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Abstract
Task planning for mobile robots typically uses an
abstract planning domain that ignores the low-level
details of the specific robot platform. Therefore,
executing a plan on an actual robot often requires
additional steps to deal with the specifics of the
robot platform. Such a platform can be modeled
with timed automata and a set of temporal con-
straints that need to be satisfied during execution.
In this paper, we describe how to transform an ab-
stract plan into a platform-specific action sequence
that satisfies all platform constraints. The transfor-
mation procedure first transforms the plan into a
timed automaton, which is then combined with the
platform automata while removing all transitions
that violate any constraint. We then apply reach-
ability analysis on the resulting automaton. From
any solution trace one can obtain the abstract plan
extended by additional platform actions such that
all platform constraints are satisfied. We describe
the transformation procedure in detail and provide
an evaluation in two real-world robotics scenarios.

1 Introduction
When using planners to solve robotic tasks, a programmer
has to model the domain of interest. However, it is often
problematic to specify the behavior of a robot based on high-
level domain features alone, as lower-level components may
impose constraints on the executability of high-level actions.
As an example, we consider a simple robot that can move
around, and pick up as well as put down objects. For high-
level reasoning purposes, it may suffice to only consider the
actions put, pick, and goto. When actually operating on
the robot, additional details need to be taken care of, e.g.,
the perception unit needs to be enabled when picking an ob-
ject. As the camera needs some time to initialize, it needs to
be enabled a few seconds before it is used. When moving,
the robot should disable its perception unit to save computa-
tional resources. In this scenario, the perception control can-
not be handled within low-level implementations easily with-
out either wasting time at each pick (turning it on when the
robot decides to pick, then wait until it is ready) or wasting
resources (turning it on when it is unnecessary). The essential

problem here is that the perception handling is dependent on
the context determined by the high-level reasoner.

These low-level constraints could be considered directly by
the high-level planner. However, this would considerably in-
crease the domain size and thus impair planner performance.
Also, it goes against separation of concerns, as the high-level
planning domain directly incorporates low-level platform de-
tails. Thus, a separation of high-level reasoning and robot-
specific actions is desirable [Hofmann et al., 2018].

In this paper, we instead propose a plan transformation
based on timed automaton (TA) reachability analysis. We
model each robot platform component as a TA and define
constraints on the platform model using a subset of Metric
Temporal Logic (MTL). The MTL constraints connect the
high-level plan with the robot platform, e.g., by requiring that
the camera is turned on two seconds before the robot performs
the action pick. Given a high-level plan, we first construct a
TA that represents the plan. Next, we extend the constructed
TA by replacing each state by a copy of the platform model,
while removing any edges that violate a constraint. By apply-
ing reachability analysis on the constructed TA, we obtain a
sequence of high-level and low-level actions along with exe-
cution times that satisfy all constraints.

In the remainder of this paper, we first summarize related
work, before we address some core design decisions of our
proposed transformation. Then, we summarize the formal-
ism of MTL and TAs, before we describe how to encode the
problem as a reachability task on TAs. We evaluate our ap-
proach on logistics robots as well as on a domestic service
robot, before we conclude.

2 Related Work
Task and motion planning (TAMP) combines high-level task
planning with low-level motion planning, e.g., with an in-
terface between task and motion planner to effectively com-
bine off-the-shelf planners [Srivastava et al., 2014], by ex-
tending the FF heuristics for geometric reasoning [Garrett
et al., 2015], or by using constraint programming to guide
the high-level search with geometric [Gravot et al., 2005;
Dantam et al., 2016] and temporal constraints [Erdem et al.,
2011]. In contrast to our proposed approach, TAMP never ex-
tends but instead constrains the high-level plan. Additionally,
the lower level in our approach differs from TAMP; while
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TAMP focuses on motion planning, our low-level compo-
nents are symbolic representations of arbitrary platform com-
ponents not restricted to manipulation. In a similar fashion,
Erdem et al. [2016] integrate general feasibility checks into
an ASP-based planner, either by checking constraints directly
during search, or by constraining the planner afterwards if
a feasibility check is violated. Alternatively, external pred-
icates can be directly embedded into PDDL-based planners
[Hertle et al., 2012; Dornhege et al., 2012], ASP-based plan-
ners [Erdem et al., 2012], and other reasoners such as CCALC
[Aker et al., 2011]. There, a low-level component sets the
value of a symbolic atom used by the task planner, which
allows to integrate platform components, but does not al-
low for temporal constraints. RMPL [Kim et al., 2001] ex-
tends simple temporal networks into temporal plan networks
to use a temporal planner to resolve temporal constraints. In
contrast to the proposed approach, constraints in RMPL ex-
press relations between actions of the plan and do not pro-
vide an abstraction of the underlying platform. Konecnỳ et
al. [2014] use temporal constraints for execution monitoring,
but do not use the constraints to augment the original plan.
Hofmann and Lakemeyer [2018] formulate metric temporal
constraints on GOLOG programs and describe a transforma-
tion procedure based on MTL synthesis [Hofmann and Lake-
meyer, 2020], but do not provide an implementation.

Concerning planning via model checking [Cimatti et al.,
1997; Giunchiglia and Traverso, 2000], Li et al. [2012]
compare the performance of different model checking tools
against planning tools, showing that some model checkers
can compete with planners. Panek et al. [2006a] obtain an
order schedule for a lacquer production plant from reacha-
bility analysis on TAs extended by weights and communica-
tion across different TAs with the tool TaOpt [Panek et al.,
2006b]. Largouët et al. [2016] combine two TA extensions
to perform planning in an extension of the transport domain
from the International Planning Competition (IPC). They also
apply reachability analysis to compute plans. Ziegert and
Wehrheim [2013] decouple time-critical software component
management from a top-level graph transformation frame-
work to guarantee exclusive access to resources.

3 Plan Transformation: Assumptions
Our goal is to decouple the platform specifics from the ab-
stract reasoning. To narrow down this broad objective, we
postulate core assumptions that form the base of the proce-
dure this paper presents. Constraints required by the operat-
ing platform should be modeled separately from the abstract
reasoning domain. Those constraints are satisfied only af-
ter a high-level course of action is determined. This is done
by means of a plan transformation that adds platform actions
to the existing abstract plan. It specifically does not remove
or re-order existing plan actions to avoid tampering with the
feasibility of the initial plan. For the same reason, control-
ling platform specifics must not alter the high-level reasoning
states, hence the platform domain and planning domain are
disjoint. This enables us to treat the operation of platforms
as a process that runs in parallel to the execution of domain
actions. It also allows us to treat the plan actions as atomic

propositions in MTL. In particular, we do not need to know
about the preconditions and effects of the plan actions, be-
cause plan actions do not affect platform actions (and vice
versa). Instead, the dependencies that the transformation en-
sures may be fully captured in terms of temporal relations
between the domain actions and the platform states. The re-
sponsibility of the proposed transformation is therefore to de-
termine an executable plan together with execution start times
for each action, based on the temporal restrictions propagated
by the reasoner, the control restrictions induced by the mod-
els, and the temporal constraints expressing relations between
high-level and low-level actions. For simplicity, we assume
that the robot platform is modeled with a single TA. If mul-
tiple TAs are modeled, they can be combined by a product
construction [Alur and Dill, 1994].

4 Foundations
We briefly summarize suitable formalisms, namely MTL and
timed automata, to model temporal dependencies.

4.1 Metric Temporal Logic (MTL)
MTL [Koymans, 1990] extends Linear Time Logic (LTL)
with timing constraints on the Until modality. One commonly
used semantics for MTL is a pointwise semantics [Henzinger,
1998], in which formulas are interpreted over timed words.

Definition 1 (Timed Words). A timed word ρ over a finite
set of atomic propositions Σ is a finite or infinite sequence
(σ0, τ0) (σ1, τ1) . . ., where σi ⊆ Σ and τi ∈ R≥0 such that
the sequence (τi) is monotonically non-decreasing and non-
Zeno. The set of timed words over Σ is denoted as TΣ∗.

Definition 2 (Formulas of MTL). Given a set Σ of atomic
propositions, the formulas of MTL are built as follows:

φ ::= σ | ¬φ | φ ∧ φ | φUI φ

We use the abbreviations XIφ := (⊥UI φ) (next),
FIφ := (>UI φ) (future) and GIφ := ¬FI¬φ (globally).
We may omit the interval I if I = [0,∞).

Definition 3 (Pointwise semantics of MTL). Given a timed
word ρ = (σ0, τ0) (σ1, τ1) . . . over alphabet Σ and an MTL
formula φ, ρ, i |= φ is defined as follows:

1. ρ, i |= p iff p ∈ σi 2. ρ, i |= ¬φ iff ρ, i 6|= φ

3. ρ, i |= φ1 ∧ φ2 iff ρ, i |= φ1 and ρ, i |= φ2

4. ρ, i |= φ1 UI φ2 iff there exists j such that
(1) i < j < |ρ|, (2) ρ, j |= φ2, (3) τj − τi ∈ I , (4) and
ρ, k |= φ1 for all k with i < k < j.

Following [Henzinger, 1998], we use the strict semantics
for the Until modality, which can be translated into the non-
strict semantics [Ouaknine and Worrell, 2005].

4.2 Timed Automata
Timed automata [Alur and Dill, 1994] extend finite automata
by a notion of continuous time. We adopt the definition of
Bengtsson and Yi [2004].
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Figure 1: TA Acam to model a simple perception unit.

Definition 4. A timed automaton (TA) is a tuple A =
(L, l0, E, I) over a finite set of clocks C and a finite alphabet
ΣE , where L is a finite set of locations (also called states);
l0 ∈ L is a starting location; I : L→ Φ(C) is the invariant of
each location; and E ⊆ L×Φ(C)×ΣE×2C×L is the set of
transitions. Φ(C) denotes the set of clock constraints δ (also
called guards), defined by δ ::= x op c | c op x | δ∧δ, where
x ∈ C is a clock, op ∈ {<,≤,=,≥, >} and c ∈ Q is a con-
stant. Instead of (li, g, a, r, lj) ∈ E, we write li

g,a,r−−−→ lj ∈ E
and call r the set of resets or updates.

TAs model behavior depending on continuous time with
the help of clocks. The current value of clocks is expressed
via Clock assignments ν : C → R≥0, initially all clocks start
at value 0, then they advance continuously and at the same
rate. At any given time, a TA A is in a configuration 〈li, νi〉,
which is valid only if the clock values given through νi satisfy
the constraint I(li). A configuration can be changed by either
letting d time elapse while not changing li, or by taking a tran-
sition e = li

g,a,r−−−→ lj ∈ E. Transition e may only be taken
if νi satisfies g and taking e changes all values of clocks in r
to 0. This induces an infinite transition system T(A) where
the set of states are all possible configurations and the tran-
sitions are formed by either delaying for d seconds or taking
transitions e ∈ E. A path in T(A) is called a timed trace and
defines a run on A through the labels on the used transitions.
Each run induces a timed word (σ0, τ0) (σ1, τ1) . . . ∈ TΣ∗E ,
establishing a connection between MTL and TAs.

The reachability problem on a TA can be stated as follows:
Given a starting configuration 〈l, ν〉 and a destination state l′
along with a target clock constraint ϕ, find a path from 〈l, ν〉
to a configuration 〈l′, ν′〉 where ν′ satisfies ϕ. The problem is
PSPACE-complete and thus decidable [Alur and Dill, 1994].

5 Platform Constraints
As motivated above, we are given a plan P = 〈a1, . . . , an〉
and a TA AM with labeled states, as shown in Figure 1. The
plan P describes some agent behavior, while the TA AM
models the specific robot platform. The edge labels of the
platform components describe low-level actions that the robot
can take, e.g., shut-off. The set of plan actions ΣP , the
low-level actions ΣE and the state labels ΣL are assumed to
be pairwise disjoint. For a timed word σ we consider it to de-
scribe a transformed plan, if for each σi ∈ σ: |σi ∩ ΣP | ≤ 1,
|σi∩ΣE | ≤ |σi∩ΣL| = 1 and δ0∩ΣP = ∅. Hence, in σ, the
platform is always in exactly one state, at most one action is
executed, and the first entry contains no action. We connect
the plan P and the platform TAAM by three kinds of tempo-

ral constraints formulated in MTL over Σ = ΣP ∪ΣE ∪ΣL.

5.1 Requiring Certain Platform Actions
Let us start with constraints postulating how M has to be
controlled during P . Let βi denote a disjunction over a subset
of ΣP ⊆ Σ and αi a disjunction over a subset of ΣL ⊆ Σ.
uc(B,α1, α2) := G

[
(α1 ∧ X(α2 ∨ (¬α1Uα2)))

⊃ (β1 ∧ ¬α2)UI1(β2 ∧ ¬α2)UI2 . . . (βn ∧ ¬α2)UInα2

]
where B := 〈〈β1, I1〉, . . . , 〈βn, In〉〉. A so-called until-chain
constraint uc states that whenever an action a1 matching α1

is followed by a2 matching α2, without further occurrences
of α1 or α2 in between, then between such a matching pair
of domain actions a1 and a2 the platform has to sequentially
remain in the states specified through the βi in B for a time
span given through the intervals Ii.

Satisfying uc(B,α1, α2), given a plan P =
〈a1, . . . , an〉, equates to grounding a timed word
({a1}, τ1) . . . ({an}, τn) while also extending it by ad-
ditional platform actions. Consider the TA from Fig-
ure 1, γe := uc(〈running, [0,∞)〉,s pick,e pick)
and a plan 〈s pick,e pick〉 consisting of a dura-
tive pick action represented by a start and end action.
Let ρ := ({s pick}, τ1)({e pick}, τ2) for some
τ1, τ2 ∈ Q+. It holds that ρ |= (s pick ∧ X(e pick ∨
(¬s pickUe pick))). Hence, the constraint γe requires
(running ∧ ¬e pick)Ue pick. Assuming Acam is in
state off prior to P , we could adapt ρ to satisfy γe:
ρ′ :=({off}, 0)({boot,warm-up}, 0)({running}, 3)

({running,s pick}, 3)({e pick}, 3)

5.2 Temporal Constraints on Plan Actions
Furthermore, we may also impose temporal constraints on
the actions in the abstract plan, e.g., the duration between
two plan actions. For this, we define two macros IsDomAct
and PlanOrder(i), where IsDomAct :=

∨
a∈P a holds iff the

current action is a plan action, and PlanOrder(i) holds iff
the current action is the i-th action in the plan. Given the
total number of plan actions n, it can be defined as follows:

PlanOrder(i) :=


IsDomAct ∧ ¬FIsDomAct if i = n

IsDomAct ∧ FPlanOrder(i+ 1)

∧¬FPlanOrder(i) if i < n

⊥ else
Formulas to constrain the time interval I in which the i-th
plan action starts can be simply given as follows:

abs(i, I) := FIPlanOrder(i)
We may also require a certain amount of time passing be-
tween plan actions by specifying the time interval I in be-
tween the i-th and j-th plan action, with j > i:

rel(i, j, I) := F
[
PlanOrder(i) ∧ FIPlanOrder(j)

]
Continuing with the example from above, we can adapt ρ′ to
satisfy a constraint rel(1, 2, [15, 20]) (requiring a time inter-
val [15, 20] between action 1 and action 2) by adapting the
grounded times in ρ′:
ρ′′ :=({off}, 0)({boot,warm-up}, 0)({running}, 3)

({running,s pick}, 3)({e pick}, 18)
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Figure 2: Steps to transform abstract plans into executable ones
based on low-level platform specifics.

Listing 1: Transformation Procedure
1 AP :=encode_plan(P,Cabs ∪ Crel)
2 Abase:=add_platform_ta(AP ,AM)
3 Aenc:=encode_platform_control(Abase, Cuc):
4 For γ ∈ Cuc:
5 For (aj , aj′ ) in get_activations(γ, P)
6 Abase:=enforce_uc(Abase, aj , aj′ , γ)
7 return Abase

8 enforce_uc(Acurr, aj , aj′ , uc(〈β1, I1〉 . . . 〈βn, In, α1, α2)):
9 Acontext:=get_sub_ta(Acurr, aj , aj′)

10 For i in {1, . . . , n}:
11 Si:=copy(Acontext)
12 Si:=restrict(Acurr,αi,Ii)
13 Atemp:=combine(S1, . . . , Sn, I1, . . . , In−1)
14 return replace(Acontext,Atemp, S1, Sn, In)

6 Transformation
Our proposed plan transformation can be summarized as fol-
lows: (1) Construct a single TA encoding the satisfaction
of constraints during the plan as a reachability problem to
a designated goal state (2) Find a symbolic representation of
traces reaching that state using a model checker (3) Decode
an actual trace from a symbolic one with grounded execu-
tion times. An overview of the procedure is shown in Figure
2. Here we focus on the encoding step, which is the core of
our approach. The goal of the encoding step is to construct
one TA Aenc with a state fin, such that every run reach-
ing fin corresponds to a timed word satisfying the given
constraints (of the form uc, abs and rel) whithin the plan
P = 〈a1, . . . , ak〉. Listing 1 gives an overview over the
necessary steps encode plan, add platform ta and
encode platform control to construct Aenc.

Consider P e = 〈s goto,e goto,s pick,e pick〉, a
plan consisting of start and end actions for the durative ac-
tions goto and pick, together with constraints:
γ1 :=rel(1, 2, [30, 45)) γ2 := rel(2, 3, [0, 0]))

γ3 :=rel(3, 4, [15, 20])

γ4 :=uc(〈〈off, [0,∞]〉, 〈>, [0, 4]〉〉,s goto,e goto)

γ5 :=uc(〈〈running, [0,∞]〉〉,s pick,e pick)

The constraints γ1, γ2 and γ3 provide the duration of goto
and pick and enforce that pick follows without any pause
after goto finishes; γ4 states that during a goto action the
camera should be turned off until the last 4 seconds of its ex-
ecution, where it may become necessary to boot the camera
for a subsequent pick action, which per γ5 requires a run-
ning camera for the whole duration. We denote the sets of
constraints of the respective types by Cuc, Cabs and Crel.

start ls goto
xrel < 45

le goto
xrel ≤ 0

ls pick
xrel ≤ 20

le pick fin

true
s goto
{xrel}

xrel ≥ 30
e goto
{xrel}

true
s pick
{xrel}

xrel ≥ 15
e pick
{xrel}

true
-
∅

Figure 3: Encoding plan P e and Cabs ∪ Crel.

6.1 Plan Constraint Encoding
The procedure encode plan constructs a TAAP with des-
ignated states a0 := start and an+1 := fin such that
traces from start to fin induce execution time groundings
of P respecting Cabs ∪ Crel. The construction is depicted in
Figure 3 for our running example. Initially, the plan actions
are translated into states as follows:

AP :=(LP ,start, EP , IP , XP )

LP :={la | a ∈ P} ∪ {start,fin}

EP :={lai
>,aj ,∅−−−−→ lai+1 | 0 ≤ i ≤ k}

IP (l) :=> for all l ∈ LP
A fresh clock xabs is introduced to encode Cabs as follows:
Let lb(x, I) := x ≥ a, if I = [a, b) or I = [a, b] and
lb(x, I) := x > a otherwise. Let ub(x, I) be defined analo-
gously for upper bounds. For each abs(k, Ik) ∈ Cabs, we add
ub(xabs, Ik) as invariant to lk−1. Similarly, the lower bound
of Ik is added as guard lb(xabs, Ik) on the transition reaching
lk. Trivial bounds xabs ≥ 0 and xabs <∞ are omitted.

Lastly, for each rel(k, k′, I) ∈ Crel a new clock xk,k′ is
added that is reset on the incoming transition of lak . Then,
a clock constraint encoding the lower bound of I is added
to the guard on the incoming transition of lak′ and the upper
bound is added as invariant on all states li, k ≤ i < k′. This
step may be optimized by re-using a clock for different con-
straints when possible, e.g., a single clock xrel can encode
all constraints of the form rel(k, k + 1, I).

The induced directed graph of the resulting TA AP is
a simple line and time elapsing in state lak corresponds
to the time elapsing since starting ak (and before starting
ak+1). The constructed TA indeed encodes the possible ac-
tion groundings to the plan that satisfy Cabs ∪ Crel:

Theorem 1. ρ = (∅, 0)({a1}, τ1)({a2}, τ2), . . . , ({an}, τn)
is a timed word satisfying Cabs ∪ Crel iff there exists a valid
timed trace ξ on AP from start to fin that induces ρ.

6.2 Platform Encoding
We proceed by incorporating the platform TA into the con-
struction. Listing 1 Line 2 creates a TA Abase based on AP
such that runs to fin in Abase also include arbitrary control
according to AM. Abase consists of k + 1 fresh copies Aak
ofAM (with a0 := start). For each state l ∈ LP \fin, we
add its invariant I(l) to each state in the corresponding copy
Al. For each transition e = l

g,a,r−−−→ l′ ∈ EP , we add tran-
sitions from each state s in Al to the corresponding copy s′

in Al′ (or to fin, if l′ = fin): s
g,a,r−−−→ s′. Figure 4 shows

such a constructed TA Abase schematically for our P e and
Acam, leaving out all annotations on states and transitions.
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fin

Figure 4: Combining Platform and plan. The activation scope of γ4
is marked. : off : warm-up : running

Theorem 2. Every valid timed trace ξ on Abase from its
initial state to fin induces a timed word ρ that satisfies
Cabs ∪ Crel and the sequence of platform actions within ρ
induce a valid run in AM .

6.3 Platform Constraint Encoding
Finally, we encode the until-chain constraints Cuc (Listing 1
Line 3). By iteratively considering for each γ ∈ Cuc all cor-
responding scopes aj , aj′ within the plan, the procedure en-
codes the platform controlling constraints. Hence the routine
enforce uc restricts the traces reaching fin between the
start of aj an aj′ to remain in states of AM as specified in γ.

Consider γ4 = uc(B4,s goto,e goto) with B4 :=
〈〈off, [0,∞]〉, 〈>, [0, 4]〉〉. It states that whenever s goto
is followed by e goto without occurrences of s goto or
e goto in between, then starting at this s goto action, the
platform has to be off for some time, followed by arbitrary
actions for at most four seconds until the matching e goto
starts. In other words, while driving, the camera has to be off
unless the destination is reached within the next four seconds.

We need to modify each copy Aai in Abase that covers
the relevant time frame to satisfy the constraint γ4. Each Aai
models platform actions in the time frame between two sub-
sequent plan actions. In Line 9, we construct a sub-automaton
Acontext that contains all states that might be visited between
aj and a′j , which is shown in Figure 4. An until-chain γi
defines n sets of states specified by βi that have to be subse-
quently visited, which we can enforce by creating n copies Si
ofAcontext (Line 11). Each Si is subsequently restricted fur-
ther (Line 12) to reflect the specification of βi: First, all states
not matching βi are deleted. Then all those states within Si
are removed that can never be visited while satisfying βi due
to time conflicts imposed by the other constraints.

Since γ4 describes platform control only between the first
and second plan action in P e, we end up with two copies
S1, S2 of the initial copy As goto. After restricting the pos-
sible states, we consider the temporal constraints of γ, which
are given by the intervals Ii. With a fresh clock xγ and by
adding state invariants ub(xγ , Ii) to each state of Si, the up-
per bound of Ii can be enforced if xγ is set to 0 when entering
Si. This is done in the next subroutine combine (Line 13),
where a single TA is formed out of S1, . . . , Sn by connect-
ing states s ∈ LSi with s′ ∈ LSi+1

as follows: Either s and
s′ are copies of the same state in Acontext, then a transi-

tion s
gi,copy,{xγ}−−−−−−−−→ s′ is added, where gi = lb(xγ , Ii+1)

(copy transitions), or there exists a transition sc
g,a,r−−−→ s′c

in AM and s is a copy of sc, s′ is a copy of s′c, then

s
g∧gi,a,r∪{xγ}−−−−−−−−−→ s′ is added (successor transitions).
Lastly, the resulting TA Atemp replaces the sub-automaton
Acontext within Acurr (Line 14). This can be achieved by

{x}

{x}
x ≤ 4

x ≤ 4 x ≤ 4
{x} {y}

fin

Figure 5: The full encoding of the ongoing example, only annota-
tions related to the encoding of Cuc are shown, trivial constraints
such as x ≥ 0 and x <∞ are omitted.

iterating over all transitions s
g,a,r−−−→ s′ of Acurr with either

s in Acontext and s′ not in Acontext (incoming transitions)
or vice versa (outgoing transitions). Any incoming transition
with s′ matching β1 gets the respective copy within S1 as
new destination and xγ is added to r. Any outgoing transition
with smatching βn gets the respective copy within Sn as new
source and lb(xγ , In) is added to g. All other incoming and
outgoing transitions are deleted.

Applying this construction to our example yields a TA as
shown in Figure 5. When all activations of each γ ∈ Cuc are
encoded, our encoding stops with a TAAenc. The correctness
of our encoding is covered by Theorem 3.
Theorem 3. There exists a timed word ρ based on P aug-
mented by control of AM that satisfies Cabs ∪ Crel ∪ Cuc iff
there exists a run on Aenc from start to fin.

7 Evaluation
Using our implementation taptenc1 (timed automata-
based plan transformation encoding procedure), together
with the CLI verifyta of the UPPAAL model checking
suite [Bengtsson et al., 1996], we conducted two experiments
on an Intel i7-8565U 1.8 GHz processor with 16 GB memory.
UPPAAL does not return concrete timed traces when answer-
ing reachability queries, but yields a symbolic trace which
represents possibly infinitely many concrete traces. Consid-
ering difference bound matrices as symbolic representation
formalism (such as used by UPPAAL), Bøgsted Poulsen and
van Vliet [2010] describe how to retrieve the fastest concrete
trace out of a given symbolic one. We adopt that approach in
our tool to cover the full transformation procedure.

First, we consider a scenario from the RoboCup Lo-
gistics League (RCLL) [Niemueller et al., 2013]. In the
RCLL, robots have to move workpieces between machines
and instruct those machines to assemble a product. We
apply the transformation to possible production sequences
of varying length in a simplified RCLL setting. The do-
main consists of the actions goto(m,m’), pick(o,m),
get-from-shelf(o,m), put(o,m), and pay(o,m). The
robot platform is modeled via three different timed automata.
Aperc offers control over the perception to activate a camera
when necessary, trigger object detection to validate grasping
attempts as well as providing images to human supervisors
during those attempts. Acalib manages the occasional need
to calibrate an axis-driven gripper. Depending on the situ-
ation, a calibration may be undesirable, e.g., to avoid axis
movement when holding something. Lastly, Acomm(m) al-
lows to send instructions to a machinem to modify a product.

1https://github.com/TarikViehmann/taptenc
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Time (s)

Platform TA trans load ta reach tracer # states

perc 0.32 0.11 0.08 0.03 655
calib 0.07 0.04 0.03 0.01 271
comm 0.02 0.01 0.01 0.01 69
perc + calib 0.63 0.85 0.58 0.14 2660
+ 1x comm 1.2 2.4 1.6 0.26 4566
+ 2x comm 2.0 4.0 2.5 0.38 5645
+ 3x comm 4.2 8.7 4.9 0.63 8600
+ 4x comm 13.5 18.1 9.0 1.1 13883

Table 1: Average execution times of five runs on plans of length 50.
trans: building the encoding and decoding, load ta: required
preprocessing step of verifyta, reach: reachability analysis,
tracer: computation of a concrete trace.

Time (s) # states

Plan
length perc calib

perc
+ calib perc calib

perc
+ calib

50 .6 .1 2.1 662 269 2574
100 2.0 .5 7.7 1325 527 5513
150 4.9 .1 15.5 1978 769 8297
300 19.2 2.9 53.1 3953 1538 16476

Table 2: Average total transformation time and encoding size of five
runs on plans with varying lengths.

As a first experiment, we consider plans of length 50 with
a varying number of platform TAs (including multiple in-
stances of Acom for different machines), as shown in Table 1.
We can see that our approach is suitable to be used in typi-
cal robotics applications, given a limited number of platform
components. The size of the encoded TAs is a major factor
considering both the time spent by verifyta to load the
TA and by taptenc to produce the encoding. Interestingly,
the model checking task is not the limiting factor in the con-
ducted tests, which we assume is due to the guidance that the
explicit encoding gives to the underlying task. As a second
experiment, we examined how the transformation scales as
the plan length increases, as shown in Table 2. The results
show that the presented approach is able to transform plans
with 150 domain actions in reasonable time.

Lastly, we evaluated our approach in a domestic service
robot scenario based on [Hofmann et al., 2016]. The robot
is tasked to clean up a table full of cups. Clean cups have to
be placed on a shelf, dirty ones belong in a dishwasher. In
the domain, the robot must (a) align to the furniture properly
before picking up a cup, (b) scan surfaces before picking up
or putting down a cup, (c) back off an object before mov-
ing away from it. We modified the domain to be suitable for
temporal planning and considered scenarios with a varying
number of cups on the table. We built a simplified domain
without the special requirements (a)-(c) and decoupled them
in a separate platform TA. Our plan transformation procedure
then inserts platform actions to compute a feasible solution.
We used TFD [Eyerich et al., 2009] for planning both on the
full and the simplified domain and configured it to stop when
the first plan was found. The plans obtained from the simple
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Figure 6: Planning with platform-specific actions versus planning
on the simplified household domain followed by a transformation to
include platform actions. Planning time was limited to 300s.

domain were then used as input for taptenc. The results
are summarized in Figure 6. From those we conclude that
decoupling of platform constraints helped to reduce the over-
all runtime on complex problem instances significantly, while
causing minor computational overhead on small tasks.

8 Conclusion
We developed a procedure to transform an abstract plan into
an executable action sequence that considers all platform
specifics that were ignored in the abstract domain. Such an
abstract plan may be determined by a planner or by any other
reasoning system that produces action sequences. Having
platform components decoupled from the high-level domain
allows to adapt low-level specifics without changing the high-
level reasoner, as different concerns are clearly separated. It
also simplifies the high-level domain, which may improve
the reasoner’s performance. We represent platform compo-
nents as timed automata (TAs) and express the connection
between such automata models and the abstract domain with
constraints from a subset of Metric Temporal Logic (MTL).
The proposed transformation first combines the abstract plan
and the platform components into a single TA and then ap-
plies reachability analysis to determine an execution trace.
We evaluated the approach on real-world scenarios from the
RoboCup Logistics League and from a domestic service robot
setting. Both scenarios showed that our approach is able to
transform an abstract plan in reasonable time, even when
dealing with large problems. The proposed approach also
outperforms an alternative approach, where the platform de-
tails are directly encoded into the planning problem.
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