
Exploring the Boundaries of Decidable Verification
of Non-Terminating Golog Programs

Jens Claßen, Martin Liebenberg
and Gerhard Lakemeyer

Knowledge-Based Systems Group
RWTH Aachen University, Germany

{classen,liebenberg,gerhard}@kbsg.rwth-aachen.de

Benjamin Zarrieß

Theoretical Computer Science
TU Dresden, Germany

zarriess@tcs.inf.tu-dresden.de

Abstract
The action programming language GOLOG has been
found useful for the control of autonomous agents such
as mobile robots. In scenarios like these, tasks are often
open-ended so that the respective control programs are
non-terminating. Before deploying such programs on a
robot, it is often desirable to verify that they meet cer-
tain requirements. For this purpose, Claßen and Lake-
meyer recently introduced algorithms for the verifica-
tion of temporal properties of GOLOG programs. How-
ever, given the expressiveness of GOLOG, their verifi-
cation procedures are not guaranteed to terminate. In
this paper, we show how decidability can be obtained
by suitably restricting the underlying base logic, the ef-
fect axioms for primitive actions, and the use of actions
within GOLOG programs. Moreover, we show that drop-
ping any of these restrictions immediately leads to un-
decidability of the verification problem.

Introduction
The GOLOG family of action programming lan-
guages (De Giacomo, Lespérance, and Levesque 2000;
Levesque et al. 1997) and its underlying logic,
the Situation Calculus (McCarthy and Hayes 1969;
Reiter 2001), have been found useful for the control of au-
tonomous agents such as mobile robots (Burgard et al. 1999;
Ferrein and Lakemeyer 2008). Usually, the task of such
an agent is open-ended, that is, there is no predefined goal
or terminal state that the agent tries to reach, but (at least
ideally) the robot works indefinitely, and its corresponding
control program is thus non-terminating.

As a simple example, consider a mobile robot whose task
it is to remove dirty dishes from certain locations in an office
on request. A program for this robot might look like this:

loop : while (∃x.OnRobot(x)) do
πx.unload(x) endWhile;

πy.goToRoom(y);
while (∃x.DirtyDish(x, y)) do

πx.load(x, y) endWhile;
goToKitchen

We assume that the robot is initially in the kitchen, its home
base. During each iteration of its infinite control loop, the

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

robot first unloads all dishes it carries, then selects a room in
the office building, goes to this room, loads all dirty dishes in
this room, and returns to the kitchen. Here, DirtyDish(x, y)
should be read as “dirty dish x is in room y” and load(x, y)
as “load dish x in room y.” During the execution of the pro-
gram, people can send requests indicating that there is a dirty
dish in a certain room (not shown here). Action pre- and
postconditions are represented by an action theory incorpo-
rating Reiter’s (1991) solution to the frame problem.

Before actually deploying such a program on the robot
and executing it in the physical world, it is often desirable
to verify that it meets certain requirements, for example that
“every request will eventually be served by the robot” or
whether “it is possible that no request is ever served.”

Nowadays the automated, formal verification of non-
terminating processes is typically associated with model
checking. The classical approach for propositional temporal
logics such as CTL and LTL (Clarke and Emerson 1981;
Clarke, Emerson, and Sistla 1986) can be boosted to han-
dle very large (Burch et al. 1992; McMillan 1993) and even
infinite-state systems (Burkart et al. 2001). However, the un-
derlying formalisms are usually chosen very carefully to en-
sure decidability or tractability of the method. Consequently,
these formalisms are of very restricted expressiveness, in
particular regarding first-order quantification, which is ei-
ther supported only in a very limited fashion, or not at all.

In order to verify GOLOG programs without sacrificing
expressiveness, Claßen and Lakemeyer (2008) (henceforth
CL) developed a technique which is inspired by classical
CTL model checking yet deals directly with the Situation
Calculus and GOLOG. They begin by introducing the logic
ESG, an extension of the modal Situation Calculus variant ES
(Lakemeyer and Levesque 2010) to specify temporal proper-
ties of GOLOG programs. They then provide algorithms for
the verification of a first-order subset of the logic that resem-
bles CTL. The method relies on regression-based reasoning
and a newly introduced graph representation of GOLOG pro-
grams, which then allows for a systematic exploration of a
program’s configuration space within a fixpoint approxima-
tion. The downside of retaining full expressiveness is that
termination is not guaranteed.

In this paper, we explore how much expressiveness needs
to be sacrificed in order to guarantee termination and hence
decidability of the verification process. In particular, we



show that decidability can indeed be achieved as follows:

1. We restrict the base logic to a two-variable fragment of ES
and use a corresponding variant of Reiter’s regression op-
erator (Gu and Soutchanski 2010). Thus, the basic task
of projection (needed among other things for checking
whether the fixpoint computation loop has converged) be-
comes decidable, while the remaining expressiveness is
sufficient to subsume (most) description logics.

2. Since (as we will see) this is not sufficient to guarantee the
termination of the overall method, we furthermore restrict
successor state axioms in the agent’s action theory to be of
special forms, namely either context-free (Lin and Reiter
1997) or local-effect (Liu and Levesque 2005).

3. Finally, we require that a finitary variant of the pick oper-
ator π (non-deterministic choice of argument) is used in
GOLOG programs such that all actions are ground.

The above identifies a non-trivial fragment of CL’s origi-
nal formalism that goes beyond simple finite-state transition
systems as used in classical model checking. In particular,
both the agent’s action theory as well as the GOLOG pro-
gram may still contain first-order quantification over infinite
domains. We complement this result by showing that all of
the above restrictions are indeed necessary in the sense that
no strict subset of them suffices to guarantee decidability.

The rest of this paper is organized as follows. First, we
recapitulate the logic ESG and the corresponding verifica-
tion method. Afterwards, we present our decidability results
for the above mentioned classes of action theories. Next, we
show undecidability when dropping any one of our three re-
strictions. We then review related work before we conclude.

The Logic ESG
This section briefly recapitulates the logic ESG, which ex-
tends ES by constructs for expressing temporal properties of
GOLOG program executions. For a more detailed presenta-
tion please refer to CL and (Claßen 2013).

Syntax
The language is a first-order modal dialect with equality and
sorts of type object and action. For each sort, it includes
countably infinitely many standard names which are syntac-
tically treated as constants, but which are assumed to be iso-
morphic to the (fixed) domain of discourse. Also included
are both fluent and rigid predicate as well as rigid function
symbols. Fluents vary as the result of actions, but rigids do
not. We assume that the fluents include the unary predicate
Poss whose argument is of type action and which will be
used to specify when an action is executable.

In addition to the usual connectives ∧, ¬, ∀ (treating ∨,⊃,
⊂, ≡, and ∃ as abbreviations), formulas may contain modal
subformulas of the form �α (“α holds after any number of
actions”), [t]α (“α holds after doing action t”), and [[δ]]ϕ
(“temporal property ϕ holds for all runs of program δ”).

The latter is the interesting, novel part about ESG. In a
subformula of the form [[δ]]ϕ (where we will use 〈〈δ〉〉ϕ to
abbreviate ¬[[δ]]¬ϕ), the δ argument has to be a GOLOG pro-
gram, and ϕ a temporal property to be satisfied by its runs.

Programs are constructed as follows:

δ ::= t | α? | δ1; δ2 | δ1|δ2 | πx.δ | δ1||δ2 | δ∗ (1)

That is we allow primitive actions t (where t can be any
action term), tests α? (where α is a static formula as de-
fined below), sequence, nondeterministic branching, nonde-
terministic choice of argument, concurrency, and nondeter-
ministic iteration. Moreover, conditionals, while loops and
infinite loops can be defined in terms of the above:

if φ then δ1 else δ2 endIf def= [φ?; δ1] | [¬φ?; δ2] (2)

while φ do δ endWhile def= [φ?; δ]
∗
;¬φ? (3)

loop : δ
def
= while > do δ endWhile (4)

For brevity we sometimes use δω instead of loop : δ.
Temporal properties ϕ are constructed using the connec-

tives ∧, ¬ and ∀, together with subformulas containing tem-
poral operators Xφ (“φ holds in the next situation”) and
φ U ψ (“φ holds until ψ holds”). We also define Fφ =
(> U φ) (“eventually φ”) and Gφ = ¬F¬φ (“always φ”).

We call a formula fluent when it contains no [ · ], no �, and
no [[ · ]] operators, nor the special fluent Poss . A formula is
called static if it contains no [ · ], no � and no [[ · ]] operators.
It is bounded when it contains no � and no [[ · ]] operators.

Semantics
Terms and formulas are interpreted wrt a semantic model
called a world: Let PO and PA be the set of primitive terms
of sort object, and action, respectively. A primitive term is of
the form f(n1, . . . , nk), where all the ni are standard names.
Similarly, PF is the set of all primitive formulas of the form
F (n1, . . . , nk) for predicates F . Moreover, let NO and NA
be the sets of all standard names of sort object and action, re-
spectively,N = NO∪NA, andZ = NA∗ the set of all finite
sequences of action names, including the empty sequence 〈〉.
A world w then maps primitive terms to co-referring stan-
dard names of the corresponding sort, and primitive formu-
las to truth values:
• w : PO ×Z → NO and
• w : PA ×Z → NA and
• w : PF ×Z → {0, 1}
Worlds are also required to respect rigidity, i.e. ifR is a rigid
function or predicate, then for all z, z′ ∈ Z , w[R(~n), z] =
w[R(~n), z′], as well as unique action names, i.e. if g(~n) and
g′(~n′) are distinct primitive action terms, then for all z ∈ Z ,
w[g(~n), z] 6= w[g′(~n′), z].W denotes the set of all worlds.

Given a ground term t, a world w, and an action se-
quence z ∈ Z , |t|zw (read: “the co-referring standard name
for t given w and z”) is given by recursive evaluation: If
t ∈ N , then |t|zw = t; if t = f(t1, . . . , tk), then |t|zw =
w[f(n1, . . . , nk), z], where ni = |ti|zw.

To interpret programs, we need the notion of program
configurations. A configuration 〈z, δ〉 consists of an action
sequence z and a program δ, where intuitively z is the his-
tory of actions that have already been performed, while δ is
the program that remains to be executed. A transition rela-
tion w−→ among configurations wrt a world w is then given



by a set of inductive rules, e.g. in case of primitive actions
and nondeterministic branching (see CL for complete list):

1. 〈z, t〉 w−→ 〈z · p,>?〉, if p = |t|zw;
. . .

4. 〈z, δ1|δ2〉
w−→ 〈z · p, δ′〉,

if 〈z, δ1〉
w−→ 〈z · p, δ′〉 or 〈z, δ2〉

w−→ 〈z · p, δ′〉;
. . .

A trace is given by an infinite sequence τ ∈ NAω . Let τ≤i
stand for the finite sequence that consists of the first i ele-
ments of τ and τ>i for the remaining ones. Given a world
w and a finite sequence of action standard names z, ||δ||zw
denotes the traces induced by the program δ:

{τ | 〈z, δ〉 w−→ 〈z · τ≤1, δ1〉
w−→ 〈z · τ≤2, δ2〉

w−→ · · · }

Note that since transitions depend on worlds (of which there
are infinitely many) the state space is generally infinite.

Given a world w ∈ W and a formula α, we define w |= α
as w, 〈〉 |= α, where for any z ∈ Z:

1. w, z |= F (t1, . . . , tk) iff w[F (|t1|zw, . . . , |tk|zw), z] = 1;

2. w, z |= (t1 = t2) iff |t1|zw and |t2|zw are identical;

3. w, z |= α ∧ β iff w, z |= α and w, z |= β;

4. w, z |= ¬α iff w, z 6|= α;

5. w, z |= ∀x.α iff w, z |= αxn for all n of same sort as x;

6. w, z |= �α iff w, z · z′ |= α for all z′ ∈ Z;

7. w, z |= [t]α iff w, z · |t|zw |= α;

8. w, z |= [[δ]]ϕ iff for all τ ∈ ||δ||zw, w, z, τ |= ϕ.

Temporal properties ϕ are interpreted wrt some w ∈ W ,
some z ∈ Z , and a trace τ :

1. w, z, τ |= α iff w, z |= α, if α is a non-temporal formula;

2. w, z, τ |= φ ∧ ψ iff w, z, τ |= φ and w, z, τ |= ψ;

3. w, z, τ |= ¬φ iff w, z, τ 6|= φ;

4. w, z, τ |= ∀x.φ iff w, z, τ |= φxn for all n of the right sort;

5. w, z, τ |= Xφ iff τ = p · τ ′ and w, z · p, τ ′ |= φ;

6. w, z, τ |= φ U ψ iff for some i ≥ 0, w, z · τ≤i, τ>i |= ψ
and for all j < i, w, z · τ≤j , τ>j |= φ.

Basic Action Theories and Regression
We use a basic action theory (BAT) to define the pre- and
postconditions of primitive actions that can occur in a pro-
gram. Formally, a BAT is given by Σ = Σ0 ∪ Σpre ∪ Σpost,
where

1. Σ0, the initial database, is a finite set of fluent sentences
describing the initial state of the world.

2. Σpre is a precondition axiom of the form �Poss(a) ≡ π,
where π is a fluent formula whose only free variable is a.

3. Σpost is a finite set of successor state axioms (SSAs)
�[a]F (~x) ≡ γ+F ∨ F (~x) ∧ ¬γ−F , one for each fluent F
relevant to the application domain, where γ+F and γ−F are
fluent formulas with free variables among ~x and a. SSAs
incorporate Reiter’s (1991) solution to the frame problem.

The verification method relies on the ES equivalent of Re-
iter’s regression operatorR[α]. The rough idea is that, when-
ever we encounter a subformula of the form [t]F (~x) within
α, where t is an action term, we may substitute it by the
right-hand side of the SSA for fluent F . This is sound in
the sense that the axiom defines the two expressions to be
equivalent. The result of the substitution will be true in ex-
actly the same worlds satisfying Σ as the original one, but
contains one less modal operator [t]. Similarly, Poss(t) is
replaced by the right-hand side of the precondition axiom.
By iteratively applying such substitutions, we eventually get
a fluent formula that describes exactly the conditions on the
initial situation under which the original, non-static formula
holds:
Theorem 1. Let Σ be a BAT and α a bounded sen-
tence. Then R[α], the regression of α, is a fluent sentence
and Σ |= α iff Σ0 |= R[α].

Proof. This theorem follows directly from an analogous re-
sult for ES (Lakemeyer and Levesque 2010) due to the fact
that, by definition, neither a BAT Σ nor the bounded sen-
tence α contains any of the extensions of ESG, hence all in-
volved formulas are in ES.

Verification in ESG
CL consider a CTL-like fragment of ESG whose formulas
may contain subformulas of the form 〈〈δ〉〉Xψ, 〈〈δ〉〉Gφ, and
〈〈δ〉〉φ U ψ, where δ is a non-terminating program of the
form δ1

ω|| · · · ||δkω . The idea behind their verification algo-
rithm is to recursively substitute these subformulas by fluent
formulas that are equivalent wrt a given BAT Σ. For each of
these three types of subformulas, they provide a verification
procedure. Due to lack of space, we only consider the one
for the “always” operator, depicted below.1

Procedure 1 CHECKEG[δ, φ]

1: L′ := LABEL[Gδ,⊥]; L := LABEL[Gδ, φ];
2: while L 6≡ L′ do
3: L′ := L; L := L′ AND PRE[Gδ, L′];
4: end while
5: return INITLABEL[Gδ, L]

The procedure operates on a so-called characteristic graph
Gδ = 〈V,E, v0〉 for the given program δ to encode the space
of reachable program configurations. The nodes V in such
a graph are of the form 〈δ′, φ〉, denoting the remaining pro-
gram of a current run and the condition under which execu-
tion may terminate there. v0 is the initial node. Edges in E
are labeled with tuples π~x : t/ψ, where ~x is a list of vari-
ables (if it is empty, we omit the leading π), t is an action
term and ψ is a formula (which we omit when it is >). Intu-
itively, this means when one wants to take action t, one has
to choose instantiations for the ~x and ψ must hold. Again,
the interested reader is referred to CL and (Claßen 2013) for
the formal definition. An example is presented in Figure 1,

1Note however that all results of this paper equally hold for the
other temporal modalities.



v0 v1

[πx, y : requestDDR(x, y)]

πx : unload(x)/
(∃x.OnRobot(x))

[πx, y : requestDDR(x, y)]

πx : load(x, y)/
(∃x.DirtyDish(x, y))

πy : goToRoom(y)/
(¬∃x.OnRobot(x))

goToKitchen/
(¬∃x.DirtyDish(x, y))

Figure 1: Characteristic graph for the robot example

which shows the graph corresponding to δrobot ||δexo, where
δrobot denotes the control program presented in the intro-
duction and δexo = (πx, y : requestDDR(x, y))

ω encodes
exogenous actions (here: requests for the removal of dirty
dish x from room y). The nodes are v0 = 〈δrobot ||δexo,⊥〉
and v1 = 〈(δ1; δrobot)||δexo,⊥〉, where δ1 is the program

(πx. (∃xDirtyDish(x, y))?; load(x, y))∗;

(¬∃xDirtyDish(x, y))?; goToKitchen.

The verification algorithms work on labels of the character-
istic graph, where a label is given by 〈v, ψ〉 with v ∈ V and
ψ being a fluent formula. Intuitively, it represents all pro-
gram configurations corresponding to v as well as all worlds
w and action name sequences z satisfying ψ. A labelling is
then given by a set of labels, one for each node of the graph.
The following operations on labels are used:

LABEL[〈V,E, v0〉, α]
def
= {〈v, α〉 | v ∈ V }

L1 AND L2
def
= {〈v, ψ1 ∧ ψ2〉 | 〈v, ψ1〉 ∈ L1, 〈v, ψ2〉 ∈ L2}

L1 ≡ L2

def

iff for 〈v, ψ1〉 ∈ L1 and 〈v, ψ2〉 ∈ L2, |= ψ1 ≡ ψ2

INITLABEL[〈V,E, v0〉, L]
def
= ψ such that 〈v0, ψ〉 ∈ L

PRE[〈V,E, v0〉, L]
def
= {〈v, PRE[v, L]〉 | v ∈ V }

where PRE[v, L] stands for∨
{R[∃~x.φ ∧ [t]ψ] | v π~x:t/φ−−−−→ v′ ∈ E, 〈v′, ψ〉 ∈ L}.

Procedure 1 thus proceeds as follows. First, the labelling L
is initialized to every node being labelled with φ. As long
as L is not equivalent to the old label L′ (initialized to ⊥),
L is conjoined with its pre-image, which roughly gives us a
description of the corresponding predecessor configurations
(note the use of regression to eliminate the action term t).
Once the label set is converged, the formula at the initial
node is returned as result. The algorithm is sound as follows:
Theorem 2 (CL). Let Σ be a BAT, δ a program and φ a
fluent formula. If the procedure terminates, CHECKEG[δ, φ]
is a fluent formula and Σ |= 〈〈δ〉〉Gφ iff Σ0 |=
CHECKEG[δ, φ].

Decidability
The algorithm presented above cannot be guaranteed to ter-
minate for two reasons. First, equivalence checks over first-
order formulas as used in the while loop condition are in
general undecidable. Furthermore, even if all equivalence
checks terminate, the label set may never converge.

A Decidable Base Logic
As for the first source of non-termination, we can exploit
results by Gu and Soutchanski (2010) who present a two-
variable fragment of the Situation Calculus for which the
projection problem, solved by means of regression, is decid-
able. Here we capture this fragment as a subset of ESG and
ES called ES2, which restricts formulas to only contain

• variables x, y or rigid constant symbols as object terms;

• action function symbols with at most two arguments;

• fluents with at most two arguments.

Decidability is then essentially obtained from the fact that
the result of applying the regression operator corresponds
to a formula in FO2, the two-variable fragment of first-
order logic, which is known to be decidable (Mortimer 1975;
Grädel, Kolaitis, and Vardi 1997).

We define an ES2 formula to be regressable if it is
bounded and all its actions terms are ground. Then we have:

Theorem 3. ES2 is closed under regression: If α is a re-
gressable ES2 formula, then R[α] is equivalent to a fluent
ES2 formula.

Proof. (Sketch) This can be achieved by modifying the re-
gression operator R such that by means of appropriate sub-
stitutions, no new variable is introduced in the process of
regression. The construction is similar to Definition 2 in (Gu
and Soutchanski 2010).

Theorem 4. Let Σ0 be a finite set of fluent ES2 formulas and
ψ a single fluent ES2 formula. Then Σ0 |= ψ is decidable.

Proof. (Sketch) Using a similar mapping as Lakemeyer and
Levesque (2010) who embed ES in the original Situation
Calculus, it is possible to show that truth of fluent ES2 for-
mulas can be reduced to truth of FO2 formulas.

In the following, we assume that all fluent subformulas oc-
curring in the BAT Σ, the program δ and the property ϕ are
in ES2. By Theorem 3, labels thus will only contain fluent
ES2 formulas. Theorem 4 then guarantees that both label
equivalence checks |= ψ1 ≡ ψ2 as well as the final test for
Σ0 |= CHECKEG[δ, φ] are decidable.

Note that even though the restriction to only two variable
symbols prohibits to express certain properties such as tran-
sitivity, it is nonetheless not as limited as it may initially
seem due to the fact that variables may be reused. It is thus
for instance possible to express the existence of a path of
length k over some binary relation R for any given k ≥ 0.
For example, for the case k = 3 we have:

∃x∃y (R(x, y) ∧ ∃x (R(y, x) ∧ ∃y R(x, y)))

Convergence with Context-Free BATs
As we will see in the following section, using a decidable
base logic is unfortunately not sufficient to also eliminate
the second source of non-termination of the algorithm as the
verification problem still remains undecidable. Convergence
can however be guaranteed if we restrict ourselves to cer-
tain subclasses of BATs. The first possibility is to use the



ones with context-free SSAs (Lin and Reiter 1997), which
formally means that effect conditions γ+F and γ−F contain
no fluents (but maybe rigids). A BAT is context-free if each
SSA is context-free.

An example for an SSA that is context-free is the follow-
ing, where Fragile(x) is assumed to be rigid:

�[a]Broken(x) ≡ a = drop(x) ∧ Fragile(x)

∨ Broken(x) ∧ a 6= repair(x)

On the other hand, if HavePaint(x) is a fluent, then the fol-
lowing is not context-free:

�[a]Colour(x, y) ≡ a = paint(x, y) ∧HavePaint(y)

∨ Colour(x, y) ∧ ¬∃y.a = paint(x, y)

Among other things, context-free SSAs also include the
strictly context-free ones as special case, which correspond
precisely to STRIPS planning operators as shown by Lin
and Reiter (1997).

In order to ensure our prerequisite that formulas to be re-
gressed only contain ground terms, we prohibit the usage of
the non-deterministic pick operator π. Note that we can still
allow a finitary variant defined in terms of nondeterministic
branching over finitely many constants:

πx : {c1, . . . , ck}.δ
def
= δxc1 | · · · |δ

x
ck
.

We then have the following theorem:

Theorem 5. If Σ is a context-free BAT and δ a program
without pick operators, Procedure 1 will converge.

Proof. (Sketch) The central property for this proof is:

R
[
[ti]R

[
[tn] . . . [ti] . . . [t1]ϕ

]]
≡ R

[
[tn] . . . [ti] . . . [t1]ϕ]

]
.

That is, regressing some fluent formula ϕ through the same
ground action multiple times produces an equivalent result
as only regressing once through that action. The reason is
that in each step we conjoin and disjoin the corresponding
γ+F

a

ti
and γ−F

a

ti
, which will then remain unchanged by fur-

ther regression since they are situation-independent formu-
las, and conjoining or disjoining them again hence has no ef-
fect. Because the program (and thus the characteristic graph)
has only finitely many actions all of which are ground, there
are only finitely many such sequences of actions to consider.
Similarly, there are only finitely many fluent subformulas ϕ
to which this applies, namely those given by the input prop-
erty as well as the finitely many test conditions appearing in
the program. We then exploit the fact that the body of the
while loop in the verification procedure is monotone, i.e. it
always produces a label formula subsumed by the previous
one. Hence, eventually the label set converges.

Note that convergence here and below is shown indepen-
dent from the assumption of using ES2 as base logic. In
fact, we could also “plug in” any other decidable fragment of
first-order logic, such as C2, the two-variable fragment with
counting quantifiers (Pacholski, Szwast, and Tendera 2000).

Convergence with Local-Effect BATs
An alternative to ensure termination is to restrict ourselves to
BATs whose SSAs are local-effect (Liu and Levesque 2005),
where we formally require that both γ+F and γ−F are disjunc-
tions of formulas of the form ∃~z[a = A(~y)∧φ(~y)], where A
is an action function, ~y contains ~x, ~z is the remaining vari-
ables of ~y. φ is called a context formula and contains no
quantifiers. A BAT is local-effect if each SSA is local-effect.

It can be argued that the restriction to local-effect BATs is
not that harsh. There are of course examples which cannot
be expressed through a local-effect SSA, such as exploding
a bomb:

�[a]Dead(x) ≡ ∃y (a = explode(y) ∧ Close(x, y))

∨Dead(x)

However, in many practical scenarios, actions only affect
fluent values within a limited scope. The following is a local-
effect SSA because both lock(x, y) and unlock(x, y) con-
tain the fluent’s argument x as parameter:

�[a]Locked(x) ≡ ∃y (a = lock(x, y) ∧HaveKey(y))

∨ Locked(x) ∧ ¬∃y (a = unlock(x, y) ∧HaveKey(y))

Indeed, all SSAs presented in this paper except the bomb
example above are local-effect. Moreover, since local-effect
SSAs are a generalization of strictly context-free ones, they
also subsume everything that can be expressed by means of
STRIPS.
Theorem 6. If Σ is a local-effect BAT and δ a program with-
out pick operators, Procedure 1 will converge.

Proof. (Sketch) This proof relies on the fact that by using
unique names of actions, the instantiation of a local-effect
SSA on a ground action can be significantly simplified (Liu
and Levesque 2005). Let t = A(~c) be a ground action. Then
any γ+F

a

t or γ−F
a

t is equivalent to a formula of the form

~x = ~d1 ∧ ψ1 ∨ · · · ∨ ~x = ~dn ∧ ψn

where ~di is a vector of constants contained in ~c, and ψi is a
quantifier-free sentence. We can then identify a finite num-
ber of equivalence classes for label formulas, as there are
only finitely many actions in the graph (all of which are
ground) and only finitely many fluents in the BAT, and hence
only finitely many such instantiations for a finite number of
relevant fluent formulas given by the test conditions in the
program and the input property. Using the monotonicity ar-
gument again, convergence is guaranteed.

An Example
Revisiting our earlier example, we show a verification run
for a local-effect BAT. Observe that the program is already
in the two-variable fragment, but we have to replace pick
operators by their finitary counterparts, using constants di
for dishes and ri for rooms. This yields the program δ′robot :

loop : while (∃x.OnRobot(x)) do
πx : {d1, d2}.unload(x) endWhile;

πy : {r1, r2}.goToRoom(y);



while (∃x.DirtyDish(x, y)) do
πx : {d1, d2}.load(x, y) endWhile;

goToKitchen

Assume that all actions are always possible. The SSAs are
(omitting the robot’s location for simplicity):

�[a]DirtyDish(x, y) ≡ a = requestDDR(x, y) ∨
DirtyDish(x, y) ∧ ¬[a = load(x, y)]

�[a]OnRobot(x) ≡ ∃y. a = load(x, y) ∨
OnRobot(x) ∧ ¬[a = unload(x)].

Note that these axioms are in fact both context-free and
local-effect.

Suppose we want to verify whether a run of δ′robot ||δexo is
possible where some dish in some room remains dirty for-
ever, i.e. ¬∃x, y.〈〈δ′robot〉〉GDirtyDish(x, y). Thus, the call
to Procedure 1 is CHECKEG[δ′robot ||δexo,DirtyDish(x, y)].
It starts with the following label set:

L0 = {〈v0,DirtyDish(x, y)〉, 〈v1,DirtyDish(x, y)〉}.
For determining the pre-image for a node, each of its outgo-
ing edges has to be considered. Note that for every edge of
the original graph shown in Figure 1, there are now several
edges corresponding to the instantiations of the variables by
the di and rj . One of the disjuncts of PRE[v0, L0] thus is

R[[requestDDR(d1, r1)]DirtyDish(x, y)]

which (using unique names of actions) reduces to

x = d1 ∧ y = r1 ∨DirtyDish(x, y).

Using similar reductions for the other edges we obtain
PRE[v0, L0] and PRE[v1, L0] both being equivalent to

x = d1 ∧ y = r1 ∨ x = d2 ∧ y = r1 ∨ x = d1 ∧ y = r2

∨ x = d2 ∧ y = r2 ∨DirtyDish(x, y).

Then L1 = L0 AND PRE[Gδ, L0], which reduces to

{〈v0,DirtyDish(x, y)〉, 〈v1,DirtyDish(x, y)〉}
hence L0 ≡ L1, i.e. the algorithm terminates and returns
¬∃x, y.DirtyDish(x, y). Thus, there is no run with some
dish forever remaining dirty in some room iff there is no
dirty dish initially. Intuitively, this is correct because Gφ
means that φ persists to hold during the entire run, including
the initial situation. Therefore, only if a dish is dirty initially
it may happen that it never gets cleaned, namely when the
robot never visits the corresponding room.

Undecidability
In this section we argue that all three restrictions, namely
(1) fluent formulas being from a decidable base logic like
ES2, (2) SSAs being either context-free or local-effect, and
(3) disallowing pick operators, are necessary in the sense
that no strict subset suffices to guarantee decidability.

Clearly, dropping restriction (1) immediately leads to un-
decidability as this would allow us to formulate arbitrary
first-order sentences as tests and preconditions. Let us there-
fore consider the case of a restricted BAT Σ but a program δ
with unlimited usage of the pick operator.

Theorem 7. The verification problem for GOLOG programs
over non-ground actions based on a context-free or local-
effect BAT is undecidable.

Proof. (Sketch) The proof is by reduction from the Halting
problem of a Turing machine (TM). Given a TM T we de-
vise a BAT ΣT and a program δT such that T halts just
in case ΣT ∪ {〈〈δT 〉〉FStateqF } is satisfiable. Assuming a
right-infinite tape, we use the fluent Pos(x) to denote the
current head position, a fluent Stateq for each state q, a flu-
ent Symbolb(x) for each symbol b to express that cell x cur-
rently holds b, a fluent Visited(x) to memorize already vis-
ited cells, and a fluent Right(x) to memorize the rightmost
cell that has been visited. Furthermore, the rigid predicate
Adj (x, y) is used to represent the adjacency relation of tape
cells. For each transition rule (q, b, q′, b′,m) we then have
an action do(q,b,q′,b′,m)(x, y), where x stands for the head
position before applying the transition rule, and y for the
resulting one. The definition of the initial theory, precondi-
tion axioms and (both context-free and local-effect) SSAs
is straightforward. The program δT then is an infinite loop
that non-deterministically branches over finitely many sub-
programs, each corresponding to one transition rule. For ex-
ample, a rule with movement to the right is encoded as

πxπy.Pos(x) ∧Adj (x, y) ∧ (Right(x)⊃¬Visited(y))

∧ Stateq ∧ Symbolb(x)?; do(q,b,q′,b′,r)(x, y).

The pick operators allow us to quantify objects from an un-
bounded domain, thus representing the unbounded tape of a
TM. Since the Halting Problem for TMs is undecidable, so
is the verification problem for GOLOG programs over non-
ground actions and context-free or local-effect BATs.

If we disallow the pick operator again, but instead allow for
non-local and non-context-free effects, we also get:

Theorem 8. The verification for GOLOG programs over
ground actions based on unrestricted BATs is undecidable.

Proof. (Sketch) Again, this is shown by simulating a TM,
using a similar construction as above. However, we now
have a 0-ary action do(q,b,q′,b′,m) for each transition rule,
and formalize the unrestricted quantification of new tape
cells within SSAs. For example, the one for Pos(x) is

�[a]Pos(x) ≡
∨

(q,b,q′,b′,m)

a = do(q,b,q′,b′,m) ∧Nextm(x),

where Nextm(x) is an abbreviation that depends on the di-
rection of movement, e.g. Nextr(x) (for moving right) is

∃y.Pos(y) ∧Adj (y, x) ∧ (Right(y) ⊃ ¬Visited(x)).

Note that the above is neither context-free nor local-effect.
Undecidability of the verification problem for GOLOG pro-
grams over ground actions and arbitrary BATs again follows
from undecidability of the Halting Problem for TMs.



Related Work

Verification of non-terminating GOLOG programs was first
discussed by De Giacomo, Ternovska and Reiter (1997), but
only in the form of manual, meta-theoretic proofs, where
properties were expressed using µ-calculus formulas in-
stead of temporal modalities. De Giacomo, Lespérance and
Pearce (2010) applied the idea of verifying GOLOG pro-
grams through iterative fixpoint approximations using char-
acteristic graphs within multi-agent scenarios, where proper-
ties are expressed in Alternating-Time Temporal Logic. Nei-
ther approach was concerned with decidability.

Baader, Liu and ul Mehdi (2010), on the other hand,
address decidability by resorting to a dynamic extension
(Baader et al. 2005) of the decidable description logic (DL)
ALC (Baader et al. 2003) to represent pre- and postcon-
ditions of actions and consider properties expressed by a
variant of LTL over ALC assertions (Baader, Ghilardi, and
Lutz 2008). Instead of a fully-fledged GOLOG, they approxi-
mate programs by finite Büchi automata and show that under
these restrictions, verification reduces to a decidable reason-
ing task within the underlying DL. Compared with our ap-
proach, the Büchi automaton representation loses one partic-
ularly important feature of GOLOG, namely the possibility to
include test conditions in the form of formulas.

Baader, Liu and ul Mehdi’s results were extended by
Baader and Zarrieß (2013), who show decidability of verify-
ing ALC-LTL properties over GOLOG programs including
test conditions. They make a similar restriction as we by pro-
hibiting pick operators. As we have seen, there is good rea-
son for this as arbitrary usage of picks quickly leads to unde-
cidability. However, representing action effects inALC only
admits basic STRIPS-style addition and deletion of literals,
which is less expressive than allowing context-free or local-
effect SSAs as we do. Zarrieß and Claßen (2014) finally ex-
tend the above to a formalism that includes local-effect SSAs
and is thus comparable in expressiveness to ours. In fact,
their result can be viewed as complementing ours: While
we apply restrictions to ensure termination of an algorithm
for an originally undecidable problem, they construct a fi-
nite abstraction of the infinite-state transition system such
that classical model checking can be used.

Another line of research on decidable verification is fol-
lowed by De Giacomo, Lespérance and Patrizi (2012). They
show decidability for first-order µ-calculus properties for
a class of BATs that only admits finitely many instances
of fluents to hold. In contrast, our approach also allows
fluents with infinite extensions. Moreover, their notion of
boundedness is a semantical condition that is in general
undecidable, whereas our approach relies on purely syn-
tactical restrictions. In related work, Hariri et al. (2013a;
2013b) consider the verification of µ-calculus properties in
the context of relational databases and light-weight DLs,
respectively, where new information may be added at any
time. Among other things, they show that decidability ob-
tains provided the added information is bounded.

Conclusion
Perhaps the main insight of the paper is that the decidability
of the verification problem considered in this paper depends
crucially on limiting both the basic action theory and the
GOLOG program. Decidability obtains essentially because,
under these restrictions, there exist finite abstractions of the
infinite state space in terms of label formulas together with
the respective program states. Moreover, giving up any one
of these restrictions immediately leads to undecidability.

It is worth noting that the fragment we obtain under these
restrictions is still non-trivial and of practical interest. Our
base formalism is sufficiently expressive to subsume most
description logics, in particular if we resort to C2 instead of
FO2 as explained in an earlier remark. Moreover, context-
free and local-effect SSAs both extend what can be ex-
pressed by basic STRIPS in a non-trivial manner, and thus
cover a large fragment of plan operators in the planning lan-
guage PDDL (Ghallab et al. 1998).

In the future, we plan to further investigate the computa-
tional complexity of decidable verification and provide an
implementation. In this regard it may also be interesting to
directly construct the finite state abstractions as in (Zarrieß
and Claßen 2014) and then use a model checker such as
NuSMV (Cimatti et al. 2002). It would also be interesting
to consider other restrictions that would allow an arbitrary
use of pick operators while maintaining decidability.

Acknowledgments
This work was supported by the German National
Science Foundation (DFG) research unit FOR
1513 on Hybrid Reasoning for Intelligent Systems
(http://www.hybrid-reasoning.org).

References
Baader, F., and Zarrieß, B. 2013. Verification of Golog pro-
grams over description logic actions. In Proc. FroCoS’13,
181–196. Springer-Verlag.
Baader, F.; Calvanese, D.; McGuinness, D. L.; Nardi, D.;
and Patel-Schneider, P. F., eds. 2003. The Description
Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press.
Baader, F.; Lutz, C.; Miličić, M.; Sattler, U.; and Wolter, F.
2005. Integrating description logics and action formalisms:
First results. In Proc. AAAI 2005, 572–577. AAAI Press.
Baader, F.; Ghilardi, S.; and Lutz, C. 2008. LTL over de-
scription logic axioms. In Proc. KR 2008, 684–694. AAAI
Press.
Baader, F.; Liu, H.; and ul Mehdi, A. 2010. Verifying prop-
erties of infinite sequences of description logic actions. In
Proc. ECAI 2010, 53–58. IOS Press.
Burch, J. R.; Clarke, E. M.; McMillan, K. L.; Dill, D. L.; and
Hwang, L. J. 1992. Symbolic model checking: 1020 states
and beyond. Information and Computation 98(2):142–170.
Burgard, W.; Cremers, A. B.; Fox, D.; Hähnel, D.; Lake-
meyer, G.; Schulz, D.; Steiner, W.; and Thrun, S. 1999.
Experiences with an interactive museum tour-guide robot.
Artificial Intelligence 114(1–2):3–55.



Burkart, O.; Caucal, D.; Moller, F.; and Steffen, B. 2001.
Verification on infinite structures. In Handbook of Process
Algebra. Elsevier. 545–623.
Cimatti, A.; Giunchiglia, E.; Pistore, M.; Roveri, M.; Sebas-
tiani, R.; and Tacchella, A. 2002. Integrating BDD-based
and SAT-based symbolic model checking. In Proc. of the
4th Int. Workshop on Frontiers of Combining Systems, Fro-
CoS ’02, 49–56. Springer-Verlag.
Clarke, E. M., and Emerson, E. A. 1981. Design and synthe-
sis of synchronization skeletons using branching time logics.
In Logic of Programs, volume 131 of Lecture Notes in Com-
puter Science. Springer-Verlag. 52–71.
Clarke, E. M.; Emerson, E. A.; and Sistla, A. P. 1986. Au-
tomatic verification of finite-state concurrent systems us-
ing temporal logic specifications. ACM Transactions on
Programming Languages and Systems (TOPLAS) 8(2):244–
263.
Claßen, J., and Lakemeyer, G. 2008. A logic for non-
terminating Golog programs. In Proc. KR 2008, 589–599.
AAAI Press.
Claßen, J. 2013. Planning and Verification in the Agent Lan-
guage Golog. Ph.D. Dissertation, Department of Computer
Science, RWTH Aachen University.
De Giacomo, G.; Lespérance, Y.; and Levesque, H. J. 2000.
ConGolog, a concurrent programming language based on
the situation calculus. Artificial Intelligence 121(1–2):109–
169.
De Giacomo, G.; Lespérance, Y.; and Patrizi, F. 2012.
Bounded situation calculus action theories and decidable
verification. In Proc. KR 2012. AAAI Press.
De Giacomo, G.; Lespérance, Y.; and Pearce, A. R. 2010.
Situation calculus based programs for representing and rea-
soning about game structures. In Proc. KR 2010, 445–455.
AAAI Press.
De Giacomo, G.; Ternovska, E.; and Reiter, R. 1997. Non-
terminating processes in the situation calculus. In Working
Notes of “Robots, Softbots, Immobots: Theories of Action,
Planning and Control”, AAAI’97 Workshop.
Ferrein, A., and Lakemeyer, G. 2008. Logic-based robot
control in highly dynamic domains. Robotics and Au-
tonomous Systems.
Ghallab, M.; Howe, A.; Knoblock, C.; McDermott, D.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL—
The Planning Domain Definition Language.
Grädel, E.; Kolaitis, P. G.; and Vardi, M. Y. 1997. On the
decision problem for two-variable first-order logic. Bulletin
of Symbolic Logic 3(1):53–69.
Gu, Y., and Soutchanski, M. 2010. A description logic based
situation calculus. Annals of Mathematics and Artificial In-
telligence 58(1–2):3–83.
Hariri, B. B.; Calvanese, D.; Giacomo, G. D.; Deutsch,
A.; and Montali, M. 2013a. Verification of relational
data-centric dynamic systems with external services. In
Proc. PODS 2013, 163–174. ACM Press.
Hariri, B. B.; Calvanese, D.; Montali, M.; Giacomo, G. D.;
Masellis, R. D.; and Felli, P. 2013b. Description logic

knowledge and action bases. J. Artif. Intell. Res. (JAIR)
46:651–686.
Lakemeyer, G., and Levesque, H. J. 2010. A semantic char-
acterization of a useful fragment of the situation calculus
with knowledge. Artificial Intelligence 175(1):142–164.
Levesque, H. J.; Reiter, R.; Lespérance, Y.; Lin, F.; and
Scherl, R. B. 1997. GOLOG: A logic programming lan-
guage for dynamic domains. Journal of Logic Programming
31(1–3):59–83.
Lin, F., and Reiter, R. 1997. How to progress a database.
Artificial Intelligence 92(1–2):131–167.
Liu, Y., and Levesque, H. J. 2005. Tractable reasoning with
incomplete first-order knowledge in dynamic systems with
context-dependent actions. In Proc. IJCAI 2005, 522–527.
Professional Book Center.
McCarthy, J., and Hayes, P. 1969. Some philosophical
problems from the standpoint of artificial intelligence. In
Meltzer, B., and Michie, D., eds., Machine Intelligence 4.
New York: American Elsevier. 463–502.
McMillan, K. L. 1993. Symbolic Model Checking. Kluwer
Academic Publishers.
Mortimer, M. 1975. On languages with two variables. Math-
ematical Logic Quaterly 21:135–140.
Pacholski, L.; Szwast, W.; and Tendera, L. 2000. Complex-
ity results for first-order two-variable logic with counting.
SIAM Journal on Computing 29(4):1083–1117.
Reiter, R. 1991. The frame problem in the situation cal-
culus: A simple solution (sometimes) and a completeness
result for goal regression. Artificial Intelligence and Math-
ematical Theory of Computation: Papers in Honor of John
McCarthy 359–380.
Reiter, R. 2001. Knowledge in Action: Logical Foundations
for Specifying and Implementing Dynamical Systems. MIT
Press.
Zarrieß, B., and Claßen, J. 2014. On the decidability of ver-
ifying LTL properties of golog programs. In Proceedings
of the AAAI Spring Symposium 2014 on Knowledge Repre-
sentation and Reasoning in Robotics (KRR’14). Palo Alto,
California, USA: AAAI Press.


