
Using Platform Models for a Guided Explanatory Diagnosis Generation for Mobile Robots

Daniel Habering, Till Hofmann, Gerhard Lakemeyer
Knowledge-Based Systems Group, RWTH Aachen University, Germany

At a Glance
• Plan execution on a mobile robot is error-prone
• If an error occurs, unknown side effects may occur
→ Need to determine the true world state

• Often, failures occur due to hardware faults
→ Base diagnosis on a model of the robot platform

• Use diagnosis as planning to find explanation candidates
• Use active diagnosis to distinguish candidates
• Determine underlying hardware fault and try to repair

Generate PDDL
diagnosis problemDetected fault

and history of
executed actions

PDDL domain template

Platform models

Generate
diagnosis

candidates

Select most
informative

sensing action

Available
sensing actions

Execute sensing action
and exclude

diagnosis candidates

More than one candidate left?

Repair or reset
faulty or unknown

components
Only one candidate left

or no more
sensing actions available?

Continue execution

Ask for
human assistance

Platform Models

INIT

STUCK

BROKEN

get-stuck()

p =
0.2

5

back-up()
break()
p = 0.1

break()
p = 0.1

INIT

LOCALIZED

LOST

localize()

lost()
p = 0.05

localize()

Model each platform component with a finite state machine:
Endogenous actions can be taken deliberately,

e.g., to repair a faulty component
Exogenous actions occur spuriously with some probability

Diagnosis as Planning
• Create a PDDL problem with the observations as goal (Sohrabi et al. 2010)
• History-based diagnosis → Enforce known action history (or a variant)
• Encode platform model into the PDDL domain
• Create action variants based on the platform models

⇒ Planner determines variants of the original action sequence that explain the
observations

Generating the PDDL diagnosis problem
Goal: Generate a PDDL diagnosis problem where each plan corresponds to a possible variant of the action history.

(1) Encode the platform models: Adapt the action so it includes the expected platform state
(2) Add exogenous actions according to the platform model
(3) Create action variants: Add variants based on the base actions and the platform models
(4) Enforce the history: Add order actions and adapt all preconditions and effects to enforce variants of the original action history

(:action move
:parameters (?r ?from ?to)
:precondition (at ?r ?from)
:effect (and (not (at ?r ?from))

(at ?r ?to))))

(2)
(1)

�

(:action get-stuck :parameters ()
:precondition (state NAV INIT)
:effect

(and (not (state NAV INIT))
(state NAV STUCK))
(increase (total-cost) 1)))

(:action move
:parameters (?r ?from ?to)
:precondition

(and (at ?r ?from)
(state NAV INIT)
(state LOC LOCALIZED))

:effect
(and (not (at ?r ?from))

(at ?r ?to)))

(:action move-stuck
:parameters (?r ?from)
:precondition

(and (at ?r ?from)
(state NAV STUCK)
(state LOC LOCALIZED))

:effect ())

�

(3) (4)

�

(:action move-stuck
:parameters (?r ?from ?to)
:precondition

(and (next-move ?r ?from)
(at ?r ?from)
(state NAV STUCK)
(state LOC LOCALIZED))

:effect
(and (not (next-move ?r ?from ?to))

(last-move ?r ?from ?to)))
(:action order-1 :parameters ()

:precondition (last-move R1 BS CS)
:effect

(and (not (last-move R1 BS CS))
(next-grab R1 CS WP1)))

Evaluation
• Benchmark in the RoboCup Logistics League:

A team of robots must manufacture products to score points
• Run games with simulated faults
• Robots may reset their hardware if possible and otherwise

disable themselves
⇒ Platform models improve diagnosis results

Game Score in the RoboCup Logistics League
Diagnosis

No diagnosis w/o platform w/ platform
pfailure Mean Min Max Mean Min Max Mean Min Max
0.12% 71.3 6 260 76.7 12 217 160.9 93 229
0.19% 58.0 4 142 68.4 12 151 156.6 91 295
0.27% 32.8 0 98 37.9 0 144 109.5 10 174


