
Controlling Timed Automata against MTL

Specifications with TACoS

Till Hofmanna, Stefan Schuppb

aKnowledge-Based Systems Group, RWTH Aachen University, Aachen, Germany
bCyber-Physical Systems Group, TU Wien, Vienna, Austria

Abstract

TACoS is a tool for synthesizing controllers against specifications of unde-
sired behavior with timing constraints. Given a timed automaton and an
MTL specification, the tool synthesizes a controller that guarantees that ev-
ery possible execution of the system satisfies the given specification. TACoS
comes with a C++ library with a simple-to-use API and can read from and
write to human-readable text input and output. In this paper, we outline
the approach of the tool and present two examples in further detail.

Keywords: controller synthesis, timed automata, metric temporal logic

Nr. Code metadata description
C1 Current code version 1.2.0
C2 Permanent link to code/repository

used for this code version
https://doi.org/10.5281/zenodo.7194475

C3 Permanent link to Reproducible Cap-
sule

https://doi.org/10.24433/CO.8796292.v1

C4 Legal Code License LGPL-3.0
C5 Code versioning system used git
C6 Software code languages, tools, and

services used
C++, cmake

C7 Compilation requirements, operating
environments and dependencies

Linux OS, compiler which supports C++17
(gcc, clang), cmake (≥ 3.14), boost, protobuf,
graphviz

C8 Link to developer documenta-
tion/manual

https://github.com/morxa/tacos/wiki

https://morxa.github.io/tacos/

C9 Support email for questions hofmann@kbsg.rwth-aachen.de

stefan.schupp@tuwien.ac.at

?© 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0
license https://creativecommons.org/licenses/by-nc-nd/4.0/. The final authenti-
cated version is available at https://doi.org/10.1016/j.scico.2022.102898.

Preprint submitted to Science of Computer Programming November 23, 2022

https://doi.org/10.5281/zenodo.7194475
https://doi.org/10.24433/CO.8796292.v1
https://github.com/morxa/tacos/wiki
https://morxa.github.io/tacos/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.scico.2022.102898

1. Motivation

Digital systems interacting with the continuous real world are often safety
critical in the sense that certain unwanted behavior should be avoided. De-
termining whether a given system is safe has been under extensive research
for various system types. Related to the question of safety is the synthesis of
a controller, which tries to find a component which can ensure safe execution
of a system. Based on observations of the environment, the controller must
select an action from a set of controllable actions such that the resulting
execution trace is guaranteed to satisfy the formal specification.

For formal approaches towards the synthesis problem, an appropriate
abstraction is required, which is able to reflect the relevant characteristics
of a system without adding unnecessary information. Especially for systems
with mixed discrete-continuous behavior, certain modelling concepts have
been introduced. One of the most popular models are timed automata (TAs),
which are widely used in the formal methods community to analyze formal
safety properties.

While safety, i.e., the avoiding of certain system states, is one requirement
that can be checked, other specifications such as reaching certain system
states within a certain time interval (liveness) can be of interest. In general,
specifications are usually formalized via logics. Here, we consider metric
temporal logic (MTL), a timed extension of linear temporal logic (LTL), as
formal specification language. Like LTL, MTL allows to describe tempo-
ral properties, but additionally allows timing constraints, e.g., F=1a, which
requires that an a event occurs exactly one time unit in the future.

The tool TACoS implements an automated approach for the synthesis
of TA controllers for a given MTL specification.

Related Work. Controller synthesis for timed systems has been researched
extensively, in different settings. Tools such as Acacia+ [1], Unbeast
[2], Strix [3], and Spot [4] synthesize controllers for LTL specifications.
LTL synthesis has also been a focus of the Reactive Synthesis Competition
(SYNTCOMP) [5]. In contrast to MTL, LTL does not allow timing con-
straints. SynthKro and FlySynth [6] synthesize controllers that remain
in or reach a given set of states of a timed automaton rather than controlling
against a logical specification. Uppaal-Tiga [7] and Synthia [8] control
timed automata against a TCTL specification to accomplish reachability or
safety. Uppaal-Tiga has also been extended to models with partial observ-
ability [9], using pre-defined controller templates. Casaal [10] synthesizes
a controller for MTL0,∞ specifications. MTL0,∞ is a subset of MTL, where
every bounded until operator may only use an upper or a lower time-bound

2

(not both). While many synthesis tools for different kinds of specifications
exist, research on MTL synthesis so far has focussed on theoretical aspects.
We intend to close this gap with TACoS, a tool for full MTL controller
synthesis.

2. Software Description

The tool TACoS [11] is a tool for the automated synthesis of controllers
for systems described by a timed automaton with respect to a specification
formalized in MTL. As such, it augments well-known theoretical results [12]
by a functional, easy-to-use implementation. Based on a TA representation
of a system (the plant) and an MTL formula (the specification), TACoS syn-
thesizes a TA which controls the plant against the specification such that the
composition (i.e., the concurrent execution of the controller and the plant)
does not violate the specification.

The implemented approach in TACoS is based on the theoretical con-
tribution [12] but additionally focusses on practical applications. To realize
this, the tool TACoS features multithreaded synthesis, various search heuris-
tics, early termination, as well as smart pruning and re-using of the nodes
in the search space. All methods required in the tool are shipped as C++

libraries to allow integration into other frameworks. Furthermore, we pro-
vide a parser for plant specifications based on Google’s protobuf1, as well
as multiple visual output methods (interactive and non-interactive) to aid
debugging.

3. Approach

We sketch the approach implemented in TACoS with a small example,
where we have a timed automaton (see Figure 1) with one clock c. Initially,
the automaton is in location l0, from which the clock can be reset at any non-
zero (positive) time via the a-transition. Additionally, a second transition
can be taken to reach the location l1, but only if one time unit has passed.
The bad behavior is given by the MTL formula2 e∨Fe, which states that the
system violates the specification if the e-transition to location l1 is taken.

The controller can only control the former transition (labelled with a),
while the latter (e) is executed by the environment and thus is not control-
lable.

1https://developers.google.com/protocol-buffers
2We use MTL with strict semantics, where Fα is satisfied if α is satisfied in at any

point strictly in the future. Therefore, e ∨ Fe is not equivalent to Fe.

3

https://developers.google.com/protocol-buffers

good controller action first

(l0, c, 0), (l0, 0)

good controller action first

(l0, c, 0) ((⊤ U e), 1)(1, a)

good controller action first

(l0, c, 0), ((⊤ U e), 2)(2, a)

good controller action first

(l0, c, 0) ((⊤ U e), 3)

(3, a)

bad node

(l1, c, 0)

(2, e)

(1, a)

(2, a)

(3, a)
(2, e)

(1, a)

(2, a)

(3, a)

(2, e)

(1, a)
(2, a)
(3, a)

(2, e)

Figure 2: The search graph generated on the input TA from Figure 1 and the MTL
specification e ∨ F(e).

 a
 c > 0 ∧ c < 1

 {}

 a
 c > 0 ∧ c < 1

 {}

 a
 c > 0 ∧ c < 1

 {}

 a
 c > 0 ∧ c < 1

 {}

Figure 3: The synthesized controller.

l0
 a

 c > 0
 {c}

l1

 e
 c = 1
 {c}

Figure 1: The plant.

To track the specification, the MTL formula is
first translated to an alternating timed automaton
(ATA) [13]. Intuitively, an ATA is an automaton that
tracks the unsatisfied parts of the specification. During
the search, a search graph (Figure 2) is explored, which
tracks all possible evolutions of the plant along with the
satisfaction status of the specification. A node in the
search graph consists of time-abstracted TA and ATA
configurations and therefore represents a set of of plant
states which have similar discrete and temporal behav-
ior. During search, the parts of the unwanted behavior
(specification) that are not yet satisfied are updated based on the actions.
Nodes that allow bad behavior, i.e., nodes where the specification of un-
wanted behavior is satisfied, are marked as bad, nodes which allow reaching
such a node are subsequently labelled in case no controllable action allows
to avoid reaching a bad node. A controller can be extracted from the search
graph by avoiding nodes leading to bad behavior (see Figure 3). The re-
sulting controller is again a TA that is executed in parallel to the plant. As
the controller must not limit the acceptance behavior of the plant, all of its
locations are accepting (double circle in Figure 3), such that plant states that
are accepting are also accepting in the composition of plant and controller.

As shown in [12], the search always terminates and the resulting controller
is correct. The controller is in general not unique, but in this case implements
a very simple strategy of taking the a-transition repeatedly, thus prohibiting
the environment from executing its transition (e) which potentially leads to

4

bad behavior.

4. Example

FAR

BEHIND_1

FAR_BEHIND_1

 travel_1
 t = 2
 {t}

NEAR_1

 get_near_1
 t = 2
 {t}

IN_1

 leave_1
 t = 1
 {t}

 enter_1
 t ≥ 0 ∧ t ≤ 1

 {t}

(a) The train.

OPEN

CLOSED

OPENING

 start_open_1
 c_1 ≥ 1
 {c_1}

CLOSING

 finish_close_1
 c_1 = 1
 {c_1}

 start_close_1
 ⊤

 {c_1}

 finish_open_1
 c_1 = 1
 {c_1}

(b) The gate.

 start_open
 c = 2 ∧ t = 0

 {}

 start_open
 c > 2 ∧ t = 0

 {}

 start_open
 c = 1 ∧ t > 2

 {}

 get_near
 c = 1 ∧ t = 2

 {}

 start_open
 c > 1 ∧ c < 2 ∧ t > 2

 {}

 leave
 c = 2 ∧ t = 1

 {}

 leave
 c > 2 ∧ t = 1

 {}

 leave
 c > 2 ∧ t = 1

 {}

 enter
 c = 1 ∧ t = 0

 {}

 enter
 c = 2 ∧ t = 1

 {}

 enter
 c > 1 ∧ c < 2 ∧ t > 0 ∧ t < 1

 {}

 finish_close
 c = 1 ∧ t > 2

 {}

 finish_close
 c = 1 ∧ t = 1

 {}

 start_close
 c = 0 ∧ t > 2

 {}

 start_close
 c = 0 ∧ t = 0

 {}

 finish_open
 c = 1 ∧ t = 1

 {}

 finish_open
 c = 1 ∧ t > 2

 {}

(c) The resulting controller that controls the gate
against the specification.

Figure 4: A railroad crossing modelled as a synthesis problem: The plant consists of
two TAs: the train and the gate. While the train’s actions are controlled by the en-
vironment, the gate’s actions are controllable. The undesired behavior is specified as
((enter ∨ F[0,1]enter) Ũ ¬finish close) ∨ (start open Ũ ¬leave) ∨ (travel Ũ ¬finish open),
which intuitively expresses that (1) the gate must be closed for at least 1 sec before the
train may enter, (2) the gate must not open before the train has left the crossing, (3) the
gate must open before the train is far behind the gate.

We consider a classical example of a train-gate system [14]. As shown
in Figure 4, the system consists of two parts: an uncontrollable train and a
controllable gate. The train in Figure 4a approaches the gate and is mod-
elled as TA with some timing constraints on its actions, which describe the
travelling time of the train. The gate is modelled as a second TA that may
open and close, as shown in Figure 4b. Opening and closing both takes some
time, which is modeled by having the intermediate states CLOSING and
OPENING and timing constraints on the finish actions. The goal is to syn-
thesize a controller that controls the gate such that the gate is always closed
when the train passes the crossing. Additionally, we require the gate to be
closed for at least 1 sec before the train may enter the crossing. Formally,

5

the undesired behavior can be expressed with the following MTL formula:

((enter ∨ F[0,1]enter) Ũ ¬finish close)

∨ (start open Ũ ¬leave) ∨ (travel Ũ ¬finish open)

Figure 4c shows the synthesized controller. Note that the controller is
able to react to every possible (modelled) behavior of the environment, e.g.,
enter actions at different timepoints. Additionally, if the train never enters
the gate, any sequence of gate operations is admissible because the system
will never reach a final state (which requires that the train is in the location
FAR BEHIND 1). This can be seen in the right branch of the controller:
If the get near action does not occur, then the controller responds with
a sequence of start/open actions. While these actions do not violate the
specification, they are not necessary. As this example shows, the resulting
controller is not necessarily minimal.

5. Impact

TACoS provides the first implementation of TA controller synthesis
against full MTL specifications. It ships with a C++ API, which allows ap-
plications to integrate the synthesis library, as well as a protobuf API, which
can be used for textual input in a standalone binary.

In the current implementation, a TA controller is synthesized, but we aim
to generalize the approach. We especially expect TACoS to serve as a basis
for further development in the area of program synthesis in the context of
robotics, which is part of the current development.

Acknowledgements

This work was funded by the German Research Council (DFG) in the con-
text of the research training group UnRAVeL (RTG 2236), DFG grant GL-
747/23-1 ConTrAkt, and the EU ICT-48 2020 project TAILOR (No. 952215).

References

[1] A. Bohy, V. Bruyère, E. Filiot, N. Jin, J.-F. Raskin, Acacia+, a Tool
for LTL Synthesis, in: Computer Aided Verification, Springer, 2012, pp.
652–657.

[2] R. Ehlers, Unbeast: Symbolic Bounded Synthesis, in: Tools and Algo-
rithms for the Construction and Analysis of Systems, Springer, 2011,
pp. 272–275.

6

[3] P. J. Meyer, S. Sickert, M. Luttenberger, Strix: Explicit Reactive Syn-
thesis Strikes Back!, in: Computer Aided Verification, Springer Interna-
tional Publishing, 2018, pp. 578–586.

[4] A. Duret-Lutz, A. Lewkowicz, A. Fauchille, T. Michaud, É. Renault,
L. Xu, Spot 2.0 — A Framework for LTL and $$\omega $$-Automata
Manipulation, in: Automated Technology for Verification and Analysis,
Springer International Publishing, 2016, pp. 122–129.

[5] S. Jacobs, G. A. Perez, R. Abraham, V. Bruyere, M. Cadilhac,
M. Colange, C. Delfosse, T. van Dijk, A. Duret-Lutz, P. Faymonville,
B. Finkbeiner, A. Khalimov, F. Klein, M. Luttenberger, K. Meyer,
T. Michaud, A. Pommellet, F. Renkin, P. Schlehuber-Caissier, M. Sakr,
S. Sickert, G. Staquet, C. Tamines, L. Tentrup, A. Walker, The Re-
active Synthesis Competition (SYNTCOMP): 2018-2021 (Jun. 2022).
arXiv:2206.00251.

[6] K. Altisen, S. Tripakis, Tools for Controller Synthesis of Timed Systems,
in: Proceedings of the 2nd Workshop on Real-Time Tools, 2002, pp. 1–
12.

[7] G. Behrmann, A. Cougnard, A. David, E. Fleury, K. G. Larsen, D. Lime,
UPPAAL-Tiga: Time for Playing Games!, in: Computer Aided Verifi-
cation, Springer, 2007, pp. 121–125.

[8] H.-J. Peter, R. Ehlers, R. Mattmüller, Synthia: Verification and Syn-
thesis for Timed Automata, in: Computer Aided Verification, Springer,
2011, pp. 649–655.

[9] B. Finkbeiner, H.-J. Peter, Template-Based Controller Synthesis for
Timed Systems, in: Tools and Algorithms for the Construction and
Analysis of Systems, Springer, 2012, pp. 392–406.

[10] G. Li, P. G. Jensen, K. G. Larsen, A. Legay, D. B. Poulsen, Practical
controller synthesis for MTL0,∞, in: Proceedings of the 24th ACM SIG-
SOFT International SPIN Symposium on Model Checking of Software,
Association for Computing Machinery, 2017, pp. 102–111.

[11] T. Hofmann, S. Schupp, TACoS: A tool for MTL controller synthesis, in:
R. Calinescu, C. S. Păsăreanu (Eds.), Software Engineering and Formal
Methods, Springer International Publishing, Cham, 2021, pp. 372–379.
doi:10.1007/978-3-030-92124-8_21.

7

http://arxiv.org/abs/2206.00251
https://doi.org/10.1007/978-3-030-92124-8_21

[12] P. Bouyer, L. Bozzelli, F. Chevalier, Controller Synthesis for MTL Spec-
ifications, in: Proceedings of the 17th International Conference on Con-
currency Theory (CONCUR), Springer Berlin Heidelberg, 2006, pp.
450–464.

[13] J. Ouaknine, J. Worrell, On the decidability of metric temporal logic,
in: 20th Annual IEEE Symposium on Logic in Computer Science (LICS’
05), 2005, pp. 188–197.

[14] R. Alur, T. A. Henzinger, M. Y. Vardi, Parametric real-time reason-
ing, in: Proceedings of the Twenty-Fifth Annual ACM Symposium on
Theory of Computing, Association for Computing Machinery, 1993, pp.
592–601.

8

	Motivation
	Software Description
	Approach
	Example
	Impact

