
Using Abstraction for Interpretable Robot Programs
in Stochastic Domains

KR’22 XLoKR

Till Hofmann, Vaishak Belle

July 30, 2022

Golog Programs

Golog:
Agent language based on the Situation Calculus
A basic action theory Σ specifies

I the initial situation
I action preconditions
I action effects (successor state axioms)

Allows nondeterministic operators:
I δ1|δ2 nondeterministically executes one of the two branches δ1 and δ2
I πx .δ picks some value for x and substitutes x by the value in the program δ

Also supports interleaved concurrency: δ1‖δ2
High-level specification of a robot’s behavior

Till Hofmann, Vaishak Belle Using Abstraction for Interpretable Robot Programs in Stochastic Domains 2 / 14

Golog Programs

The Basic Action Theory:

Σ0 = At(near) ∨ At(far)

�Poss(a) ≡ ∃l .a = goto(l) ∧ ¬At(l)

�[a]At(l) ≡ a = goto(l)∨
At(l) ∧ ¬∃l ′a = goto(l ′)

The program:
if ¬At(near) then

goto(near)
end if
goto(far)

(Belle and Lakemeyer 2017)

Till Hofmann, Vaishak Belle Using Abstraction for Interpretable Robot Programs in Stochastic Domains 3 / 14

Knowledge-Based Programs

Classical Golog assumes complete knowledge
If some fact is true in the real world, the robot
“knows” about it
In practice: knowledge is incomplete
Robot needs to use sensors

→ Epistemic Situation Calculus
Possible-worlds semantics: something is known if it
is true in every possible world

Till Hofmann, Vaishak Belle Using Abstraction for Interpretable Robot Programs in Stochastic Domains 4 / 14

Knowledge-Based Programs

Classical Golog assumes complete knowledge
If some fact is true in the real world, the robot
“knows” about it
In practice: knowledge is incomplete
Robot needs to use sensors

→ Epistemic Situation Calculus
Possible-worlds semantics: something is known if it
is true in every possible world (Belle and Lakemeyer 2017)

Till Hofmann, Vaishak Belle Using Abstraction for Interpretable Robot Programs in Stochastic Domains 4 / 14

Knowledge-Based Programs

Classical Golog assumes complete knowledge
If some fact is true in the real world, the robot
“knows” about it
In practice: knowledge is incomplete
Robot needs to use sensors

→ Epistemic Situation Calculus
Possible-worlds semantics: something is known if it
is true in every possible world (Belle and Lakemeyer 2017)

Till Hofmann, Vaishak Belle Using Abstraction for Interpretable Robot Programs in Stochastic Domains 4 / 14

Knowledge-Based Programs

Classical Golog assumes complete knowledge
If some fact is true in the real world, the robot
“knows” about it
In practice: knowledge is incomplete
Robot needs to use sensors

→ Epistemic Situation Calculus
Possible-worlds semantics: something is known if it
is true in every possible world

sonar()
if ¬Know(At(near)) then

goto(near)
end if
goto(far)

Till Hofmann, Vaishak Belle Using Abstraction for Interpretable Robot Programs in Stochastic Domains 4 / 14

Degrees of Belief (Bacchus et al. 1999; Belle and Lakemeyer 2017)

Knowledge-based programs can deal with incomplete knowledge
However, we still assume:

I noiseless sensors without measurement error
I perfect actions that always have the desired effect

In practice, both assumptions are idealistic:
I The sonar sensor may measure with an error, e.g., ±1
I The robot may get stuck with some probability when trying to move
I The robot may not be able to observe those errors

Logic DS (Belle and Lakemeyer 2017) allows to model such robots:
I Each world is assigned a weight
I B(α : r): α is believed with degree r
I e.g., B(At(near) : 0.9): At(near) is true with probability 0.9

Till Hofmann, Vaishak Belle Using Abstraction for Interpretable Robot Programs in Stochastic Domains 5 / 14

Degrees of Belief (Bacchus et al. 1999; Belle and Lakemeyer 2017)

Knowledge-based programs can deal with incomplete knowledge
However, we still assume:

I noiseless sensors without measurement error
I perfect actions that always have the desired effect

In practice, both assumptions are idealistic:
I The sonar sensor may measure with an error, e.g., ±1
I The robot may get stuck with some probability when trying to move
I The robot may not be able to observe those errors

Logic DS (Belle and Lakemeyer 2017) allows to model such robots:
I Each world is assigned a weight
I B(α : r): α is believed with degree r
I e.g., B(At(near) : 0.9): At(near) is true with probability 0.9

Till Hofmann, Vaishak Belle Using Abstraction for Interpretable Robot Programs in Stochastic Domains 5 / 14

Degrees of Belief (Bacchus et al. 1999; Belle and Lakemeyer 2017)

Knowledge-based programs can deal with incomplete knowledge
However, we still assume:

I noiseless sensors without measurement error
I perfect actions that always have the desired effect

In practice, both assumptions are idealistic:
I The sonar sensor may measure with an error, e.g., ±1
I The robot may get stuck with some probability when trying to move
I The robot may not be able to observe those errors

Logic DS (Belle and Lakemeyer 2017) allows to model such robots:
I Each world is assigned a weight
I B(α : r): α is believed with degree r
I e.g., B(At(near) : 0.9): At(near) is true with probability 0.9

Till Hofmann, Vaishak Belle Using Abstraction for Interpretable Robot Programs in Stochastic Domains 5 / 14

A DS Basic Action Theory

Loc(x) is true if the distance to the wall is x
One action move(x , y), where

I x is the distance the robot intends to move
I y is the distance that the robot actually moves
I We will write move(x) for πy .move(x , y), where

nature nondeterministically chooses y

One noisy sensor sonar(x) that measures the
distance to the wall
As above, sonar() is short for πx .sonar(x)
(where nature chooses x)

(Belle and Lakemeyer 2017)

Till Hofmann, Vaishak Belle Using Abstraction for Interpretable Robot Programs in Stochastic Domains 6 / 14

A DS Program

sonar()
while ¬B(∃l . Loc(l) ∧ l ≤ 3 : 1) do

move(−1)
sonar()

end while
while ¬B(∃l . Loc(l) ∧ l ≥ 5 : 1) do

move(1)
sonar()

end while

sonar(4),move(−1, 0), sonar(3),move(−1,−1),

sonar(4),move(−1,−1), sonar(2),

move(1, 1), sonar(3),move(1, 1),

sonar(3),move(1, 1), sonar(4),move(1, 0),

sonar(4),move(1, 1), sonar(6)

Till Hofmann, Vaishak Belle Using Abstraction for Interpretable Robot Programs in Stochastic Domains 7 / 14

A DS Program

sonar()
while ¬B(∃l . Loc(l) ∧ l ≤ 3 : 1) do

move(−1)
sonar()

end while
while ¬B(∃l . Loc(l) ∧ l ≥ 5 : 1) do

move(1)
sonar()

end while

sonar(4),move(−1, 0), sonar(3),move(−1,−1),

sonar(4),move(−1,−1), sonar(2),

move(1, 1), sonar(3),move(1, 1),

sonar(3),move(1, 1), sonar(4),move(1, 0),

sonar(4),move(1, 1), sonar(6)

Till Hofmann, Vaishak Belle Using Abstraction for Interpretable Robot Programs in Stochastic Domains 7 / 14

A DS Program

sonar()
while ¬B(∃l . Loc(l) ∧ l ≤ 3 : 1) do

move(−1)
sonar()

end while
while ¬B(∃l . Loc(l) ∧ l ≥ 5 : 1) do

move(1)
sonar()

end while

sonar(4),move(−1, 0), sonar(3),move(−1,−1),

sonar(4),move(−1,−1), sonar(2),

move(1, 1), sonar(3),move(1, 1),

sonar(3),move(1, 1), sonar(4),move(1, 0),

sonar(4),move(1, 1), sonar(6)

Till Hofmann, Vaishak Belle Using Abstraction for Interpretable Robot Programs in Stochastic Domains 7 / 14

Challenges

Probabilistic belief programs have challenges:
1 Correctly designing programs is difficult
2 Reasoning about probabilities is hard
3 Understanding how such a system operates is not trivial

We would like to
model stochastic actions and noisy sensors
write high-level programs without dealing with probabilities
obtain execution traces that are easy to understand

Till Hofmann, Vaishak Belle Using Abstraction for Interpretable Robot Programs in Stochastic Domains 8 / 14

Challenges

Probabilistic belief programs have challenges:
1 Correctly designing programs is difficult
2 Reasoning about probabilities is hard
3 Understanding how such a system operates is not trivial

We would like to
model stochastic actions and noisy sensors
write high-level programs without dealing with probabilities
obtain execution traces that are easy to understand

Till Hofmann, Vaishak Belle Using Abstraction for Interpretable Robot Programs in Stochastic Domains 8 / 14

Abstraction

⇒ We can use abstraction!
Idea:

I define a low-level DS BAT that includes stochastic actions
I define a second, high level BAT that abstracts away stochasticity

Map the high-level program to the low-level program:
1 Map each high-level fluent to a low-level formula, e.g.,:

At(far) 7→ ∃x . Loc(x) ∧ x ≥ 5

2 Map each high-level action to a low-level procedure, e.g.,

goto(far) 7→ while ¬Know(∃x (Loc(x) ∧ x ≥ 5)) do
move(1); sonar()

done

3 Define a bisimulation between high-level and low-level program

Till Hofmann, Vaishak Belle Using Abstraction for Interpretable Robot Programs in Stochastic Domains 9 / 14

Abstraction

⇒ We can use abstraction!
Idea:

I define a low-level DS BAT that includes stochastic actions
I define a second, high level BAT that abstracts away stochasticity

Map the high-level program to the low-level program:
1 Map each high-level fluent to a low-level formula, e.g.,:

At(far) 7→ ∃x . Loc(x) ∧ x ≥ 5

2 Map each high-level action to a low-level procedure, e.g.,

goto(far) 7→ while ¬Know(∃x (Loc(x) ∧ x ≥ 5)) do
move(1); sonar()

done

3 Define a bisimulation between high-level and low-level program

Till Hofmann, Vaishak Belle Using Abstraction for Interpretable Robot Programs in Stochastic Domains 9 / 14

Bisimulation
Intuitively, two states s1, s ′

1 of two transition systems T ,T ′ are bisimilar if
1 they have the same local properties (e.g., labels) → Isomorphism

2 if s1
a−→ s2, then there is s ′

2 such that s ′
1

a−→ s ′
2 and (s2, s

′
2) are bisimilar

3 if s ′
1

a−→ s ′
2, then there is s2 such that s1

a−→ s2 and (s2, s
′
2) are bisimilar

p

p

q

a2

a1

q

a2

a1

p

q

a2

a1m(p)

m(q)

m(a2)

m(a1)

Till Hofmann, Vaishak Belle Using Abstraction for Interpretable Robot Programs in Stochastic Domains 10 / 14

Bisimulation for Belief-Based Programs
Intuitively, two states s1, s ′

1 of two transition systems T ,T ′ are bisimilar if
1 they have the same mapped local properties (atomic propositions) → Isomorphism

2 if s1
a−→ s2, then there is s ′

2 such that s ′
1

m(a)−−−→ s ′
2 and (s2, s

′
2) are bisimilar

3 if s ′
1

m(a)−−−→ s ′
2, then there is s2 such that s1

a−→ s2 and (s2, s
′
2) are bisimilar

p

p

q

a2

a1

q

a2

a1

p

q

a2

m(a1)m(p)

m(q)

m(a2)

m(a1)

Till Hofmann, Vaishak Belle Using Abstraction for Interpretable Robot Programs in Stochastic Domains 10 / 14

Bisimulation for Belief-Based Programs

At(near)

At(far)

goto(far)

B(Loc(3) : 1)

B(Loc(3) : 0.2)
B(Loc(4) : 0.8)

B(Loc(3) : 1)

. . .

sonar(2)

B
(
Loc(3) : 2

3

)

B
(
Loc(4) : 1

3

)

sonar(3)

B
(
Loc(3) : 1

33

)

B
(
Loc(4) : 32

33

)

B
(
Loc(3) : 1

165

)

B
(
Loc(4) : 36

165

)

B
(
Loc(5) : 128

165

)

. . .

sonar(. . .)

B(Loc(5) : 1)

sonar(6)

move(1)

sonar(4)

B(Loc(4) : 1)

sonar(5)

move(1)

Till Hofmann, Vaishak Belle Using Abstraction for Interpretable Robot Programs in Stochastic Domains 11 / 14

Abstraction: Program Equivalence

if ¬At(near) then
goto(near)

end if
goto(far)

⇔

sonar()
while ¬Know(∃l . Loc(l) ∧ l ≤ 3) do

move(−1)
sonar()

end while
while ¬Know(∃l . Loc(l) ∧ l ≥ 5) do

move(1)
sonar()

end while

Till Hofmann, Vaishak Belle Using Abstraction for Interpretable Robot Programs in Stochastic Domains 12 / 14

Abstraction: Trace Equivalence

goto(near),

goto(far)

⇔

sonar(4),move(−1, 0), sonar(3),move(−1,−1),

sonar(4),move(−1,−1), sonar(2),

move(1, 1), sonar(3),move(1, 1),

sonar(3),move(1, 1), sonar(4),move(1, 0),

sonar(4),move(1, 1), sonar(6)

Till Hofmann, Vaishak Belle Using Abstraction for Interpretable Robot Programs in Stochastic Domains 13 / 14

Conclusion

Robot domains are often stochastic because of noisy sensors and actuators
→ Need to model stochastic domains

However, stochastic Golog programs are hard to interpret
Program traces are lengthy and contain noise, even in simple domains

Idea: use abstraction to make stochastic programs easier to interpret
Define a second, nonstochastic BAT
Map high-level BAT to low-level stochastic BAT
Write programs in high-level BAT
Bisimulation establishes equivalence

→ Easier to write programs
→ Easier to understand programs and interpret program traces

Till Hofmann, Vaishak Belle Using Abstraction for Interpretable Robot Programs in Stochastic Domains 14 / 14

Conclusion

Robot domains are often stochastic because of noisy sensors and actuators
→ Need to model stochastic domains

However, stochastic Golog programs are hard to interpret
Program traces are lengthy and contain noise, even in simple domains

Idea: use abstraction to make stochastic programs easier to interpret
Define a second, nonstochastic BAT
Map high-level BAT to low-level stochastic BAT
Write programs in high-level BAT
Bisimulation establishes equivalence

→ Easier to write programs
→ Easier to understand programs and interpret program traces

Till Hofmann, Vaishak Belle Using Abstraction for Interpretable Robot Programs in Stochastic Domains 14 / 14

A DS Basic Action Theory

Initially, the robot is 4m away from the wall:

∀x(Loc(x) ≡ x = 4)

The robot can move back and forth by 1m and also always use its sonar:

�Poss(a) ≡ ∃x , y (a = move(x , y) ∧ (x = 1 ∨ x = −1))

∨ ∃z (a = sonar(z))

The location of the robot changes with the second argument of move(x , y):

�[a]Loc(l) ≡ ∃x , y
(
a = move(x , y) ∧ Loc(l ′) ∧ l = l ′ + y

)

∨ ¬∃x , y (a = move(x , y)) ∧ Loc(l)

Till Hofmann, Vaishak Belle Using Abstraction for Interpretable Robot Programs in Stochastic Domains 1 / 8

A DS Basic Action Theory

Action likelihood axioms:

�l(a, u) ≡ ∃z (a = sonar(z) ∧ Loc(x) ∧ u = Θ(x , z , .8, .1))

∨ ∃x , y (a = move(x , y) ∧ u = Θ(x , y , .6, .2))

∨ ¬∃x , y , z (a = move(x , y) ∨ a = sonar(z)) ∧ u = .0

where

Θ(u, v , c , d) =





c if u = v

d if |u − v | = 1
0 otherwise

Observational indistinguishability:

�oi(a, a′) ≡ ∃x , y , z
(
a = move(x , y) ∧ a′ = move(x , z)

)

∨ ∃z
(
a = sonar(z) ∧ a = a′)

Till Hofmann, Vaishak Belle Using Abstraction for Interpretable Robot Programs in Stochastic Domains 2 / 8

Bisimulation of probabilistic belief programs

In our context, when are two states isomorphic?

Definition (Objective Isomorphism)

We say that (wh, zh) is objectively m-isomorphic to (wl , zl), written (wh, zh) ∼m (wl , zl) iff for
every atomic formula α mentioned in Σh:

wh, zh |= α iff wl , zl |= m(α)

Epistemic isomorphism: Intuitively, two states must have the same weight; however, there are
some complications . . .

Till Hofmann, Vaishak Belle Using Abstraction for Interpretable Robot Programs in Stochastic Domains 3 / 8

Epistemic Isomorphism

Problem: High-level state is supposed to be more abstract, i.e., we cannot just directly
compare the weights of two states

→ Map a state (wh, zh) to a set of states
{

(w
(i)
l , z

(i)
l)
}
i

Problem: Norm is defined wrt oi , but not all the low-level states need to be oi
→ Partition

{
(w

(i)
l , z

(i)
l)
}
i
wrt oi

Definition (Epistemic Isomorphism)

For (wh, zh) ∈ S and Sl ⊆ S, we say that (dh,wh, zh) is epistemically m-isomorphic to (dl ,Sl),
written (dl ,wh, zh) ∼e (dl , Sl) iff for the partition P = Sl/ ≈oi, for each S i

l ∈ P and(
w i
l , z

i
l

)
∈ S i

l :

Norm(dh, {(wh, zh)},Seh,wh,zh
True) = Norm(dl ,S

i
l ,S

el ,w
i
l ,z

i
l

True)

Till Hofmann, Vaishak Belle Using Abstraction for Interpretable Robot Programs in Stochastic Domains 4 / 8

Bisimulation

Bisimulation is a relation B between high-level states (wh, zh) and low-level states (wl , zl)

We have defined isomorphism → local property
What about transitions?
We have two types of transitions:

1 Action step: If we can take an action a in (wh, zh)→ (wh, zh · a), then we should be able to
execute the mapped program m(a) in (wl , zl) so we again get into two bisimilar states

2 Epistemic step: If there is an oi state (w ′
h, z

′
h) ≈oi (wh, zh) with non-zero weight, then there

should be a corresponding low-level state (w ′
l , z

′
l) ≈oi (wl , zl) that is bimisilar to (w ′

h, z
′
h)

Till Hofmann, Vaishak Belle Using Abstraction for Interpretable Robot Programs in Stochastic Domains 5 / 8

Bisimulation

Theorem

Let (eh,wh) ∼m (el ,wl) with m-bisimulation B . Then for every bounded formula α and traces
zh, zl with (zh, zl) ∈ B :

eh,wh, zh |= α iff el ,wl , zl |= m(α)

Till Hofmann, Vaishak Belle Using Abstraction for Interpretable Robot Programs in Stochastic Domains 6 / 8

Sound and Complete Abstractions

So far: we have defined bisimulations wrt to specific (eh,wh) and (el ,wl)

We would like to go from particular models to basic action theories
→ Sound abstraction: For each low-level model el ,wl of Σl , there exists a high-level model

eh,wh of Σh

→ Complete abstraction: For each high-level model eh,wh of Σh, there exists a low-level
model el ,wl of Σl

Theorem
Let Σh be a sound and complete abstraction of Σl relative to refinement mapping m. Then, for
every bounded formula α,

Know(Σh) ∧ Σh |= α iff Know(Σl) ∧ Σl |= m(α)

Till Hofmann, Vaishak Belle Using Abstraction for Interpretable Robot Programs in Stochastic Domains 7 / 8

References I

Bacchus, Fahiem, Joseph Y. Halpern, and Hector J. Levesque (July 1999). “Reasoning
about Noisy Sensors and Effectors in the Situation Calculus”. In: Artificial Intelligence
111.1, pp. 171–208. issn: 0004-3702.
Belle, Vaishak and Gerhard Lakemeyer (2017). “Reasoning about Probabilities in
Unbounded First-Order Dynamical Domains”. In: Proceedings of the 26th International
Joint Conference on Artificial Intelligence (IJCAI), pp. 828–836.

Till Hofmann, Vaishak Belle Using Abstraction for Interpretable Robot Programs in Stochastic Domains 8 / 8

	Motivation
	Abstraction
	Conclusion
	Appendix
	References

