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Golog Programs

Golog:
Agent language based on the Situation Calculus
A basic action theory Σ specifies

I the initial situation
I action preconditions
I action effects (successor state axioms)

Allows nondeterministic operators:
I δ1|δ2 nondeterministically executes one of the two branches δ1 and δ2
I πx .δ picks some value for x and substitutes x by the value in the program δ

Also supports interleaved concurrency: δ1‖δ2
High-level specification of a robot’s behavior
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Golog Programs

The Basic Action Theory:

Σ0 = At(near) ∨ At(far)

�Poss(a) ≡ ∃l .a = goto(l) ∧ ¬At(l)

�[a]At(l) ≡ a = goto(l)∨
At(l) ∧ ¬∃l ′a = goto(l ′)

The program:
if ¬At(near) then

goto(near)
end if
goto(far)

(Belle and Lakemeyer 2017)
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Knowledge-Based Programs

Classical Golog assumes complete knowledge
If some fact is true in the real world, the robot
“knows” about it
In practice: knowledge is incomplete
Robot needs to use sensors

→ Epistemic Situation Calculus
Possible-worlds semantics: something is known if it
is true in every possible world
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Knowledge-Based Programs

Classical Golog assumes complete knowledge
If some fact is true in the real world, the robot
“knows” about it
In practice: knowledge is incomplete
Robot needs to use sensors

→ Epistemic Situation Calculus
Possible-worlds semantics: something is known if it
is true in every possible world

sonar()
if ¬Know(At(near)) then

goto(near)
end if
goto(far)
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Degrees of Belief (Bacchus et al. 1999; Belle and Lakemeyer 2017)

Knowledge-based programs can deal with incomplete knowledge
However, we still assume:

I noiseless sensors without measurement error
I perfect actions that always have the desired effect

In practice, both assumptions are idealistic:
I The sonar sensor may measure with an error, e.g., ±1
I The robot may get stuck with some probability when trying to move
I The robot may not be able to observe those errors

Logic DS (Belle and Lakemeyer 2017) allows to model such robots:
I Each world is assigned a weight
I B(α : r): α is believed with degree r
I e.g., B(At(near) : 0.9): At(near) is true with probability 0.9
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A DS Basic Action Theory

Loc(x) is true if the distance to the wall is x
One action move(x , y), where

I x is the distance the robot intends to move
I y is the distance that the robot actually moves
I We will write move(x) for πy .move(x , y), where

nature nondeterministically chooses y

One noisy sensor sonar(x) that measures the
distance to the wall
As above, sonar() is short for πx .sonar(x)
(where nature chooses x)

(Belle and Lakemeyer 2017)
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A DS Program

sonar()
while ¬B(∃l . Loc(l) ∧ l ≤ 3 : 1) do

move(−1)
sonar()

end while
while ¬B(∃l . Loc(l) ∧ l ≥ 5 : 1) do

move(1)
sonar()

end while

sonar(4),move(−1, 0), sonar(3),move(−1,−1),

sonar(4),move(−1,−1), sonar(2),

move(1, 1), sonar(3),move(1, 1),

sonar(3),move(1, 1), sonar(4),move(1, 0),

sonar(4),move(1, 1), sonar(6)
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Challenges

Probabilistic belief programs have challenges:
1 Correctly designing programs is difficult
2 Reasoning about probabilities is hard
3 Understanding how such a system operates is not trivial

We would like to
model stochastic actions and noisy sensors
write high-level programs without dealing with probabilities
obtain execution traces that are easy to understand
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Abstraction

⇒ We can use abstraction!
Idea:

I define a low-level DS BAT that includes stochastic actions
I define a second, high level BAT that abstracts away stochasticity

Map the high-level program to the low-level program:
1 Map each high-level fluent to a low-level formula, e.g.,:

At(far) 7→ ∃x . Loc(x) ∧ x ≥ 5

2 Map each high-level action to a low-level procedure, e.g.,

goto(far) 7→ while ¬Know(∃x (Loc(x) ∧ x ≥ 5)) do
move(1); sonar()

done

3 Define a bisimulation between high-level and low-level program
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Bisimulation
Intuitively, two states s1, s ′

1 of two transition systems T ,T ′ are bisimilar if
1 they have the same local properties (e.g., labels) → Isomorphism

2 if s1
a−→ s2, then there is s ′

2 such that s ′
1

a−→ s ′
2 and (s2, s

′
2) are bisimilar

3 if s ′
1

a−→ s ′
2, then there is s2 such that s1

a−→ s2 and (s2, s
′
2) are bisimilar

p

p

q

a2

a1

q

a2

a1

p

q

a2

a1m(p)

m(q)

m(a2)

m(a1)
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Bisimulation for Belief-Based Programs
Intuitively, two states s1, s ′

1 of two transition systems T ,T ′ are bisimilar if
1 they have the same mapped local properties (atomic propositions) → Isomorphism

2 if s1
a−→ s2, then there is s ′

2 such that s ′
1

m(a)−−−→ s ′
2 and (s2, s

′
2) are bisimilar

3 if s ′
1

m(a)−−−→ s ′
2, then there is s2 such that s1

a−→ s2 and (s2, s
′
2) are bisimilar

p

p

q

a2

a1

q

a2

a1

p

q

a2

m(a1)m(p)

m(q)

m(a2)

m(a1)
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Bisimulation for Belief-Based Programs

At(near)

At(far)

goto(far)

B(Loc(3) : 1)

B(Loc(3) : 0.2)
B(Loc(4) : 0.8)

B(Loc(3) : 1)

. . .

sonar(2)

B
(
Loc(3) : 2

3

)

B
(
Loc(4) : 1

3

)

sonar(3)

B
(
Loc(3) : 1

33

)

B
(
Loc(4) : 32

33

)

B
(
Loc(3) : 1

165

)

B
(
Loc(4) : 36

165

)

B
(
Loc(5) : 128

165

)

. . .

sonar(. . .)

B(Loc(5) : 1)

sonar(6)

move(1)

sonar(4)

B(Loc(4) : 1)

sonar(5)

move(1)
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Abstraction: Program Equivalence

if ¬At(near) then
goto(near)

end if
goto(far)

⇔

sonar()
while ¬Know(∃l . Loc(l) ∧ l ≤ 3) do

move(−1)
sonar()

end while
while ¬Know(∃l . Loc(l) ∧ l ≥ 5) do

move(1)
sonar()

end while

Till Hofmann, Vaishak Belle Using Abstraction for Interpretable Robot Programs in Stochastic Domains 12 / 14



Abstraction: Trace Equivalence

goto(near),

goto(far)

⇔

sonar(4),move(−1, 0), sonar(3),move(−1,−1),

sonar(4),move(−1,−1), sonar(2),

move(1, 1), sonar(3),move(1, 1),

sonar(3),move(1, 1), sonar(4),move(1, 0),

sonar(4),move(1, 1), sonar(6)

Till Hofmann, Vaishak Belle Using Abstraction for Interpretable Robot Programs in Stochastic Domains 13 / 14



Conclusion

Robot domains are often stochastic because of noisy sensors and actuators
→ Need to model stochastic domains

However, stochastic Golog programs are hard to interpret
Program traces are lengthy and contain noise, even in simple domains

Idea: use abstraction to make stochastic programs easier to interpret
Define a second, nonstochastic BAT
Map high-level BAT to low-level stochastic BAT
Write programs in high-level BAT
Bisimulation establishes equivalence

→ Easier to write programs
→ Easier to understand programs and interpret program traces
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A DS Basic Action Theory

Initially, the robot is 4m away from the wall:

∀x(Loc(x) ≡ x = 4)

The robot can move back and forth by 1m and also always use its sonar:

�Poss(a) ≡ ∃x , y (a = move(x , y) ∧ (x = 1 ∨ x = −1))

∨ ∃z (a = sonar(z))

The location of the robot changes with the second argument of move(x , y):

�[a]Loc(l) ≡ ∃x , y
(
a = move(x , y) ∧ Loc(l ′) ∧ l = l ′ + y

)

∨ ¬∃x , y (a = move(x , y)) ∧ Loc(l)
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A DS Basic Action Theory

Action likelihood axioms:

�l(a, u) ≡ ∃z (a = sonar(z) ∧ Loc(x) ∧ u = Θ(x , z , .8, .1))

∨ ∃x , y (a = move(x , y) ∧ u = Θ(x , y , .6, .2))

∨ ¬∃x , y , z (a = move(x , y) ∨ a = sonar(z)) ∧ u = .0

where

Θ(u, v , c , d) =





c if u = v

d if |u − v | = 1
0 otherwise

Observational indistinguishability:

�oi(a, a′) ≡ ∃x , y , z
(
a = move(x , y) ∧ a′ = move(x , z)

)

∨ ∃z
(
a = sonar(z) ∧ a = a′)
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Bisimulation of probabilistic belief programs

In our context, when are two states isomorphic?

Definition (Objective Isomorphism)

We say that (wh, zh) is objectively m-isomorphic to (wl , zl), written (wh, zh) ∼m (wl , zl) iff for
every atomic formula α mentioned in Σh:

wh, zh |= α iff wl , zl |= m(α)

Epistemic isomorphism: Intuitively, two states must have the same weight; however, there are
some complications . . .
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Epistemic Isomorphism

Problem: High-level state is supposed to be more abstract, i.e., we cannot just directly
compare the weights of two states

→ Map a state (wh, zh) to a set of states
{

(w
(i)
l , z

(i)
l )
}
i

Problem: Norm is defined wrt oi , but not all the low-level states need to be oi
→ Partition

{
(w

(i)
l , z

(i)
l )
}
i
wrt oi

Definition (Epistemic Isomorphism)

For (wh, zh) ∈ S and Sl ⊆ S, we say that (dh,wh, zh) is epistemically m-isomorphic to (dl ,Sl),
written (dl ,wh, zh) ∼e (dl , Sl) iff for the partition P = Sl/ ≈oi, for each S i

l ∈ P and(
w i
l , z

i
l

)
∈ S i

l :

Norm(dh, {(wh, zh)},Seh,wh,zh
True ) = Norm(dl ,S

i
l ,S

el ,w
i
l ,z

i
l

True )
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Bisimulation

Bisimulation is a relation B between high-level states (wh, zh) and low-level states (wl , zl)

We have defined isomorphism → local property
What about transitions?
We have two types of transitions:

1 Action step: If we can take an action a in (wh, zh)→ (wh, zh · a), then we should be able to
execute the mapped program m(a) in (wl , zl) so we again get into two bisimilar states

2 Epistemic step: If there is an oi state (w ′
h, z

′
h) ≈oi (wh, zh) with non-zero weight, then there

should be a corresponding low-level state (w ′
l , z

′
l ) ≈oi (wl , zl) that is bimisilar to (w ′

h, z
′
h)
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Bisimulation

Theorem

Let (eh,wh) ∼m (el ,wl) with m-bisimulation B . Then for every bounded formula α and traces
zh, zl with (zh, zl) ∈ B :

eh,wh, zh |= α iff el ,wl , zl |= m(α)
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Sound and Complete Abstractions

So far: we have defined bisimulations wrt to specific (eh,wh) and (el ,wl)

We would like to go from particular models to basic action theories
→ Sound abstraction: For each low-level model el ,wl of Σl , there exists a high-level model

eh,wh of Σh

→ Complete abstraction: For each high-level model eh,wh of Σh, there exists a low-level
model el ,wl of Σl

Theorem
Let Σh be a sound and complete abstraction of Σl relative to refinement mapping m. Then, for
every bounded formula α,

Know(Σh) ∧ Σh |= α iff Know(Σl) ∧ Σl |= m(α)
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