B. The only valid explanations are therefore
sequences of actions that consist of variants of A and B and
insertions of exogenous actions. Thus, we need to forbid so-
lutions that do not result from possible variants of the original
action sequence. We do this with order actions, which force
the planner to insert variants of the executed actions in the
right order.

For a given action sequence h = {a1, . . . , an}, we add an
action order-i for each ai, as shown in Listing 5, where
ACT_i is replaced with the action type of ai and PARAM_i is

Listing 6: Grounded order action to enforce grab after move
1 (:action order-1
2 :parameters ()
3 :precondition (last-move R1 C-BS C-CS1)
4 :effect (and (not (last-move R1 C-BS C-CS1))
5 (next-grab R1 WP1 C-CS1))

Listing 7: A non-faulty action with order predicates.
1 (:action move
2 :parameters (?r - robot
3 ?from - location ?to - location)
4 :precondition (and (next-move ?r ?from)
5 (at ?r ?from))
6 :effect (and (not (at ?r ?from)) (at ?r ?to)
7 (not (next-move ?r ?from))
8 (last-move ?r ?from))))

replaced with parameters of ai. We replace ACT_0 by BEGIN
and ACT_n+1 by FINISHED, where (last-BEGIN) is true
initially and (next-FINISHED) is part of the goal. An ex-
ample for such an order action is shown in Listing 6. We also
add a new precondition and a new effect to each action and
its variants to enforce the order actions, as shown exemplarily
for the move action in Listing 7.

To reach a goal state, in which (last-FINISH) holds,
the planner has to generate a sequence of the form h′ =
{o0, a′1, o1, . . . , a′n, on}, where oi is an order action and a′j
is either aj ∈ h or one of its faulty variants. Additional ex-
ogenous actions may be inserted anywhere in the sequence.

Action Variants Based on Changing Parameters
With the construction above, we can force any diagnosis pro-
duced by a planner to form a variant of the original action
sequence, including the actions’ parameters. However, when
executing an action, the action’s parameters may change
without being noticed by the executive, thereby producing an-
other variant of the action. Instead of specifying those vari-
ants explicitly, we obtain them by only fixing some of the
parameters in the (last-...) and (next-...) predicates.
In order to do so, we have to differentiate between parameters
that would have caused the execution to fail in the first place
if changed, and parameters that may change unknowingly.

Consider a move action that takes as argument the current
position ?from of the robot and the target machine ?to. As-
suming that the execution will fail if the robot is not actually
starting from where it expects to be, then the starting position
cannot have changed unnoticed. Therefore, ?from has to be
enforced by the order predicates. On the other hand, the
robot might not end up where it expected, e.g., if the target
machine was moved from its original location. In order to en-
able the diagnosis process to consider this possibility, the ?to
parameter should be replacable and not be part of the order
predicates, as shown in Listing 7. The decision about which
parameters have to be enforced in the history depends on the
specific implementation and execution of the actions and can
differ from platform to platform.

Action Variants Based on Conditional Effects
When designing the PDDL definition of an action with the
intention to use it for planning, it is sufficient to model the

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1911



Listing 8: A put action with conditional effect. Hardware
dependencies and order predicates are removed for visibility
purposes.

1 (:action put
2 :parameters (?r - robot
3 ?mps - location ?wp - workpiece)
4 :precondition (at ?r ?mps)
5 :effect (and (when (holds ?r ?wp)
6 (and (not (holds ?r ?wp))
7 (at ?wp ?mps)))))

effects and preconditions of an action without any faults in
mind. However, when executed on a real robot, an action’s
precondition may not be satisfied and still execute success-
fully, but only achieving its effects partially. As an example,
if the robot executes put while not actually holding a work-
piece, the execution may succeed (assuming it is not equipped
with an appropriate sensor), but without the expected effects,
as the workpiece will not be on the machine. Therefore, for
diagnosis purposes, the effect needs to be modelled as condi-
tional effect, depending on whether the robot is holding the
workpiece. The corresponding PDDL action with this con-
ditional effect is shown in Listing 8. Additionally, an action
may also have undesired side effects, e.g., if there was already
a workpiece on the machine before the robot executed put,
it may knock that workpiece from the machine. Modelling
those conditional and side effects is crucial for diagnosis, as
only then the diagnosis process will be able to determine all
possible outcomes of an action. Based on our experiences, we
have identified some principles for modelling actions for di-
agnosis purposes: (1) The precondition must express the nec-
essary condition for the action not to fail completely during
execution. (2) Any other condition, which changes the effect
of the action but does not affect its executability, must be used
as a condition of a conditional effect. (3) An action may have
additional side effects on other objects. Such effects need to
be added as conditional effect and possibly require the other
objects as additional parameters of the action.

Generating the PDDL Domain and Problem Description
We conclude this section by summarizing the process of gen-
erating the PDDL domain and problem description for a par-
ticular diagnosis problem. We start with a PDDL domain
augmented by exogenous actions, action variants, and modi-
fied action preconditions that require the respective platform
states, as described above. For a given initial state, an ac-
tion history h = {a1, . . . , an}, and a set of observations, we
generate the PDDL description as follows:

(1) For each ai, insert an order action oi into the domain.
(2) As initial state of the problem, use the state in which h

started (i.e., the initial state of the original plan).
(3) Add (next-BEGIN) to the initial state to fulfill the pre-

condition of the first order action o0.
(4) Create the goal formula as a conjunction of the observed

fault and (last-FINISH) to enforce the complete his-
tory h.

The resulting PDDL domain and problem description can
then be used to determine possible diagnoses.

3.3 Top-k Planning for Diagnosis Generation
With the generated PDDL domain and problem description,
we can use a PDDL planner to determine a possible history
alternative that explains the observations. As we are inter-
ested in multiple explanation candidates, we will use a top-k
planner [Katz et al., 2018] that generates k cost-optimal so-
lutions. As metric, we apply Ockham’s razor and assume that
diagnoses with fewer exogenous actions are more likely. We
achieve this by applying a cost of 1 to each exogenous ac-
tion, while each plan action (and its variant) have a cost of
0. By doing so, we will obtain explanations with the least
possible amount of faults. It is possible that the real expla-
nation contains more faults than other possible explanations
and might not be included in the first k plans. However, since
there might be an infinite number of possible explanations,
we fix k such that the risk of missing the real explanation is
negligible.

3.4 Active Diagnosis
Starting with a set of possible explanations generated by the
top-k planner, we now determine which of those is the correct
one. However, before we continue with excluding possible
diagnosis candidates with active diagnosis, we filter this set
of k possible solutions by excluding one of any two diagno-
sis candidates that would result in the same world state. To
result in the same world state, two diagnosis candidates have
to contain the same component faults. For example, if a pos-
sible solution for the given problem would be the insertion
of an exogenous action e into the sequence, then the planner
would treat all solutions that has e inserted at any place in
the sequence as distinct solutions, even though some of them
might result in exactly the same state. As we cannot distin-
guish those explanations, we only keep one of them.

Next, we apply active diagnosis to filter the explanation
candidates. For a given set of candidates, we determine the
common set of facts, the so-called shared knowledge. For ev-
ery candidate that can be excluded by a sensing action, the
shared knowledge will increase, as at least one disagreement
on a fact will be resolved. Following Mühlbacher and Stein-
bauer [2014], we select the sensing action with the highest
impact on the set of diagnosis candidates.

For a set of diagnosis candidates D and a grounded sens-
ing action a that senses whether a predicate f is true, the ac-
tion a splits D into D+ and D−. The subset D+ contains
all diagnosis candidates that are consistent with a positive
outcome of a(~x) and D− all candidates that are consistent
with a negative outcome. Using the combined probabilities
pD+ =

∑
d∈D+

pd (similarly for pD− ), we can calculate the
entropy of a, which is a metric for the impact of a onto D:

E(D, a) = −
(
pDp

log2 pDp
+ pDn

log2 pDn

)
To determine the probability pd of a single diagnosis candi-
date d, we combine the probability of all exogenous actions
Fd that are part of the diagnosis candidate d: pd =

∏
f∈Fd

pf .
Since exogenous actions represent exogenous event edges of
a hardware component model, we can directly use the proba-
bilities assigned to these exogenous edges. Therefore, the en-
gineering knowledge encoded in the platform model directly
affects the selection of the sensing action.
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pfailure 0.12% 0.19% 0.27%

∅ D DP ∅ D DP ∅ D DP

# Plans 1874 1136 2102 1527 683 3312 2019 542 3766
# Failed 527 288 115 621 165 121 757 219 379
% Failed 28.1 25.3 5.5 40.6 24.1 3.6 37.5 40.4 10.1

# Diagnoses 0 56 49 0 20 66 0 22 111
# Repairs 0 0 31 0 0 38 0 0 69
# Disabled 0 0 26 0 0 32 0 0 50

Table 1: The number of plans, diagnoses, repairs, and robot dis-
engagements in the simulated RCLL games, where ∅ stands for no
diagnosis, D for diagnosis without platform models, and DP for di-
agnosis with platform models.

Game Score Game Score w/ Diagnosis
w/o Diagnosis w/o platform w/ platform

pfailure Mean Min Max Mean Min Max Mean Min Max

0.12% 71.31 6 260 76.66 12 217 160.94 93 229
0.19% 58 4 142 68.44 12 151 156.6 91 295
0.27% 32.75 0 98 37.88 0 144 109.5 10 174

Table 2: Game scores in simulated RCLL games of a team of robots
without diagnosis, with diagnosis but without platform models, and
with diagnosis including platform models. Failure was simulated,
pfailure is the probability of a failure in an interval of 1 s.

After repeatedly using active diagnosis to determine the
sensing action with the highest impact, executing the action,
and excluding mismatching diagnosis candidates, the agent
ends up with one or more remaining diagnosis candidates.
Finally, the agent can integrate all facts that are true in all re-
maining diagnosis candidates into its world model. Similarly,
it can remove all facts that are inconsistent with all remaining
diagnosis candidates. Next, it can try to repair any hardware
component that was determined to be faulty. If this is not pos-
sible, it may decide to call for human intervention or disable
itself, since the robot is not operable any more.

4 Evaluation
We implemented the proposed diagnosis approach1 and in-
tegrated it into the goal reasoning system CLIPS Execu-
tive [Niemueller et al., 2019]. We evaluated our approach
in a scenario from the RoboCup Logistics League (RCLL)
[Niemueller et al., 2014; Hofmann et al., 2021]. In the RCLL,
a team of three robots needs to operate machines to manufac-
ture products. In order to do so, a robot needs to put work-
pieces on and grab workpieces from machines, and instruct
the machines to process the workpiece. A team scores points
upon successful delivery of a product.

We modeled the gripper, RGB/D camera, and RGB camera
as hardware components. The gripper may become decali-
brated or break completely. Also, the gripper’s fingers may
get stuck. Each camera might crash, which sometimes can
be repaired by performing a reset. We extended an impleme-

1The code is open source and available at
https://github.com/Sagre/GuidedExplanatoryDiagnosis.

nation of the RCLL in the Gazebo simulator [Zwilling et al.,
2014] with simulated failures of each of those components.

We simulated full RCLL games with simulated failures
with diagnosis including platform models and compared it
to diagnosis without platform models and no diagnosis at all.
Both approaches try to recover a valid world model after ob-
serving an action failure. In cases where this is successful,
the agents will try to continue the operation. Table 1 shows a
summary of the results. We can see that with diagnosis, the
percentage of successful plans increases. We can also see that
diagnosis with platform models considerably outperforms di-
agnosis without platform models, for several reasons: First,
even with a successful diagnosis, the system without platform
models cannot find a repair action, because there is no known
underlying cause; the action variant seems to have occurred
randomly. In contrast, with platform models, the underlying
reason (a failed platform component) can be diagnosed and
repaired. Second, with platform models, the robot is able to
detect when it is no longer operational, e.g., because its grip-
per is broken. In this case, it can disengage and stop interfer-
ing with the other robots. Table 2 shows the game scores in
each configuration. As we can see, diagnosis with platform
models increases the team’s score significantly, especially in
configurations where faults occur more often. Considering
the running time t, both approaches perform similarly, with
t = (4.00± 1.80) s for diagnosis without platform models
and t = (4.17± 1.76) s for diagnosis with platform models.

5 Conclusion
We presented a novel approach to explanatory diagnosis for
a mobile robot, based on the assumption that many execution
failures are caused by issues of the robot hardware platform.
To diagnose such a system, we model each robot component
as a finite state machine and use them to design a diagnosis
domain consisting of faulty action variants and exogenous ac-
tions that model state transitions in the platform model. We
take a history-based diagnosis approach by forcing the PDDL
planner to only consider variants of the original action se-
quence for explanation candidates, and we use a top-k plan-
ner to determine the k cost-optimal explanations. Next, we
apply active diagnosis to decide which explanation is correct
by determining sensing actions that differentiate between the
possible explanations. As a result, we obtain an explanation
for the observed failure. As this explanation is based on the
model of the robot, the underlying hardware fault is part of
the explanation. Therefore, the robot can try to repair itself
by taking an appropriate action. We evaluated the approach in
the context of the RoboCup Logistics League, which showed
that using platform models results in more successful plans
and ultimately in a better-performing team.
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