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Abstract. A robot’s actions are inherently stochastic, as its sensors are
noisy and its actions do not always have the intended effects. For this
reason, the agent language GoLOG has been extended to models with
degrees of belief and stochastic actions. While this allows more precise
robot models, the resulting programs are much harder to comprehend,
because they need to deal with the noise, e.g., by looping until some
desired state has been reached with certainty, and because the resulting
action traces consist of a large number of actions cluttered with sensor
noise. To alleviate these issues, we propose to use abstraction. We define
a high-level and nonstochastic model of the robot and then map the high-
level model into the lower-level stochastic model. The resulting programs
are much easier to understand, often do not require belief operators or
loops, and produce much shorter action traces.

1 Introduction

Classical approaches to model robot behavior such as GOLOG [7] assume com-
plete knowledge of the word state as well as deterministic actions. However,
both assumptions are often violated on real robots: the robot’s sensor cannot
completely capture the world, thus requiring some way to represent incomplete
knowledge, and a robot’s sensors and effectors are inherently noisy, necessitating
a model of stochastic actions. Consider a simple robot equipped with a sonar
sensor that is driving towards a wall (inspired from [I]). The sensor reading is
imprecise and may produce incorrect sensor reading. Additionally, when doing
a mowve action, the robot may get stuck with some probability. One approach to
model such systems is an extension of the situation calculus [9] with stochastic
actions and degrees of belief [T3]. The core idea is to model the agent’s belief
with possible worlds, where each world has a certain weight, defining the proba-
bility that this world is the actual world. This allows to model degrees of belief,
e.g., saying “the robot beliefs to be 2m away with certainty 0.5”. An action may
then possibly have several outcomes, each specified with some likelihood.
While there has been progress on reasoning about belief-based programs [g]
and programming languages such as ALLEGRO [4] allow to write belief-based
programs, including stochastic actions in the model has the disadvantage that
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the resulting programs become significantly harder to understand. Dealing with
noisy actions often requires many actions and loops to reach a desired state
with certainty. Additionally, such stochastic programs often have many possible
traces, making it more difficult to interpret one particular run of a program.

In this paper, we illustrate how abstraction can be used to deal with these
issues. Extending on abstraction of basic action theories (BATs) in the classi-
cal situation calculus [2], we propose to use abstractions of stochastic domains,
where the resulting abstract BAT does not contain any noisy sensors or effectors
and is therefore nonstochastic. The resulting programs are easier to write and
understand and the resulting traces are free of stochastic effects, thus making
them much easier to comprehend.

The remainder of the paper is structured as follows ﬂ In we intro-
duce belief-based programs based on the logic DS [3]. We present an example for
the robot described above and we show how even simple programs induce traces
that are non-trivial to understand. In we define a more abstract and
nonstochastic model that can be mapped to the lower-level model, resulting in

more comprehensible programs. We conclude in [Section 4

2 Belief-Based Programs with Stochastic Actions

DS [3] is a modal variant of the situation calculus with degrees of belief and
stochastic actions. Similar to &S [6], it is based on a possible worlds semantics,
where worlds are part of the semantics and do not occur as terms in the language.
In DS, all worlds have a weight, which defines the probability of each world being
the true world. The modal operator B(«:r) expresses that « is believed with
degree 7, e.g., B(Loc(2):0.5) expresses that the agent believes “the distance to
the wall is 2m” with degree 0.5. We also write Know («) for B(a:: 1).

DS has two action modalities: [a] and [, where [a]a is to be read as “a holds
after doing action a” and O« is to be read as “« holds after any sequence of ac-
tions”. As in the situation calculus, a BAT defines a domain by axiomatizing the
initial situation, action preconditions, and effects. Additionally, noisy actions are
modeled with the action likelihood 1, where l(a,u) expresses that the likelihood
of action a is u. After doing an action, the agent may not always distinguish
which instance of the action has actually been executed. This is expressed with
observational indistinguishability (oi) axioms, where o0i(a,a’) expresses that the
agent cannot distinguish the actions a and a'.

We do not present a full account of DS, but rather present an example. We
model the robot’s movement with the action move(z,y), where z is the intended
distance and y is the distance that the robot actually moved, and with a single
fluent predicate Loc(x) that describes the position of the robot. A BAT X, s0e
defining the scenario from above may look as follows:

3 In this paper, we focus on motivating the use of abstraction for interpretable pro-
grams. We refer to [5] for a full technical discussion.
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— After doing action a, the robot is at position x if a is a move action that
moves the robot to location z, if a is a sonar action that measures distance
x, or if a is neither of the two actions and the robot was at location x beforeﬁ

Ola]Loc(z) = 3y, 2, (a = move(y, z) A Loc(l) Nz =1+ 2) Va = sonar(z)
V =3y, z (a = move(y, z) V a = sonar(y)) A Loc(x)

— A move action is possible if the robot moves either one step to the back or
to the front. A sonar action is always possible:

OPoss(a) = 3z, y (a = move(z,y) A (x =1V =—1)) V Iz (a = sonar(z))

— Action likelihood axioms: For the sonar action, the likelihood that the robot
measures the correct distance is 0.8, the likelihood that it measures a distance
with an error of +1 is 0.1. Furthermore, for the move action, the likelihood
that the robot moves the intended distance = is 0.6, the likelihood that the
actual movement y is off by +1 is 0.2:

Ol(a,u) = 3z (a = sonar(z) A Loc(z) ANu = O(x, z,.8,.1))
V 3z, y (a = move(z,y) ANu = O(z,y, .6,.2))
V =3z, y, 2 (a = move(x,y) V a = sonar(z)) ANu = .0

¢ ifu=v
where O(u,v,¢c,d) =< d if lu—v|=1.
0 otherwise

— The robot cannot detect the distance that it has actually moved, i.e., any
two actions move(x,y) and move(z, z) are o.1.:

Ooi(a,a’) = 3z, y, 2 (a = move(x,y) Aa’ = move(x,2))Va=ad

— Initially, the robot is 3m away from the wall: Vz(Loc(z) = = = 3)

Based on this BAT, we define a program that first moves the robot close to
the wall and then backPt

sonar(); while “Know (3z (Loc(z) A x < 2)) do move(—1); sonar() done ;

while =Know (3z (Loc(x) A z > 5)) do move(1); sonar() done

The robot first measures its distance to the wall and then moves closer until
it knows that its distance to the wall is less than 2 m. Afterwards, it moves away

4 We assume that free variables are universally quantified from the outside and that OJ
has lower syntactic precedence than the logical connectives, so that O[a]Loc(z) = v
stands for Va.O ([a] Loc(z) = 7).

® The unary move(z) can be understood as abbreviation move(z) := 7y move(z, y),
where nature nondeterministically picks the distance y that the robot really moved
(similarly for sonar()).
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until it knows that is more than 5m away from the wall. As the robot’s mowve
action is noisy, each mowve is followed by sonar to measure how far it is away
from the wall. One possible execution trace of this program may look as follows:

z1 = (sonar(3), move(—1,0), sonar(3), move(—1, —1), sonar(2), move(—1, —1),

sonar(1), move(1,1), sonar(3), move(1,1), sonar(2), move(1,1),

sonar(4), move(1,0), sonar(4), move(1,1), sonar(6)) (1)
First, the robot (correctly) senses that it is 3m away from the wall and starts
moving. However, the first move does not have the desired effect: the robot
intended to move by 1m but actually did not move (indicated by the second
argument being 0). After the second move, the robot is at Loc(2), as it started
at Loc(3) and moved successfully once. However, as its sensor is noisy and it
measured sonar(2), it believes that it could also be at Loc(3). For safe measure,
it executes another move and then senses sonar(1), after which it knows for sure
that it is at a distance < 2m. In the second part, the robot moves back until
it knows that it has reached a distance > 5m. As this simple example shows,
the trace z; is already quite hard to understand. While it is clear from the BAT
what each action does, the robot’s intent is not immediately obvious and the
trace is cluttered with noise and low-level details.

3 Using Abstraction to Obtain Interpretable Programs

To hide away the low-level details such as noisy move actions, we propose to use
abstraction. Similar to [2], abstraction in DS is a mapping of a high-level BAT
to a low-level BAT. We first define the high-level BAT and then map each fluent
and action to the lower level. Continuing our example, we can define a second,
high-level BAT that consists of the locations near and far, the fluent At that
specifies the current location of the robot, and the single action goto, which is an
idealized move action without noise. The high-level BAT X, looks as follows:

— After doing action a, the robot is at location [ if a is the action goto(l) or if
a is no goto action and the robot has been at [ before:

Ola]At(l) = a = goto(l) V =3z (a = goto(x)) N At(l)
— The robot may do action a if a is a goto action to a valid location:
OPoss(a) = a = goto(near) V a = goto(far)
— The goto action is not noisy:

Ol(a,u) = Jz (a = goto(z)) ANu=1.0V -3z (a = goto(x)) Au=0.0

/

— The agent can distinguish all actions: Ooi(a,a’) = a=a
Initially, the robot is at the location near: VI(At(l) = | = near)
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Next, we define a refinement mapping that maps each high-level fluent to a
low-level formula and each high-level action to a low-level program:

— The high-level fluent A¢(l) is mapped to a low-level formula by translating
the distance to the two locations near and far:

At(l) (1 = near A3z (Loc(z) A& < 2) VI = far Az (Loc(z) Az > 5))

— The action goto is mapped to a program that guarantees that the robot
reaches the right position:

goto(z) — sonar();
if x = near then
while =Know (3z (Loc(x) A z < 2)) do move(—1); sonar() done
elif z = far then
while “Know (3xz (Loc(z) A x > 5)) do move(1); sonar() done ; fi

Using the refinement mapping, we can translate a high-level program based
on the BAT Xy, to a low-level program based on the BAT X, pe. As Yyoio
does not contain any sensing or noisy actions, we obtain a nonstochastic program
that is much simpler to understand than the low-level program shown above. The
program that first moves close to the wall and then moves back only needs two
actions and does not require any belief operators:

goto(near); goto(far)

Note that when the program is executed, each goto action is translated into a
corresponding low-level program, as defined by the mapping above. However,
from the high-level perspective, the program only allows a single trace z, =
(goto(near), goto(far)). Compared to the low-level trace z; from 2n
is much easier to understand. It only consists of two actions, which are exactly
the two actions from the program. It does not contain any noise, which is the
reason why the trace is also unique. Furthermore, we were able to abstract away
all sensing actions, further simplifying the resulting traces.

4 Conclusion

In this paper, we demonstrated how abstraction can be used to map a low-
level GOLOG program with stochastic actions to a high-level program that is
nonstochastic, does not require any sensing or belief operators, and thus is much
easier to understand. While this requires some additional work to define the
mapping between the two models, the mapping is not specific for a given program
and thus can be re-used for other programs in the same domain.
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