Using Abstraction for Interpretable Robot Programs in Stochastic Domains KR'22 XLoKR

Till Hofmann, Vaishak Belle

July 30, 2022

Golog Programs

Golog:

- Agent language based on the Situation Calculus
- $\bullet\,$ A basic action theory Σ specifies
 - the initial situation
 - action preconditions
 - action effects (successor state axioms)
- Allows nondeterministic operators:
 - $\delta_1 | \delta_2$ nondeterministically executes one of the two branches δ_1 and δ_2
 - $\pi x.\delta$ picks some value for x and substitutes x by the value in the program δ
- Also supports interleaved concurrency: $\delta_1 \| \delta_2$
- High-level specification of a robot's behavior

Golog Programs

• The Basic Action Theory:

$$\Sigma_0 = At(near) \lor At(far)$$
$$\Box Poss(a) \equiv \exists I.a = goto(I) \land \neg At(I)$$
$$\Box [a]At(I) \equiv a = goto(I) \lor$$
$$At(I) \land \neg \exists I'a = goto(I')$$

• The program:

if ¬At(near) then
 goto(near)
end if
goto(far)

(Belle and Lakemeyer 2017)

- Classical Golog assumes complete knowledge
- If some fact is true in the real world, the robot "knows" about it
- In practice: knowledge is incomplete
- Robot needs to use *sensors*
- \rightarrow Epistemic Situation Calculus
 - Possible-worlds semantics: something is *known* if it is true in every possible world

- Classical Golog assumes complete knowledge
- If some fact is true in the real world, the robot "knows" about it
- In practice: knowledge is incomplete
- Robot needs to use *sensors*
- → Epistemic Situation Calculus
- Possible-worlds semantics: something is *known* if it is true in every possible world

(Belle and Lakemeyer 2017)

- Classical Golog assumes complete knowledge
- If some fact is true in the real world, the robot "knows" about it
- In practice: knowledge is incomplete
- Robot needs to use *sensors*
- → Epistemic Situation Calculus
- Possible-worlds semantics: something is *known* if it is true in every possible world

(Belle and Lakemeyer 2017)

- Classical Golog assumes complete knowledge
- If some fact is true in the real world, the robot "knows" about it
- In practice: knowledge is incomplete
- Robot needs to use *sensors*
- \rightarrow Epistemic Situation Calculus
 - Possible-worlds semantics: something is *known* if it is true in every possible world

```
sonar()
if ¬Know(At(near)) then
    goto(near)
end if
goto(far)
```

Degrees of Belief (Bacchus et al. 1999; Belle and Lakemeyer 2017)

- Knowledge-based programs can deal with incomplete knowledge
- However, we still assume:
 - noiseless sensors without measurement error
 - perfect actions that always have the desired effect

Degrees of Belief (Bacchus et al. 1999; Belle and Lakemeyer 2017)

- Knowledge-based programs can deal with incomplete knowledge
- However, we still assume:
 - noiseless sensors without measurement error
 - perfect actions that always have the desired effect
- In practice, both assumptions are idealistic:
 - The sonar sensor may measure with an error, e.g., ± 1
 - The robot may get stuck with some probability when trying to move
 - The robot may not be able to observe those errors

Degrees of Belief (Bacchus et al. 1999; Belle and Lakemeyer 2017)

- Knowledge-based programs can deal with incomplete knowledge
- However, we still assume:
 - noiseless sensors without measurement error
 - perfect actions that always have the desired effect
- In practice, both assumptions are idealistic:
 - The sonar sensor may measure with an error, e.g., ± 1
 - The robot may get stuck with some probability when trying to move
 - The robot may not be able to observe those errors
- \bullet Logic \mathcal{DS} (Belle and Lakemeyer 2017) allows to model such robots:
 - Each world is assigned a weight
 - B(α : r): α is believed with degree r
 - e.g., B(At(near):0.9): At(near) is true with probability 0.9

A \mathcal{DS} Basic Action Theory

- Loc(x) is true if the distance to the wall is x
- One action move(x, y), where
 - x is the distance the robot intends to move
 - y is the distance that the robot actually moves
 - We will write move(x) for πy.move(x, y), where nature nondeterministically chooses y
- One noisy sensor sonar(x) that measures the distance to the wall
 As above, sonar() is short for πx.sonar(x) (where nature chooses x)

(Belle and Lakemeyer 2017)

A $\mathcal{D\!S}$ Program

```
sonar()

while \neg B(\exists I. Loc(I) \land I \leq 3:1) do

move(-1)

sonar()

end while

while \neg B(\exists I. Loc(I) \land I \geq 5:1) do

move(1)

sonar()

end while
```

A $\mathcal{D\!S}$ Program

```
sonar()

while \neg B(\exists I. Loc(I) \land I \leq 3:1) do

move(-1)

sonar()

end while

while \neg B(\exists I. Loc(I) \land I \geq 5:1) do

move(1)

sonar()

end while
```

sonar(4), move(-1, 0), sonar(3), move(-1, -1),sonar(4), move(-1, -1), sonar(2),

A $\mathcal{D\!S}$ Program

```
sonar()

while \neg B(\exists I. Loc(I) \land I \leq 3:1) do

move(-1)

sonar()

end while

while \neg B(\exists I. Loc(I) \land I \geq 5:1) do

move(1)

sonar()

end while
```

```
sonar(4), move(-1, 0), sonar(3), move(-1, -1),
sonar(4), move(-1, -1), sonar(2),
move(1, 1), sonar(3), move(1, 1),
sonar(3), move(1, 1), sonar(4), move(1, 0),
sonar(4), move(1, 1), sonar(6)
```

Challenges

Probabilistic belief programs have challenges:

- Correctly designing programs is difficult
- Reasoning about probabilities is hard
- **O** Understanding how such a system operates is not trivial

Challenges

Probabilistic belief programs have challenges:

- Correctly designing programs is difficult
- Reasoning about probabilities is hard
- **9** Understanding how such a system operates is not trivial

We would like to

- model stochastic actions and noisy sensors
- write high-level programs without dealing with probabilities
- obtain execution traces that are easy to understand

Abstraction

- \Rightarrow We can use abstraction!
 - Idea:
 - \blacktriangleright define a low-level \mathcal{DS} BAT that includes stochastic actions
 - define a second, high level BAT that abstracts away stochasticity

Abstraction

 \Rightarrow We can use abstraction!

• Idea:

- \blacktriangleright define a low-level \mathcal{DS} BAT that includes stochastic actions
- define a second, high level BAT that abstracts away stochasticity
- Map the high-level program to the low-level program:
 - Map each high-level fluent to a low-level formula, e.g.,:

$$At(far) \mapsto \exists x. Loc(x) \land x \geq 5$$

Ø Map each high-level action to a low-level procedure, e.g.,

$$goto(far) \mapsto while \neg Know(\exists x (Loc(x) \land x \ge 5)) do$$

 $move(1); sonar()$
done

3 Define a *bisimulation* between high-level and low-level program

Bisimulation

Intuitively, two states s_1, s'_1 of two transition systems T, T' are bisimilar if they have the same local properties (e.g., labels) \rightarrow *Isomorphism*

- 2 if $s_1 \xrightarrow{a} s_2$, then there is s_2' such that $s_1' \xrightarrow{a} s_2'$ and (s_2, s_2') are bisimilar
- $\ \, \textbf{if} \ \, s_1' \stackrel{a}{\to} s_2', \ \, \textbf{then there is} \ \, s_2 \ \, \textbf{such that} \ \, s_1 \stackrel{a}{\to} s_2 \ \, \textbf{and} \ \, (s_2,s_2') \ \, \textbf{are bisimilar}$

Bisimulation for Belief-Based Programs

Intuitively, two states s_1, s'_1 of two transition systems T, T' are bisimilar if

- () they have the same mapped local properties (atomic propositions) ightarrow Isomorphism
- 2 if $s_1 \xrightarrow{a} s_2$, then there is s'_2 such that $s'_1 \xrightarrow{m(a)} s'_2$ and (s_2, s'_2) are bisimilar
- if $s'_1 \xrightarrow{m(a)} s'_2$, then there is s_2 such that $s_1 \xrightarrow{a} s_2$ and (s_2, s'_2) are bisimilar

Bisimulation for Belief-Based Programs

Abstraction: Program Equivalence

 \Leftrightarrow

if ¬At(near) then
 goto(near)
end if
goto(far)

sonar()while $\neg Know(\exists I. Loc(I) \land I \leq 3)$ do move(-1) sonar()end while while $\neg Know(\exists I. Loc(I) \land I \geq 5)$ do move(1) sonar()end while

Abstraction: Trace Equivalence

 $goto(near), \Leftrightarrow goto(far)$

sonar(4), move(-1, 0), sonar(3), move(-1, -1), sonar(4), move(-1, -1), sonar(2), move(1, 1), sonar(3), move(1, 1), sonar(3), move(1, 1), sonar(4), move(1, 0),sonar(4), move(1, 1), sonar(6)

Conclusion

- Robot domains are often stochastic because of noisy sensors and actuators
- \rightarrow Need to model stochastic domains
 - However, stochastic Golog programs are hard to interpret
 - Program traces are lengthy and contain noise, even in simple domains

Conclusion

- Robot domains are often stochastic because of noisy sensors and actuators
- \rightarrow Need to model stochastic domains
 - However, stochastic Golog programs are hard to interpret
 - Program traces are lengthy and contain noise, even in simple domains

Idea: use abstraction to make stochastic programs easier to interpret

- Define a second, nonstochastic BAT
- Map high-level BAT to low-level stochastic BAT
- Write programs in high-level BAT
- Bisimulation establishes equivalence
- \rightarrow Easier to write programs
- ightarrow Easier to understand programs and interpret program traces

A \mathcal{DS} Basic Action Theory

• Initially, the robot is 4 m away from the wall:

$$\forall x(Loc(x) \equiv x = 4)$$

• The robot can move back and forth by 1 m and also always use its sonar:

$$\Box Poss(a) \equiv \exists x, y (a = move(x, y) \land (x = 1 \lor x = -1))$$
$$\lor \exists z (a = sonar(z))$$

• The location of the robot changes with the second argument of move(x, y):

$$\Box[a]Loc(l) \equiv \exists x, y (a = move(x, y) \land Loc(l') \land l = l' + y)$$
$$\lor \neg \exists x, y (a = move(x, y)) \land Loc(l)$$

A \mathcal{DS} Basic Action Theory

• Action likelihood axioms:

$$\Box I(a, u) \equiv \exists z \ (a = sonar(z) \land Loc(x) \land u = \Theta(x, z, .8, .1))$$

$$\lor \exists x, y \ (a = move(x, y) \land u = \Theta(x, y, .6, .2))$$

$$\lor \neg \exists x, y, z \ (a = move(x, y) \lor a = sonar(z)) \land u = .0$$

where

$$\Theta(u, v, c, d) = egin{cases} c & ext{if } u = v \ d & ext{if } |u - v| = 1 \ 0 & ext{otherwise} \end{cases}$$

• Observational indistinguishability:

$$\Box oi(a, a') \equiv \exists x, y, z (a = move(x, y) \land a' = move(x, z))$$
$$\lor \exists z (a = sonar(z) \land a = a')$$

Bisimulation of probabilistic belief programs

In our context, when are two states isomorphic?

Definition (Objective Isomorphism)

We say that (w_h, z_h) is objectively *m*-isomorphic to (w_l, z_l) , written $(w_h, z_h) \sim_m (w_l, z_l)$ iff for every atomic formula α mentioned in Σ_h :

$$w_h, z_h \models \alpha \text{ iff } w_l, z_l \models m(\alpha)$$

Epistemic isomorphism: Intuitively, two states must have the same weight; however, there are some complications . . .

Epistemic Isomorphism

- Problem: High-level state is supposed to be more abstract, i.e., we cannot just directly compare the weights of two states
- \rightarrow Map a state (w_h, z_h) to a set of states $\{(w_l^{(i)}, z_l^{(i)})\}_i$
- Problem: Norm is defined wrt *oi*, but not all the low-level states need to be *oi* \rightarrow Partition $\{(w_i^{(i)}, z_i^{(i)})\}$, wrt *oi*

Definition (Epistemic Isomorphism)

For $(w_h, z_h) \in S$ and $S_l \subseteq S$, we say that (d_h, w_h, z_h) is epistemically *m*-isomorphic to (d_l, S_l) , written $(d_l, w_h, z_h) \sim_e (d_l, S_l)$ iff for the partition $P = S_l / \approx_{oi}$, for each $S_l^i \in P$ and $(w_l^i, z_l^i) \in S_l^i$: Norm $(d_h, \{(w_h, z_h)\}, S_{True}^{e_h, w_h, z_h}) = Norm(d_l, S_l^i, S_{True}^{e_l, w_l^i, z_l^i})$

- Bisimulation is a relation B between high-level states (w_h, z_h) and low-level states (w_l, z_l)
- We have defined isomorphism ightarrow local property
- What about transitions?
- We have two types of transitions:
 - Action step: If we can take an action a in $(w_h, z_h) \rightarrow (w_h, z_h \cdot a)$, then we should be able to execute the mapped program m(a) in (w_l, z_l) so we again get into two bisimilar states
 - **2** Epistemic step: If there is an oi state $(w'_h, z'_h) \approx_{oi} (w_h, z_h)$ with non-zero weight, then there should be a corresponding low-level state $(w'_l, z'_l) \approx_{oi} (w_l, z_l)$ that is bimisilar to (w'_h, z'_h)

Bisimulation

Theorem

Let $(e_h, w_h) \sim_m (e_l, w_l)$ with m-bisimulation B. Then for every bounded formula α and traces z_h, z_l with $(z_h, z_l) \in B$: $e_h, w_h, z_h \models \alpha$ iff $e_l, w_l, z_l \models m(\alpha)$

Sound and Complete Abstractions

- So far: we have defined bisimulations wrt to specific (e_h, w_h) and (e_l, w_l)
- We would like to go from particular models to basic action theories
- \rightarrow Sound abstraction: For each low-level model e_l, w_l of Σ_l , there exists a high-level model e_h, w_h of Σ_h
- \rightarrow Complete abstraction: For each high-level model e_h , w_h of Σ_h , there exists a low-level model e_l , w_l of Σ_l

Theorem

Let Σ_h be a sound and complete abstraction of Σ_l relative to refinement mapping m. Then, for every bounded formula α ,

$$\mathsf{Know}(\Sigma_h) \land \Sigma_h \models \alpha \text{ iff } \mathsf{Know}(\Sigma_l) \land \Sigma_l \models m(\alpha)$$

References I

- Bacchus, Fahiem, Joseph Y. Halpern, and Hector J. Levesque (July 1999). "Reasoning about Noisy Sensors and Effectors in the Situation Calculus". In: *Artificial Intelligence* 111.1, pp. 171–208. issn: 0004-3702.
- Belle, Vaishak and Gerhard Lakemeyer (2017). "Reasoning about Probabilities in Unbounded First-Order Dynamical Domains". In: Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI), pp. 828–836.