
TACoS: A Tool for MTL Controller Synthesis

Till Hofmann1 and Stefan Schupp2

1 Knowledge-Based Systems Group, RWTH Aachen University, Aachen, Germany
hofmann@kbsg.rwth-aachen.de

2 Cyber-Physical Systems Group, TU Wien, Vienna, Austria
stefan.schupp@tuwien.ac.at

Abstract. We introduce TACoS, a tool for synthesizing controllers sat-
isfying MTL specifications of undesired behavior with timing constraints.
Our contribution extends an existing theoretical approach towards prac-
tical applications. The most notable features include: Online labeling
to terminate early if a solution has been found, heuristic search to ex-
pand the most promising nodes first, search graph pruning to reduce
the problem size by pruning irrelevant parts of the search graph, and
re-using previously explored search nodes to further reduce the search
graph. Finally, multi-threading support allows to make use of modern
CPUs with many parallel threads. TACoS comes with a C++ library
with minimal external dependencies and simple-to-use API. We evaluate
our approach on a number of scenarios and investigate how each of the
enhancements improves the performance.

The tool is publicly available at https://github.com/morxa/tacos.

Keywords: controller synthesis · metric temporal logic.

1 Introduction

Controller synthesis is the problem of determining a controller for a given system
to ensure the behavior of the composed system follows a certain specification.
The problem has been researched extensively for different kinds of systems and
different kinds of specifications (e.g., [4,9,7]). It has also seen interest in the AI
community (e.g., [8]) and in robotics (e.g., [15,12,13]). One particular synthesis
problem is controller synthesis for MTL specifications [7], where the system is
modeled as timed automaton (TA) and the specification of undesired behavior
is given as a metric temporal logic (MTL) formula. The problem has shown to
be decidable for finite words and fixed resources [7]. While several applications
are based on metric temporal constraints (e.g., [17,20,22]), to the best of our
knowledge, no general implementation of such a synthesis approach exists.

Supported by DFG RTG 2236 UnRAVeL and DFG grant GL-747/23-1 ConTrAkt.
This is a preprint version. The final authenticated version is available online at
https://doi.org/10.1007/978-3-030-92124-8 21.

https://github.com/morxa/tacos
https://doi.org/10.1007/978-3-030-92124-8_21

2 T. Hofmann and S. Schupp

Related Work Controller synthesis for timed systems has been researched ex-
tensively, in different settings. Tools such as Acacia+ [6] and Unbeast [10]
synthesize controllers for LTL specifications, which does not allow time con-
straints. SynthKro and FlySynth [1] synthesize controllers that remain in or
reach a given set of states of a timed automaton. Uppaal-Tiga [5] and Synthia
[19] control timed automata against a TCTL specification to accomplish reach-
ability or safety. Uppaal-Tiga has also been extended to models with partial
observability [11], using pre-defined controller templates. Casaal [16] synthesizes
a controller for MTL0,∞ specifications. MTL0,∞ is a subset of MTL, where every
bounded until operator may only use an upper or a lower time-bound (not both).

In this work, we present TACoS, a TA Controller Synthesis tool for MTL
specifications, based on theoretical decidability results from [7]. In Section 2,
we summarize the MTL synthesis problem, before we describe our tool in more
detail in Section 3. In Section 4, we evaluate TACoS on benchmarks from several
scenarios, before we conclude in Section 5.

2 The MTL Synthesis Problem

Timed automata (TA) [2] are a widely used model for representing real-timed and
hybrid systems. Their properties are often described with MTL [14], a temporal
logic that extends linear temporal logic (LTL) with metric time on the Until
modality. One commonly used semantics for MTL is a pointwise semantics, in
which formulas are interpreted over timed words. A timed word ρ over a finite set
of atomic propositions AP is a finite or infinite sequence ρ = (σ0, τ0) (σ1, τ1) . . .
where σi ∈ AP and τi ∈ R+ such that the sequence (τi) is monotonically
non-decreasing and non-Zeno. We use |ρ| to denote the number of elements in
ρ. For a set AP of atomic propositions, the formulas of MTL are built from
φ ::= a | ¬φ | φ ∧ φ | φUI φ (where a ∈ AP). We use the short-hand

notations φ ŨI ψ := ¬ (¬φUI ¬ψ) (dual until), FIφ := (>UI φ) (finally) and
GIφ := ¬FI¬φ (globally). Given a timed word ρ = (σ0, τ0) (σ1, τ1) . . . over
alphabet AP and an MTL formula φ, ρ, i |= φ is defined as usual for the boolean
operators, and with the following rule for UI : ρ, i |= φ1 UI φ2 iff there exists j
such that (1) i < j < |ρ|, (2) ρ, j |= φ2, (3) τj − τi ∈ I, (4) and ρ, k |= φ1 for all
k with i < k < j. We also write ρ |= φ for ρ, 0 |= φ and we define the language of
φ as L(φ) = {ρ | ρ |= φ}.

MTL Control Problem. The goal is to synthesize a controller C that controls a
plant P against a specification of undesired behaviors Φ such that all resulting
traces in the composition of P and C satisfy the specification Φ without blocking
the plant P . In this context, control means that C has control over some actions,
while the environment controls the remaining actions. The synthesis problem on
finite words and finite resources (i.e., fixed number of clocks and fixed constants)
is decidable [7]. We refer to [7] for the formal definition.

TACoS: A Tool for MTL Controller Synthesis 3

3 Approach

Based on [7], our tool works as follows: First, it translates the specification into
an alternating timed automaton (ATA) [18]. Next, it recursively constructs a tree
over regionalized configurations of the synchronous product of the plant TA A
and the specification ATA B. Intuitively, each node n in the search tree contains
a single regionalized configuration nA of A and a set nB of possible configurations
of B, which represents parts of the specification that have not been satisfied yet.
Each newly discovered node in the search tree is expanded by computing all
(regionalized) time and jump successors n′A of nA and the respective N ′

B for all
symbols. Nodes in which the A configuration is in a final location and Φ has fully
been satisfied (B is accepting) are labeled as bad, as they represent cases in which
the plant is in a final state and the specification has been violated. After building
the search tree, the tree is traversed and labeled bottom-up (good, bad) based on
the labels of the leaf nodes. A controller exists if the root node is labeled good.

TACoS aims to provide a practicable tool to synthesize TA controllers against
an MTL specification, with a focus on performance and usability. We summarize
the most notable features in the following.

Parallelization. To make use of multi-threading, the node expansion is parallelized.
Pending nodes are stored in a globally accessible queue and worker threads take
nodes from the queue, expand those and push resulting successors into the queue
for further processing.

Incremental labeling. Instead of first constructing a complete search tree and then
labeling the tree bottom-up, it is also possible to partially label the tree during
expansion. Nodes are labelled recursively until either the root node has been
labeled or not enough information is available to label a node. This approach
allows to label the root node without constructing the complete search tree.

Pruning. With incremental labeling, a node’s label may be determined during
search. With pruning, whenever a node’s label is determined, all of its unlabeled
successors are marked as canceled, which prevents them from being expanded later
on. The combination of incremental labeling and pruning allows to effectively
skip large parts of the search graph during construction.

Node re-using. When constructing the search tree as described, many nodes are
created multiple times. This may occur whenever certain states of the system are
reachable via different execution paths of the plant. Duplicate nodes consequently
agree on their subtrees, i.e., the work of exploring these subtrees will be done
several times. To overcome this, we identify duplicate nodes during the search.
Instead of re-creating the sub-tree, we re-use the existing node instead and add
the corresponding edges. This changes the underlying data structure from a
search tree to a search graph, affecting all other improvements as well.

4 T. Hofmann and S. Schupp

Search heuristics. Incremental labeling and search-graph pruning heavily depend
on the order in which nodes are expanded. We provide several heuristics which
determine the order of nodes in the queue: breadth-first-search (bfs) and depth-
first-search (dfs) work as expected. A heuristics based on timing (time) prioritizes
the node with the shortest accumulated time (global time). The heuristic cw

prefers nodes with configurations where more parts of the specification (of
undesired behavior) are not yet satisfied. The heuristic env prefers environment
actions over controller actions, based on the intuition that the controller should
only act if necessary (and let the plant run otherwise). The composite heuristic
comp is a weighted sum of other heuristics. In the following, we have used
comp = 16 · cw + 4 · env + 1 · time. Finally, the tool also provides a random

heuristic, which is mainly helpful for comparison and testing.

Action- and location-based specification. The approach in [7] suggests a method
designed for action-based specifications in which labels on transitions (the actions)
are used. However, location-based specifications, which specify the desired or
undesired behavior in terms of properties on locations, sometimes allow a more
intuitive specification. Our tool supports both types of specifications.

Utility. To ease debugging, we provide several utility functions such as plotting
of the input automata, the resulting controller, or the search graph. TACoS
reads text input and is shipped with a C++ library with simple API to create
input programmatically. The synthesis result can be stored in a human-readable
or binary format. TACoS can also be run in an interactive mode after search,
which allows to debug the controller synthesis step-by-step with visual support.

4 Evaluation

We evaluated our system on several scenarios and ran each scenario in each
configuration five times. All experiments were conducted on an AMD Ryzen 7
3700X with 16 parallel threads and 32 GB memory. We measured the number
of locations in the input problem, the number of nodes in the search graph, the
number of explored nodes in the search graph, and the number of locations in
the resulting controller. We used three scenarios:

Example 1 (Railroad). This is a variant of the train-gate controller [3]. A train
approaches a crossing, the controller needs to open and close the gate such that
the train can pass. The problem is modeled as product of two TAs. The train
performs the uncontrollable actions get near, enter, leave, travel in sequence,
i.e., approaches and passes through the gate section. The gate may perform the
controllable actions start close,start open, finish close, finish open to change its
state. The composed system is safe if the gate is closed when the train enters and
opens after the train leaves the crossing. Thus, the bad behavior is defined by

enter Ũ ¬finish close ∨ start open Ũ ¬leave ∨ travel Ũ ¬finish open

TACoS: A Tool for MTL Controller Synthesis 5

Table 1. A comparison of the heuristics implemented in TACoS for an instance of
the railroad example. We compare the used heuristics (heu), the resulting running
time (wall) and CPU time (CPU) in seconds, the size of the search tree (nodes) and
the number of explored nodes (expl) in thousands of nodes as well as the number of
locations in the resulting controller (ctrl). Standard deviations are given in brackets,
e.g., 1.1(2) means 1.1 ± 0.2.

Scenario size heu wall (s) CPU (s) nodes (k) expl (k) ctrl

Railroad(2,2) 144 bfs 53.9(9) 53.8(9) 18.32(2) 7.8(2) 53(7)
dfs 11(4) 11(4) 12(2) 8(1) 79(29)
cw 8(3) 8(3) 10(2) 6.0(9) 71(8)

env 11(3) 11(3) 11(2) 3.3(8) 46(3)
time 65.6(9) 65.5(9) 17.99(8) 3.09(7) 52(10)
rand 13(5) 13(5) 13(2) 2.7(6) 71(20)

comp 4(3) 4(3) 6(3) 4(2) 32(10)

We have parameterized the problem by the number of crossings and the distances
before each crossing, where Railroad(4,8) is the problem with two crossings
and a distance of 4 and 8 time units before the first and second crossing.

Example 2 (Robot). A robot transports goods between stations (based on [22]).
It has a camera that needs to be enabled 1 sec before the robot performs a pick
or a put action. As the camera may overheat, it must not run continuously for
longer than 4 sec. The camera is controllable with the actions on and off, the
robot’s actions pick, put, and move are not controllable. The robot takes exactly
3 sec to move between the stations. The specification of undesired behavior is
given as:

¬on U pick ∨ F(off ∧ (¬on U pick)) ∨ F
(
on U[0,1] pick

)
∨ ¬on U put ∨ F(off ∧ (¬on U put)) ∨ F

(
on U[0,1] put

)
Example 3 (Conveyor Belt). A conveyor belt moves luggage in an airport (based
on [21]). If a piece of luggage gets stuck, the belt must stop, which allows the
luggage to be removed. The conveyor must not immediately continue but instead
wait for at least 2 sec. Also, the conveyor should not stop without reason. The
controllable actions are move and stop, while the uncontrollable actions are
release, resume, and stuck. The undesired behavior is specified as follows:

F
(
release ∧ F[0,2]move

)
∨ (¬stuck) U stop ∨ F(stop ∧ (¬stuck) U stop)

Results We first compare the different heuristics in Table 1. We can see that
using heuristics is generally helpful and improves both the running time and
the resulting search size and controller size when compared to bfs. Interestingly,
the heuristic time does not perform well and is actually worse than bfs, dfs,
and even random. Also, dfs performs surprisingly well compared to the other
heuristics, at least in this scenario. With some margin, the composite heuristic

6 T. Hofmann and S. Schupp

Table 2. A comparison of single- and multi-threading (with 16 threads). We compare
the used heuristics (heu), whether multi-threading is used (multi), the resulting running
time (wall) and CPU time (CPU) in seconds, the size of the search tree (nodes) and
the number of explored nodes (expl) in thousands of nodes as well as the number of
locations in the resulting controller (ctrl). Standard deviations are given in brackets,
e.g., 24(3) means 24 ± 3.

Scenario heu multi wall (s) CPU (s) nodes (k) expl (k) ctrl

Railroad(2,2) comp n 4(3) 4(3) 6(3) 4(2) 32(10)
comp y 1.2(4) 10(4) 9(2) 6(2) 60(27)

Robot comp n 0.289(2) 0.289(2) 0.182(1) 0.067(9) 30(7)
comp y 0.134(3) 0.66(1) 0.40(4) 0.065(8) 34.4(5)

Conveyor comp n 0.44(7) 0.44(7) 0.45(2) 0.35(5) 150(33)
comp y 0.37(2) 0.57(2) 0.46(1) 0.37(2) 166(5)

Table 3. The railroad problem scaled to different travel times and number of crossings,
using the comp heuristic and multi-threading. We provide the size of the timed automaton
(size), the resulting running time (wall) and CPU time (CPU) in seconds, the size of
the search tree (nodes) and the number of explored nodes (expl) in thousands of nodes
as well as the number of locations in the resulting controller (ctrl). Standard deviations
are given in brackets, e.g., 0.14(5) means 0.14 ± 0.05.

Scenario size wall (s) CPU (s) nodes (k) expl (k) ctrl

Railroad(2,2) 144 1.2(1) 10(1) 9.3(7) 5.8(5) 43(5)
Railroad(2,4) 144 4.2(4) 41(8) 22.6(7) 14(2) 49(9)
Railroad(2,8) 144 20(7) 211(103) 58(7) 31(8) 47(10)
Railroad(4,4) 144 11.4(7) 151(13) 32.4(1) 22.38(8) 48(2)
Railroad(4,8) 144 63(12) 909(192) 83(6) 51(5) 64(19)
Railroad(8,8) 144 280(93) 4313(1506) 111(3) 75(1) 45(10)
Railroad(1,1,1) 832 35(11) 380(138) 134(39) 62(12) 74(82)
Railroad(2,1,1) 832 18 768(2868) 298 585(45821) 448(34) 333(21) 101(31)
Railroad(2,2,2) 832 36 537(12434) 582 279(198204) 493(129) 368(72) 103(45)

comp performs best. Second, we evaluate multi-threaded search, running times
are shown in Table 2. We can see that multi-threading reduces the running time,
but increases CPU time and often has a negative impact on search size and
controller size, most likely as additional nodes with a worse heuristic value are
expanded as well when computing with multiple threads. Finally, Table 3 shows
the performance on the scaled railroad problem. We can see that TACoS is able
to find a controller even for large input problems, although the running time
increases significantly. Further results are available on the tool webpage3.

3 https://github.com/morxa/tacos

https://github.com/morxa/tacos

TACoS: A Tool for MTL Controller Synthesis 7

5 Conclusion

We have presented TACoS, to our knowledge the first tool for TA controller
synthesis against MTL specifications. TACoS comes with a number of features
aiming to provide both good performance and usability. We have evaluated the
tool in three settings, which showed that it is capable of synthesizing controllers
with reasonable performance. To further improve its performance, investigating
more sophisticated heuristics would be a promising next step. Also, in future
work, we want to investigate the applicability of the presented approach for
control program synthesis and its performance on real robotic systems.

References

1. Altisen, K., Tripakis, S.: Tools for Controller Synthesis of Timed Systems. In:
RT-TOOLS (2002)

2. Alur, R., Dill, D.: A theory of timed automata. TCS 126(2) (1994)
3. Alur, R., Henzinger, T., Vardi, M.: Parametric real-time reasoning. In: STOC (1993)
4. Asarin, E., Maler, O., Pnueli, A., Sifakis, J.: Controller synthesis for timed automata.

IFAC 31(18) (1998)
5. Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K.G., Lime, D.:

UPPAAL-Tiga: Time for Playing Games! In: CAV (2007)
6. Bohy, A., Bruyère, V., Filiot, E., Jin, N., Raskin, J.F.: Acacia+, a Tool for LTL

Synthesis. In: CAV (2012)
7. Bouyer, P., Bozzelli, L., Chevalier, F.: Controller synthesis for MTL specifications.

In: CONCUR (2006)
8. De Giacomo, G., Vardi, M.: Synthesis for LTL and LDL on finite traces. In: IJCAI

(2015)
9. D’souza, D., Madhusudan, P.: Timed control synthesis for external specifications.

In: STACS (2002)
10. Ehlers, R.: Unbeast: Symbolic Bounded Synthesis. In: TACAS (2011)
11. Finkbeiner, B., Peter, H.J.: Template-Based Controller Synthesis for Timed Systems.

In: TACAS (2012)
12. He, K., Lahijanian, M., Kavraki, L., Vardi, M.: Reactive synthesis for finite tasks

under resource constraints. In: IROS (2017)
13. Hofmann, T., Lakemeyer, G.: Controller synthesis for Golog programs over finite

domains with metric temporal constraints. arXiv:2102.09837 (2021)
14. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time

Systems 2(4) (1990)
15. Kress-Gazit, H., Fainekos, G., Pappas, G.: Temporal-logic-based reactive mission

and motion planning. IEEE Transactions on Robotics 25(6) (2009)
16. Li, G., Jensen, P.G., Larsen, K.G., Legay, A., Poulsen, D.B.: Practical controller

synthesis for MTL0,∞. In: SPIN (2017)
17. Nikou, A., Tumova, J., Dimarogonas, D.: Cooperative task planning of multi-agent

systems under timed temporal specifications. In: ACC (2016)
18. Ouaknine, J., Worrell, J.: On the decidability of metric temporal logic. In: LICS

(2005)
19. Peter, H.J., Ehlers, R., Mattmüller, R.: Synthia: Verification and Synthesis for

Timed Automata. In: CAV (2011)

8 T. Hofmann and S. Schupp

20. Saha, S., Julius, A.: An MILP approach for real-time optimal controller synthesis
with Metric Temporal Logic specifications. In: ACC (2016)

21. van Hulst, A., Reniers, M., Fokkink, W.: Maximally permissive controlled system
synthesis for non-determinism and modal logic. DEDS 27(1) (2017)

22. Viehmann, T., Hofmann, T., Lakemeyer, G.: Transforming robotic plans with timed
automata to solve temporal platform constraints. In: IJCAI (2021)

	TACoS: A Tool for MTL Controller Synthesis

