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At a Glance
• Plan execution on a mobile robot is error-prone
• If an error occurs, unknown side effects may occur
→ Need to determine the true world state

• Often, failures occur due to hardware faults
→ Base diagnosis on a model of the robot platform

• Use diagnosis as planning to find explanation candidates
• Use active diagnosis to distinguish candidates
• Determine underlying hardware fault and try to repair
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Model each platform component with a finite state machine:
Endogenous actions can be taken deliberately,

e.g., to repair a faulty component
Exogenous actions occur spuriously with some probability

Diagnosis as Planning
• Create a PDDL problem with the observations as goal (Sohrabi et al. 2010)
• History-based diagnosis → Enforce known action history (or a variant)
• Encode platform model into the PDDL domain
• Create action variants based on the platform models

⇒ Planner determines variants of the original action sequence that explain the
observations

Generating the PDDL diagnosis problem
Goal: Generate a PDDL diagnosis problem where each plan corresponds to a possible variant of the action history.

(1) Encode the platform models: Adapt the action so it includes the expected platform state
(2) Add exogenous actions according to the platform model
(3) Create action variants: Add variants based on the base actions and the platform models
(4) Enforce the history: Add order actions and adapt all preconditions and effects to enforce variants of the original action history

(:action move
:parameters (?r ?from ?to)
:precondition (at ?r ?from)
:effect (and (not (at ?r ?from))

(at ?r ?to))))
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(:action get-stuck :parameters ()
:precondition (state NAV INIT)
:effect

(and (not (state NAV INIT))
(state NAV STUCK))
(increase (total-cost) 1)))

(:action move
:parameters (?r ?from ?to)
:precondition

(and (at ?r ?from)
(state NAV INIT)
(state LOC LOCALIZED))

:effect
(and (not (at ?r ?from))

(at ?r ?to)))

(:action move-stuck
:parameters (?r ?from)
:precondition

(and (at ?r ?from)
(state NAV STUCK)
(state LOC LOCALIZED))

:effect ())
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(:action move-stuck
:parameters (?r ?from ?to)
:precondition

(and (next-move ?r ?from)
(at ?r ?from)
(state NAV STUCK)
(state LOC LOCALIZED))

:effect
(and (not (next-move ?r ?from ?to))

(last-move ?r ?from ?to)))
(:action order-1 :parameters ()

:precondition (last-move R1 BS CS)
:effect

(and (not (last-move R1 BS CS))
(next-grab R1 CS WP1)))

Evaluation
• Benchmark in the RoboCup Logistics League:

A team of robots must manufacture products to score points
• Run games with simulated faults
• Robots may reset their hardware if possible and otherwise

disable themselves
⇒ Platform models improve diagnosis results

Game Score in the RoboCup Logistics League
Diagnosis

No diagnosis w/o platform w/ platform
pfailure Mean Min Max Mean Min Max Mean Min Max
0.12% 71.3 6 260 76.7 12 217 160.9 93 229
0.19% 58.0 4 142 68.4 12 151 156.6 91 295
0.27% 32.8 0 98 37.9 0 144 109.5 10 174


