
Using Off-the-Shelf Deep Neural Networks for
Position-Based Visual Servoing

Matteo Tschesche1[0009−0006−0872−2835], Till Hofmann2[0000−0002−8621−5939],
Alexander Ferrein1[0000−0002−0643−5422], and
Gerhard Lakemeyer2[0000−0002−7363−7593]

1 Mobile Autonomous Systems and Cognitive Robotics Institute,
FH Aachen University of Applied Sciences, Aachen Germany

{tschesche,ferrein}@fh-aachen.de
2 Knowledge-Based Systems Group, RWTH Aachen University, Aachen, Germany

{hofmann,lakemeyer}@kbsg.rwth-aachen.de

Abstract. Visual servoing is a well-established technique for object
grasping and controls the robot in a closed-loop fashion. It typically
uses hand-crafted features or a neural network that directly learns the
control output. We propose an alternative approach that uses an off-the-
shelf neural network object classifier and can therefore compute target
poses without manually selected features while also not requiring training
from scratch. Instead, the object classifier only needs to be fine-tuned on
a domain-specific dataset, significantly reducing the amount of required
training data. We describe a task sequencing approach that can control
a robot with a mobile base and an additional gripper, which is a typical
setup in many robotics applications. We evaluate the approach in the
RoboCup Logistics League and demonstrate the reliability and speed of
the proposed approach.

Keywords: sensory-motor control · visual servoing · 3D perception.

1 Introduction

Grasping objects is an essential part of almost every robotics application. While
motion planning allows for computing trajectories to reach a goal pose, a mo-
tion planner typically operates in an open-loop fashion, i.e., it senses the target
and computes the path once and then executes it until completion. In contrast,
in visual servoing [7], a closed-loop controller updates its target and adapts its
movements in every iteration and can therefore react to moving targets and sen-
sor errors, but typically does not plan long trajectories. Usually, visual servoing
uses manually selected features, which are often based on simple shapes such
as lines, or circles [9]. While this has been used successfully in many applica-
tions, it requires careful fine-tuning of the selected features and does not allow
for complex objects or shapes. Alternatively, some approaches directly learn a
closed-loop controller, i.e., a neural network determines the next control out-
put given an input image from a camera [25]. However, this typically requires

2 M. Tschesche et al.

training a neural network from scratch and therefore requires large amounts of
training data.

In this paper, we propose a visual servoing architecture that uses a neural
network as object detector in order to determine the pose of the target object but
then uses a classical control law to determine the control outputs. This allows us
to use an off-the-shelf object detector such as YOLOv4 [5] for object detection
and therefore alleviates the need for expensive training. Instead, a pre-trained
network can be used that only requires fine-tuning on a domain-specific dataset.

The proposed framework supports kinematically redundant robots that have
a wide-range but inaccurate mobile base and an additional close-range but ac-
curate gripper. The two components are combined with task sequencing, which
first searches the target object using the robot’s navigation stack and switches to
a closed-loop controller once the target object has been detected. It then moves
the mobile base to a target region near the target object, before it adjusts its
pose by moving the gripper until the target pose has been reached with high
accuracy. This allows wide-range and precise movements while also being fast.

We evaluate the approach in several tasks from the RoboCup Logistics League
(RCLL) [30]. In the RCLL, a team of robots needs to transport workpieces be-
tween machines in order to execute a sequence of manufacturing steps. Hence,
each robot needs to pick workpieces from and put workpieces on the machine’s
conveyor belt, grab workpieces from a shelf, and feed workpieces onto a slide. As
each assembly process involves numerous grasping tasks, speed and reliability
of grasping is a crucial factor in the design of the robots. As we will see, the
proposed approach is able to execute grasping tasks more reliably but also faster
than a baseline approach using the iterative closest point (ICP) algorithm, which
has been successfully used in previous iterations of the competition.

The remainder of the paper is structured as follows. In Section 2, we discuss
related work, before we describe our approach in greater detail in Section 3.
We evaluate the proposed visual servoing approach and compare it against the
baseline in Section 4 and finally conclude in Section 5.

2 Related Work

Visual servoing [14,6,7] is the task of moving a camera or robot to match the
current configuration of visual features with a target configuration. In contrast to
motion planning [18], visual servoing uses a closed control loop and typically does
not involve collision avoidance, but uses real-time visual information to compute
the next control inputs until the goal is reached. The controller may directly de-
termine joint inputs or provide set-point inputs to a joint-level controller, which
is sometimes referred as a dynamic look-and-move controller [14]. Typically, the
camera is moving with the robot (eye-in-hand), but other configurations such
as a static camera observing the robot workspace are also possible [7].

Visual servoing can be formulated as an optimization problem of minimizing
the error e(t) = f(t) − f∗ between the target features f∗ and the the current
features f(t) at timestep t. Depending on the choice of features f , we can dis-

Using Off-the-Shelf DNNs for Position-Based Visual Servoing 3

tinguish image-based visual servoing and position-based visual servoing [7,15],
where the former directly uses the image feature measurements in the image
plane to compute the error, while the latter estimates the camera pose and
compares the estimated camera pose to the target pose. Position-based visual
servoing requires a geometric model and a calibrated camera system, while map-
ping the image space to the workspace in image-based visual servoing sometimes
results in control problems and non-convergent behavior [7]. Hybrid approaches
try to avoid these drawbacks [9], e.g., 2- 12 -D visual servoing [26] combines im-
age features with 3D data by determining a partial estimate for the camera pose
without requiring a camera model, and partitioned visual servoing [10] decouples
the z-axis motions from the other degrees of freedom.

Typically, visual servoing requires carefully designed visual features which
are usually based on detecting simple shapes such as circles as lines or identify-
ing predefined tags [9]. More recently, visual servoing has been combined with
various learning approaches to allow for more complex features [25]. Several ap-
proaches learn the relative pose of a pair of images, e.g., based on optical flow
estimation [32], convolutional neural networks (CNNs) [4,17], or siamese neu-
ral networks [38]. Alternatively, a policy that directly determines the control
inputs can be learned, e.g. with CNN-based regression [34], unsupervised rein-
forcement learning [20,31,21,16], or one-shot imitation learning [1]. While these
approaches can be used without fine-tuning visual features, they typically require
large amounts of training data and sometimes suffer from the reality gap, that
is, while they work well in simulation, reproducing similar precision in real-world
domains is challenging. As an alternative and similar to the approach proposed
in this paper, pre-trained neural networks can be used to detect objects, which
then serves as input for visual servoing. This has been used successfully with
stereo cameras for navigating drones towards wind turbines [12] and only using
a RGB data for aligning bolster springs in railway maintenance application [23].
In contrast to the former approach, our approach does not require a stereo cam-
era. The latter approach requires the image plane to be parallel to the object
plane, while our approach allows arbitrary initial yaw rotations.

A robot is said to be kinematically redundant if it has more degrees of freedom
than required for the given task [8]. This can be exploited, for, say, enlarging the
stable area of the task [29], avoiding joint limits [11], or for achieving secondary
goals [28]. Task sequencing [27] combines several subtasks by executing each task
in a pre-defined order, e.g., by first constraining only a few degrees of freedom
while the robot is far away from the goal and then adding constraints as the
robot gets closer to the goal [27]. A task priority strategy [8,11] assigns a priority
to each task and only enables a lower priority task while the higher priority task
has reached its goal. A similar approach can also be used to combine a mobile
base with a robotic arm [24], where the mobile base is prioritized while the robot
far away from the goal, while the arm is prioritized for grasping tasks.

For the RCLL, several approaches have been described to solve manipula-
tion tasks. The team GRIPS uses a closed-loop approach using a LiDAR as
sensor [35]. As the shape of the machines used in the RCLL is known, a cluster-

4 M. Tschesche et al.

ing algorithm can be used to compute the pose of the machine. From this pose,
the goal pose for grasping can be derived. A closed-loop sliding mode controller
is used to reach the computed goal pose. Before adopting the approach proposed
in this paper, the team Carologistics used an open loop approach with multiple
stages [13]. In a first stage, similar to [35], the machine’s pose is estimated from
the LiDAR. Next, a plane fitting algorithm based on RANSAC is used to detect
the front of the conveyor belt, using point cloud data from an RGB-D camera.
Finally, the exact pose of the conveyor belt is computed with an ICP algorithm.
In every stage, the robot moves to the computed pose without additional sensor
feedback. This approach serves as baseline for the evaluation in Section 4.

3 Visual Servoing with an Off-the-Shelf Object Detector

In the following, we describe our position-based visual servoing approach con-
sisting of 3D object localization, triangulation, and a control approach based on
task sequencing. In order to determine the goal pose, we use the pre-trained and
fine-tuned object detector YOLOv4 [5]. This allows us to use learned features
rather than manually defined hard-coded features while avoiding the need of
large amounts of training data, as we only need to fine-tune the object detector
to the domain at hand. Furthermore, assuming geometrical constraints given by
the domain, determining the 3D position of the target location is sufficient, as
roll, pitch, and yaw can be inferred, for instance, because the target object is
known to be placed on a flat surface. Given the location of the target object in
the 2D image and the known shape of the target object, the 3D goal position
is computed by means of triangulation. Finally, as the robot is kinematically
redundant, we use task sequencing to first move the mobile base to the vicinity
of the goal and then use the robot’s gripper to reach the goal region.

3.1 3D Object Localization

The controller needs a 6D pose as target input. However, it is often sufficient
to determine the 3D position of the target and then infer the rotation from
the environment. This is the case in the RCLL: the conveyor belt and slide are
known to be placed level on the machines, i.e., there is no rotation relative to the
machine, and the machine itself stands flat on the ground. Similarly, workpieces
are always placed flat on the conveyor belt and are rotationally symmetric about
the yaw axis, hence we can assume that its yaw is zero. This allows us to use
an off-the-shelf object detector that only uses RGB input, which computes a
bounding box of the target object in the image. As the shape of the object is
known, triangulation can be used to determine the 3D position. In this paper,
we use YOLOv4 [5] and YOLOv4-tiny [37] to compute bounding boxes of the
target objects. YOLOv4 uses a CNN architecture and is fast enough to be used
in a closed-loop approach while also being precise enough to determine the goal
pose with sufficient accuracy. It is pre-trained on the COCO dataset [22] and we
fine-tuned the detection layers on a domain-specific training set.

Using Off-the-Shelf DNNs for Position-Based Visual Servoing 5

Im
ag
e
P
la
n
e

x

y

zp1

p2
i1

i2
vu1

u2

wo

fx, fy

1
∆x1

∆x2

∆y

Fig. 1: 3D projection of a workpiece.

Triangulation Assuming the
shape of the target object is
known, we can raycast through
bounding box corners and apply
triangulation to project the de-
tected 2D bounding boxes from
image space to 3D Euclidean
space, as shown in Figure 1.
We use the lower bounding box
corners for the projection i1 =(
u1 v1

)T
and i2 =

(
u2 v2

)T
where v1 = v2 = v, shown as
blue dots in image and Euclidean
space. They are used to deter-
mine the raycast direction for p1
given by (∆x1

, ∆y) and for p2 by
(∆x2

, ∆y) normalized for z = 1. Using the known object width, wo, and a cal-
ibrated camera with focal lengths fx in pixel-width and fy in pixel-height, the

object positions pm =
(
xm ym zm

)T
in the middle between p1 =

(
x1 y1 z1

)T
and p2 =

(
x2 y2 z2

)T
of the projection of bounding box corners to the 3D Eu-

clidean space can be computed using the angle between the raycast of pm and
the z axis defined by α as follows:

pm =


∆x1

(
cosα wo−sinα wo ∆x2

∆x2−∆x1
+ sinα wo

2) + cosα wo
2

∆y (
cosα wo−sinα wo ∆x2

∆x2−∆x1
+ sinα wo

2)
cosα wo−sinα wo ∆x2

∆x2−∆x1
+ sinα wo

2


Target Poses Using pm and the known height h of the object, we can compute
the center and upper edge of the target object. Since kinematically redundant
robots typically have a mobile base that is less accurate than the gripper, it is
often useful to define two different goal poses, one for the mobile base and one
for the gripper. The target pose for the gripper is set to be just above the target
object such that the robot can move down the gripper to reach the target. The
target pose for the mobile base is set further away from the actual goal to avoid
collisions.

3.2 Controllers

Once we have determined the target pose for the mobile base
(
x∗b y

∗
b ψ

∗
b

)T
and

the gripper
(
x∗g y

∗
g∗ z

∗
g

)T
, we can use simple linear controllers to reach each

from its current pose
(
xb yb ψb

)T
and

(
xg yg zg

)T
for base and gripper respec-

tively. As the mobile base is omni-directional, we can compute control outputs
for translational speeds vb,x, vb,y, and the rotational speed vb,ψ separately. We

6 M. Tschesche et al.

use a P controller [3] to determine the desired speed vb =
(
vb,x vb,y vb,ψ

)T
at

timestep t:

vb,xvb,y
vb,ψ

 =


max

(
vmin
b,x ,min

(
vmax
b,x , ab,x · t, |x∗b − xb| ·

vmax
b,x

adecb,x sb,x

))
max

(
vmin
b,y ,min

(
vmax
b,y , ab,y · t, |y∗b − yb| ·

vmax
b,y

adecb,y sb,y

))
max

(
vmin
b,ψ ,min

(
vmax
b,ψ , ab,ψ · t, |ψ∗

b − ψb| ·
vmax
b,ψ

adecb,ψ sb,ψ

))


Here, vmin
b =

(
vmin
b,x vmin

b,y vmin
b,ψ

)T
and vmax

b =
(
vmax
b,x vmax

b,y vmax
b,ψ

)T
are the min-

imal and maximal possible velocities respectively. The acceleration is constant

and defined by the factors ab =
(
ab,x ab,y ab,ψ

)T
. The velocity required while

decelerating is computed based on the required distance sb =
(
sb,x sb,y sb,ψ

)T
to

stop at the target, the difference between target and current pose, the current

velocity, and the constant deceleration adecb =
(
adecb,x a

dec
b,y a

dec
b,ψ

)T
.

The gripper uses three separate stepper motors for the x, y, and z axis, each
being controlled independently using a P controller. We define control output for
the x axis, the other axes are controlled analogously. First, the maximal possible
speed vpg,x(i), that can be decelerated before reaching the target, at timestep i
is computed by:

vpg,x(i) =
√
2 ag,x

∣∣x∗g − xg(i)
∣∣

Here, the constant acceleration ag,x and error in x direction between the x po-
sition xg(i) at timestep i and target x position x∗g are used.

The velocity vg,x(i) in x direction at timestep i is computed using the maxi-
mum speed of the gripper’s x axis vmax

g,x as follows:

vg,x(i) =

{
min(vmax

g,x , vg,x(i− 1) +
ag,x

vg,x(i−1) if vpg,x(i) > vg,x(i− 1)

vg,x(i− 1)− ag,x
vg,x(i−1) else

The velocities are applied by computing the time between each motor step
using the ramp algorithm [2].

3.3 Task Sequencing

As the robot’s three degrees of freedom (DOF) mobile base and three DOF
gripper are kinematically redundant, we use task sequencing as shown in Figure 2
to coordinate the subtasks.

Search In the first subtask, the robot is far away from the goal and may possibly
not sense the target. Instead, it uses the expected pose (e.g., based on the known
machine position) to instruct the robot’s navigation stack in order to reach a
position from which the target object is visible. As the robot gets closer to
the machine and the machine is detected, the expected position is computed

Using Off-the-Shelf DNNs for Position-Based Visual Servoing 7

Start

Search
Move Base
and Gripper

Fine-Tune
Gripper

Open-Loop
Grasping

Success

Failed

object
not found

object detected

object lost

base at target

not reachable

gripper at target

object lost

grasp failed

grasp successful

Object Detector

target pose

Fig. 2: Task sequencing.

relative to the observed position of the machine, which improves the accuracy
and increases the robustness. Once the object is detected reliably and the robot
is within a threshold to the target pose, the next subtask is activated. If the
navigation fails to reach the target region the complete task fails.

Move Base and Gripper Once the target object is reliably detected and the
robot is close to the target, the first visual servoing task is activated, which
moves the mobile base and gripper simultaneously. The base velocity is reduced
as the distance towards the machine decreases. If vision of the object is lost, the
controller switches back to Search. The goal of this subtask is to move the mobile
base to its target pose within a threshold, using the target pose and control law
as described above. At the same time, the gripper is moved to its expected target
pose assuming the robot’s mobile base precisely reaches its target pose.

Fine-Tune Gripper Once the mobile base has reached its target, the gripper
needs to be moved to reach its target pose. As the mobile base can only move
imprecisely, the gripper pose typically needs to be readjusted even if the gripper
already reached its target pose in the previous subtask. This subtask succeeds if
the gripper reaches its target pose within a small threshold. In case the object
moved and is no longer in range of the gripper, the previous subtask is reactivated
to re-adjust its base. If the object is no longer visible, the procedure switches
back to Search.

Open-Loop Grasping After the gripper has reached its target pose, the object
is grasped in an open loop fashion, assuming that the workpiece will not move.
This subtask consists of three poses which need to be reached consecutively. It
starts from the visual servoing target pose, moves down the gripper, and either
picks the workpiece up or puts it down. Afterwards, the gripper is moved back
in its default pose.

8 M. Tschesche et al.

Table 1: Performance and speed of YOLOv4 and YOLOv4-tiny with a minimum
IoU of 50% and 75%, showing the F1 score, average precision for workpieces
(APwp), conveyor belts (APc), and slides (APs), mean average precision (mAP),
and inferences per second (IPS).

Object Classifier min. IoU F1 APwp APc APs mAP IPS (s−1)

YOLOv4 50 0.97 0.9966 0.9888 0.9804 0.9886 0.904
75 0.92 0.9741 0.9147 0.8217 0.9035 0.904

YOLOv4-tiny 50 0.91 0.9720 0.9526 0.8688 0.9311 18.904
75 0.74 0.7976 0.7553 0.4263 0.6597 18.904

4 Evaluation

We evaluate our visual servoing framework3 and its components in several sce-
narios of the RCLL. First, we analyze whether YOLOv4 and YOLOv4-tiny are
performant enough to be used for real-time object detection on a robot. As a
robot typically has no dedicated GPU, all inferences needs to be done on a CPU.
Hence, inference time on a CPU is crucial. Next, we compare the novel visual
servoing approach against our previous approach, which was based on ICP.

4.1 Object Detection

Fig. 3: Object detection with bounding
boxes for a workpiece (blue), conveyor
belt (green), and slide (red).

We compare the darknet4 implemen-
tations of YOLOv4 and YOLOv4-tiny
with 3 detection layers, which were fine-
tuned on object classes from the RCLL.

Training We used 4000 labeled images
for training and used several augmenta-
tion techniques to improve robustness.
Each image was rotated by 0◦, 90◦,
180◦, or 270◦. Additionally, the dataset
was augmented by applying cropping
and padding, hide and seek [33], and
CutMix [39], using random images from
the COCO dataset [22] as replacement.

Results Table 1 shows a comparison of YOLOv4 and YOLOv4-tiny with a
minimum Intersection over Union (IoU) of 50% and 75% on 300 test images
using an AMD Ryzen 5 1600 CPU. We can see that YOLOv4 performs better

3 The code including weights of the neural network is available at https://zenodo.org/
records/11032321.

4 https://github.com/kiyoshiiriemon/yolov4 darknet

https://zenodo.org/records/11032321
https://zenodo.org/records/11032321
https://github.com/kiyoshiiriemon/yolov4_darknet

Using Off-the-Shelf DNNs for Position-Based Visual Servoing 9

than YOLOv4-tiny, but accomplishes less than one inference per second, which is
too slow for closed-loop visual servoing, typically requiring 5 to 10 inferences per
second to work reliably. On the other hand, for YOLOv4-tiny, we can see that a
minimum IoU of 75% does not perform well with a mean average precision (mAP)
of 0.6597. However, with a minimum IoU of 50%, performance is significantly
better while also faster with approximately 19 inferences per second, thus being
both performant enough and fast enough to be used for visual servoing.

4.2 Comparison of VS and ICP

O

RS

I

IBS0

I

CS

0

A1

2

B

3 4

C

5
D

6
7

8

E

9
10

Fig. 4: Field configuration for the
evaluation tasks with a base station
(BS), ring station (RS), and cap sta-
tion (CS) with input (I) and output
(O), and 10 different initial robot
poses (A-E).

We compare our visual servoing approach
with the ICP approach previously used
by Carologistics [13]. We do so by bench-
marking several grasping tasks with vary-
ing machine (BS, CS, RS) and initial
robot poses (A, B, C, D, and E with dif-
ferent orientations), as shown in Figure 4.
We evaluate picking tasks of a randomly
chosen workpiece for each machine’s out-
put side of the conveyor belt as well as
each cap station’s shelf, as well as putting
tasks for each machine’s input side of the
conveyor belt. This results in seven pick
and three put tasks for each starting pose
and hence 100 different tasks overall. The
workpiece configuration was chosen ran-
domly. This setup covers every possible
manipulation task in the RCLL from mul-
tiple starting poses.

The results are shown in Figure 5.
We can see that for almost all tasks, the
VS approach was faster than the ICP ap-
proach. On average, the ICP approach required 26.1 s, while the VS approach
required 21.1 s. Furthermore, the VS approach was also more reliable, as it suc-
ceeded in 99 out of 100 tasks, while the ICP approach was only successful in
92 out of 100 tasks. On the robot’s Intel Core i5-8400H CPU, the VS approach
updates the target pose with approximately 19Hz and thus is sufficiently fast to
run on the robot.

Grasping Challenge As an additional benchmark, we evaluated the VS approach
in the RCLL Grasping Challenge, where the task of a team of three robots is
to move a workpiece from a machine’s output to its input, three times for each
of the three machines [19]. The team Carologistics won this challenge in 2022
using the ICP approach described above, requiring 225 s to complete the task. In
comparison, the VS approach only required 123 s, decreasing the total execution
time by 45%.

10 M. Tschesche et al.

0

10

20

30

Successful Tasks

T
o
ta
l
E
x
ec
u
ti
o
n
T
im

e
[s
]

ICP

VS

Fig. 5: Total execution time of each attempt, showing only tasks where both the
ICP approach and the VS approach were successful. The tasks are ordered by
the execution time needed by the ICP approach.

In conclusion, the proposed approach is more reliable and faster than the pre-
vious approach based on ICP, which was the best approach in the 2022 grasping
challenge.

5 Conclusion

In this paper, we have described a visual servoing framework for kinematically
redundant robots with a mobile base with a wide range of motion but low ac-
curacy and a limited-range but highly accurate gripper. Using an off-the-shelf
neural network object classifier such as YOLO, the framework is capable of pre-
cise grasping without fine-tuning manually selected features but also with only
little requirement for training. As we can use a pre-trained neural network, we
only need to apply domain-specific fine-tuning to obtain a suitable object de-
tector. The detected object position in image space is then used to compute the
target pose of the robot by means of triangulation. A task sequencing approach
exploits the kinematic redundancy by first aligning the mobile base to the target
with a high tolerance and then moving the gripper closely to the target pose.

We demonstrated the effectiveness of the proposed visual servoing approach
by comparing it to a previous approach based on ICP in several scenarios of
the RCLL. The visual servoing approach was not only more reliable but also
executed the tasks significantly faster. The proposed visual servoing approach
contributed to the success of the team Carologistics at RoboCup 2022 [36].

Acknowledgements This work was supported by the Federal Ministry of Ed-
ucation and Research (BMBF) under grant No. 02L19C602 and the EU ICT-48
2020 project TAILOR (No. 952215).

We thank the reviewers for their feedback and suggestions, in particular for
a suggestion that may improve and simplify the pose computation.

Using Off-the-Shelf DNNs for Position-Based Visual Servoing 11

References

1. Argus, M., Hermann, L., Long, J., Brox, T.: FlowControl: Optical Flow Based
Visual Servoing. In: IROS. pp. 7534–7541 (Oct 2020)

2. Austin, D.: Generate stepper-motor speed profiles in real time. EMSP 1 (2005)

3. Bajpai, P.: Chapter 24 - process control. In: Biermann’s Handbook of Pulp and
Paper, pp. 483–492. Elsevier, 3rd edn. (2018)

4. Bateux, Q., Marchand, E., Leitner, J., Chaumette, F., Corke, P.: Training Deep
Neural Networks for Visual Servoing. In: ICRA. pp. 3307–3314 (May 2018)

5. Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: Yolov4: Optimal speed and accuracy
of object detection (2020)

6. Chaumette, F., Hutchinson, S.: Visual servo control. I. Basic approaches. IEEE
Robotics Automation Magazine 13(4), 82–90 (Dec 2006)

7. Chaumette, F., Hutchinson, S., Corke, P.: Visual Servoing. In: Springer Handbook
of Robotics, pp. 841–866. Springer (2016)

8. Chiacchio, P., Chiaverini, S., Sciavicco, L., Siciliano, B.: Closed-Loop Inverse Kine-
matics Schemes for Constrained Redundant Manipulators with Task Space Aug-
mentation and Task Priority Strategy. IJRR 10(4), 410–425 (Aug 1991)

9. Cong, V.D., Hanh, L.D.: A review and performance comparison of visual servoing
controls. IJIRA 7(1), 65–90 (Mar 2023)

10. Corke, P., Hutchinson, S.: A new partitioned approach to image-based visual servo
control. IEEE Transactions on Robotics and Automation 17(4), 507–515 (Aug
2001)

11. De Luca, A., Ferri, M., Oriolo, G., Giordano, P.R.: Visual Servoing with Exploita-
tion of Redundancy: An Experimental Study. In: 2008 IEEE International Confer-
ence on Robotics and Automation. pp. 3231–3237 (May 2008)

12. Durdevic, P., Ortiz-Arroyo, D.: A Deep Neural Network Sensor for Visual Servoing
in 3D Spaces. Sensors 20(5), 1437 (Jan 2020)

13. Hofmann, T., Limpert, N., Mataré, V., Ferrein, A., Lakemeyer, G.: Winning the
RoboCup Logistics League with fast navigation, precise manipulation, and robust
goal reasoning. In: RoboCup 2019. pp. 504–516. Springer (2019)

14. Hutchinson, S., Hager, G., Corke, P.: A tutorial on visual servo control. IEEE
Transactions on Robotics and Automation 12(5), 651–670 (Oct 1996)

15. Janabi-Sharifi, F., Deng, L., Wilson, W.J.: Comparison of Basic Visual Servoing
Methods. IEEE/ASME Transactions on Mechatronics 16(5), 967–983 (Oct 2011)

16. Jin, Z., Wu, J., Liu, A., Zhang, W.A., Yu, L.: Policy-based deep reinforcement
learning for visual servoing control of mobile robots with visibility constraints.
IEEE Transactions on Industrial Electronics 69(2), 1898–1908 (2022)

17. Jokić, A., Petrović, M., Miljković, Z.: Semantic segmentation based stereo visual
servoing of nonholonomic mobile robot in intelligent manufacturing environment.
Expert Systems with Applications 190, 116203 (2022)

18. Kavraki, L.E., LaValle, S.M.: Motion Planning. In: Springer Handbook of Robotics,
pp. 139–162. Springer (2016)

19. Knoflach, L., Kohout, P., Imhof, S., Rohr, A., Swoboda, D., Viehmann, T.:
RoboCup Logistics League: Rules and Regulations 2022 (2022)

20. Lampe, T., Riedmiller, M.: Acquiring visual servoing reaching and grasping skills
using neural reinforcement learning. In: IJCNN. pp. 1–8 (Aug 2013)

21. Lee, A.X., Levine, S., Abbeel, P.: Learning Visual Servoing with Deep Features
and Fitted Q-Iteration. In: ICLR (Jul 2022)

12 M. Tschesche et al.

22. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L.: Microsoft COCO: Common Objects in Context. In: ECCV (2014)

23. Liu, H., Li, D., Jiang, B., Zhou, J., Wei, T., Yao, X.: MGBM-YOLO: a Faster Light-
Weight Object Detection Model for Robotic Grasping of Bolster Spring Based on
Image-Based Visual Servoing. JINT 104(4), 77 (Apr 2022)

24. Liu, J., Balatti, P., Ellis, K., Hadjivelichkov, D., Stoyanov, D., Ajoudani, A.,
Kanoulas, D.: Garbage Collection and Sorting with a Mobile Manipulator using
Deep Learning and Whole-Body Control. In: Humanoids. pp. 408–414 (Jul 2021)

25. Machkour, Z., Ortiz-Arroyo, D., Durdevic, P.: Classical and Deep Learning based
Visual Servoing Systems: a Survey on State of the Art. JINT 104(1) (Dec 2021)

26. Malis, E., Chaumette, F., Boudet, S.: 2 1/2 D visual servoing. IEEE Transactions
on Robotics and Automation 15(2), 238–250 (Apr 1999)

27. Mansard, N., Chaumette, F.: Tasks sequencing for visual servoing. In: IROS (2004)
28. Mansard, N., Chaumette, F.: Directional Redundancy: a New Approach of the

Redundancy Formalism. In: IEEE CDC. pp. 5366–5371. Seville, Spain (2005)
29. Mansard, N., Chaumette, F.: Task Sequencing for High-Level Sensor-Based Con-

trol. IEEE Transactions on Robotics 23(1), 60–72 (Feb 2007)
30. Niemueller, T., Ewert, D., Reuter, S., Ferrein, A., Jeschke, S., Lakemeyer, G.:

RoboCup Logistics League Sponsored by Festo: A Competitive Factory Automa-
tion Testbed. In: Automation, Communication and Cybernetics in Science and
Engineering 2015/2016, pp. 605–618. Springer International Publishing (2016)

31. Sadeghzadeh, M., Calvert, D., Abdullah, H.A.: Self-Learning Visual Servoing of
Robot Manipulator Using Explanation-Based Fuzzy Neural Networks and Q-
Learning. Journal of Intelligent & Robotic Systems 78(1), 83–104 (Apr 2015)

32. Saxena, A., Pandya, H., Kumar, G., Gaud, A., Krishna, K.M.: Exploring convolu-
tional networks for end-to-end visual servoing. In: ICRA. pp. 3817–3823 (2017)

33. Singh, K.K., Lee, Y.J.: Hide-and-Seek: Forcing a Network to be Meticulous for
Weakly-Supervised Object and Action Localization. In: 2017 IEEE International
Conference on Computer Vision (ICCV). pp. 3544–3553 (Oct 2017)

34. Tokuda, F., Arai, S., Kosuge, K.: Convolutional neural network-based visual ser-
voing for eye-to-hand manipulator. IEEE Access 9, 91820–91835 (2021)

35. Ulz, T., Ludwiger, J., Steinbauer, G.: A robust and flexible system architecture
for facing the robocup logistics league challenge. In: RoboCup 2018. pp. 488–499.
Springer (2018)

36. Viehmann, T., Limpert, N., Hofmann, T., Henning, M., Ferrein, A., Lakemeyer,
G.: Winning the RoboCup Logistics League with Visual Servoing and Centralized
Goal Reasoning. In: RoboCup 2022:. pp. 300–312. Springer (2023)

37. Wang, C.Y., Bochkovskiy, A., Liao, H.Y.M.: Scaled-yolov4: Scaling cross stage
partial network (2021)

38. Yu, C., Cai, Z., Pham, H., Pham, Q.C.: Siamese Convolutional Neural Network for
Sub-millimeter-accurate Camera Pose Estimation and Visual Servoing. In: IROS.
pp. 935–941 (Nov 2019)

39. Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: CutMix: Regularization
Strategy to Train Strong Classifiers With Localizable Features. In: ICCV. pp. 6023–
6032 (2019)

	Using Off-the-Shelf Deep Neural Networks for Position-Based Visual Servoing

