
KI Fa c h b e i t r ä g e 4/00

11

1 Introduction
In the last five years, substantial progress has been made in

building mobile robots which can navigate safely in populated
areas like office environments, museums, or the like [3,13] . We
now have fairly robust solutions to low-level tasks like obstacle
avoidance or self-localization so that it is possible to more se-
riously think about high-level control issues, that is, telling the
robot what to do and how to do it. We feel that a high-level ro-
bot control language should not only be expressive enough to
account for realistic domains in a natural way but also support
automated reasoning about the task at hand, in particular, the
ability to project the outcome of a given plan or program1. The
latter is important not only because it is an integral part of intel-
ligent behavior such as rationally choosing among different
courses of actions but also for pragmatic reasons. Note that pro-
jecting a plan can be thought of as a (qualitative) simulation of
how the world evolves when actions are executing, which is
quite helpful for debugging purposes. This is especially true for
plans with concurrent actions, which arise naturally in robotics
applications. Moreover, simulations are in general much faster
than actually running tests on the robot.

There have been a number of proposals for high-level con-
trol languages such as RPL [18], RAP [6], COLBERT [12], and GO-
LOG [15]. Among them only RPL and GOLOG allow for plan pro-
jection. RPL’s projection mechanism called XFRM [18, 19] is pro-
blematic, however, because projections rely on using RPL’s run-
time system, which lacks a formal semantics and which makes
predictions implementation dependent. On the other hand,
projections in GOLOG, which is based on the situation calculus
[17], have a perspicuous declarative semantics. However, in con-
trast to languages like RPL, GOLOG is by far not expressive enou-
gh for realistic robot domains, first successful experiments using
GOLOG to control a real museum-tour-guide robot [3] notwith-
standing. While there are extensions of GOLOG adding concur-
rency [8] and time [24], these still do not go far enough. Among
the things that are missing we have at least the following:

Towards more realistic logic-based
robot controllers in the GOLOG
framework

 Henrik Grosskreutz, Gerhard Lakemeyer

High-level robot control languages should not only be expressive enough f or realistic domains but also support r easoning
about actions, in particular, the projec tion of robot plans, which is useful for the robot when choosing among different
courses of action as well as the designer of robot controllers, since projections allow for qualitative simula tions. GOLOG, a
language based on the situation calculus, was specifically proposed for this purpose. W hile it comes equipped with a
powerful projec tion mechanism, however, it lacks e xpressiveness. In particular, it c annot deal with continuous change,
even t-driv en behavior, and probabilistic effec ts of actions, all of which are important in the domain of mobile r obotics. In
this paper, we show how these issues can be dealt with in the GOLOG framework by proposing appropriate extensions of
the language.

1. In GOLOG, the world changes in a discrete fashion. However,
in the context of mobile robots many changes are best
thought of as continuous. For example, while moving, the ro-
bot changes its position continuously. The same holds for
the battery level or the passage of time. While it may be pos-
sible to approximate such changes by discrete approximati-
ons, this seems at least unnatural and of ten adds considera-
ble complexity to the reasoning involved.

2. In the cur rent temporal extension of GOLOG [24], the user
has to explicitly supply the time of execution for each action.
However, when specifying a robot ’s task, this seems rarely
appropr iate and is often infeasible, especially in the context
of concurrency. For example, suppose we want to tell the ro-
bot to do the following: (1) deliver today’s mail to the offices;
(2) whenever you pass near Henrik ’s room say „hello’’; (3)
whenever the battery level drops dangerously low, interrupt
whatever you are cur rently doing and recharge your batte-
ries . Notice that nowhere do we say explicitly when an ac-
tion has to be taken. Instead, actions are initiated conditio-
ned on certain events happening like passing a certain of-
fice or reaching a low battery level. We call this event-dr iven
behavior.

3. Lastly, actions in GOLOG always have determinate effects,
that is, there is no uncertainty about whether or not an ac-
tion achieves the desired results. In practice, however, uncer-
tainty seems to be ubiquitous, which is in large part due to
the shortcomings of today´s robots. Consider, for example, a
pickup action. Given a certain characteristic of the gripper
and the object to be lifted, we may want to say that the pik-
kup action succeeds 80% of the time and fails otherwise,
which, in its simplest form, may amount to having no effect
at all.

In this paper, we will sketch how these shortcomings of
GOLOG can be overcome, thus shortening the gap in expressi-
veness between non-logic-based and logic-based robot con-
trol languages. We introduce two extensions of GOLOG called
cc-Golog and pGOLOG, respectively. While cc-Golog is concer-
ned with continuous change and event-driven behavior,
pGOLOG tackles the issue of actions with uncertain outcome.

1 We use the terms pr ogram and plan inter changeably, following
McDermott [18], who takes plans to be programs whose execution can
be reasoned about by the agent who executes the program.

Korrekturabzug, Künstliche Intelligenz, Hef t 4/00 www.kuenstliche-intelligenz.de
ISSN 0933-1875, arenDTaP Verlag, Bremen fon +49 421 34889-30 fax: +49 421 34889-31



12

KI F a c h be i t r ä g e 4/00

The rest of the paper is organized as follows. In the next sec-
tion we give a very brief introduction to the situation calculus,
which is the basic foundation of GOLOG and all its extensions.
We then take up cc-Golog and pGOLOG in turn, briefly discuss
experimental results and end the paper with some conclusions.

The paper tries to remain largely informal, focussing on the in-
tuitions behind the various extensions of GOLOG rather than de-
tails. Those interested in the technical details are referred to [9, 10].

2 The Situation Calculus
One increasingly popular language for representing and re-

asoning about the effects of actions is the situation calculus
[17]. We will only go over the language briefly here: all terms in
the language are of sor t ordinary objects, actions, situations, or
reals2.  There is a special constant S0 used to denote the initial si-
tuation , namely that situation in which no actions have yet oc-
curred; there is a distinguished binary function symbol do whe-
re do(a,s) denotes the successor situation of s resulting from
performing action a in s ; relations and functions whose truth
values vary from situation to situa tion are called fluents, and are
denoted by predicate and function symbols taking a situa tion
term as their last argument; finally, there is a special predicate
Poss(a,s) used to state that action a is executable in situation s.

Within this language, we can formulate theories which des-
cribe how the world changes as the result of the available ac-
tions. One possibility is a basic action theory of the following
form [16]:
• Axioms describing the initial situation, S0.
• Action precondition axioms, one for each primitive action a,

characterizing Poss(a,s)
• Successor state axioms, one for each fluent F, stating under

what conditions F( , do(a,s)) holds as a function of what
holds in situation s. These take the place of the so-called ef-
fect axioms, but also provide a solution to the frame problem
[22]. Here is a simple example of a successor state axiom for
the fluent Broken(x,s ): 3

Poss(a,s) É Broken(x, do(a, s)) º
a = drop(x) ¹  Fragile (x) V
Broken (x, s) ¹  a ¹ repair(x)

In other words, provided action a is possible, the object x will
be broken after doing a just in case either a is a drop action
and x is fragile or x was already broken and a is not a repair
action.

• Domain closure and unique names axioms for the primitive
actions, as well as unique names axioms for situations .

3 Continuous Change and Time

In order to model continuous processes like a robot ’s move-
ment along a hallway we begin by adding continuous change
and time directly to the ontology of the situation calculus.

As shown in [21, 23], adding time is easy. We simply add a
new sort time ranging over the reals and, in order to connect si-
tuations and time, a special unary functional fluent start with the
understanding that start(s) denotes the time when situation s

begins. We will see later how start obtains its values and, in par-
ticular, how the passage of time is modeled.

A fundamental assumption of the situation calculus is that
fluents have a fixed value at every given situation. In order to
see that this assumption still allows us to model continuous
change, let us consider the example of a mobile robot moving
along a straight line in a 1-dimensional world, that is, the robot’s
location at any given time is simply a real number. There are two
types of actions the robot can perform, startGo(v), which initia-
tes moving the robot with speed v, and endGo which stops the
movement of the robot. Let us denote the robot’s location by
the fluent robotLoc. What should the value of robotLoc be after
executing star tGo in situation s? Certainly it cannot be a fixed
real value, since the position should change over time as long
as the robot moves. In fact, the location of the robot at any time
after star tGo(v) (and before the robot changes its velocity) can
be characterized (in a somewhat idealized fashion) by the
function x + v x ( t – t0), where x is the starting position and t0 the
star ting time. The solution is then to take this func tion of time to
be the value of robotLoc. We call functional fluents whose valu-
es are continuous functions continuous fluents.

The idea of continuous fluents is not new and has been in-
vestigated in various ways as in [7, 20, 21, 25, 26]. Here we essen-
tially follow Pinto [21] and only illustrate the basic principles by
way of example.

For our 1-dimensional robot, we introduce two kinds of
functions of time, constant functions, denoted by constant(x)
and the special linear functions introduced above, which we
denote as linear(x, v, t0). In order to specify what values these
functions take on at any particular time t we use the following
axioms:

v al (constant(x), t) = x;
v al (linear (x, v, t0), t) = x + v x (t – t0).

Before considering how these functions of time allow us to
specify the successor state axiom of robotLoc, let us turn to the
issue of modeling the passage of time during a course of ac-
tions. Motivated by the treatment of time in robot control lan-
guages like RPL, RAP, or COLBERT, we introduce a new type of
pr imitive action waitFor(q ). The intuition is as follows. Normally,
every action happens immediately, that is, the starting time of
the situation after doing a in s is the same as the starting time of s.
The only exception is waitFor(q ): whenever this action occurs,
the starting time of the resulting situation is advanced to the
earliest time in the future when q  becomes true. q  is assumed
to be a formula involving functions of time with the situation
argument suppressed such as (robotLoc $1000 .  For any situati-
on s and time t such an expression is „evaluated’’ by replacing
robotLoc by val (robotLoc(s), t)4. Note that choosing the ear liest
time when q  is true has the effect that actions always happen
as soon as possible. One may object that requir ing that two ac-
tions other than waitFor must happen at the same time is un-
realistic. However, in robotics applications, actions often involve
little more than sending messages in order to initia te or termi-
nate processes so that the actual duration of such actions is ne-
gligible. Moreover, if two action cannot happen at the same
time, they can always be separated explicitly using waitFor.

2 While the reals are not normally par t of the situation calculus, we need
them to represent time, continuous change, and probabilities. For
simplicity, the reals are notaxiomatized and we assume their standard
inter pretations together with the usual operations and ordering relations.

3 Throughout, free variables are assumed to be implicitly universally quantified.

4 Note that there may not always be a least time point where q is true, for
example in the case of (robotLoc > 1000). We deal with this problem b e
requiring that a waitFor-action is possible only if such al least time p oint
exists and leave it to the user to car efully chosse appropriate q.

Korrekturabzug, Künstliche Intelligenz, Heft 4/00 www.k uenstliche-intelligenz.de
ISSN 0933-1875, arenDTaP Ver lag, Bremen fon +49 421 34889-30 fax: +49 421 34889-31



KI Fa c h b e i t r ä g e 4/00

13

With the idea of time advancing only through waitFor, we
can now specify how the fluent start changes its value when an
action occurs: the star ting time of a situation changes only as a
result of a waitFor(q ), in which case it advances to the earliest
time in the future when q holds. This can easily be expressed in
the form of a successor state axiom for start which we omit
here.

Let us now consider the successor state axiom for the conti-
nuous fluent robotLoc:

Poss(a, s) É [robotLoc (do (a, s)) = y º
$ t0, v, x.x = val (robotLoc (s), t0) ¹ t0 = start (s) ¹
[a = startGo (v) ¹ y = linear(x, v, t0)

V a = endGo ¹ y = constant (x) V y = robotLoc(s) ¹
Ø$ t0, v .(a = startGo(v ) V a = endGo)]]

In other words, when an action is performed robotLoc is as-
signed either the function linear(x, v , t0) if the robot starts mo-
ving with velocity v and x is the location of the robot at situation
s, or it is assigned constant(x) if the robot stops, or it remains the
same as in s.

To illustrate what can be derived in this extended situation
calculus, let us assume that the robot initially rests at position 0,
that is, (robotLoc (S0) = constant (0). Let us assume the robot
starts moving at speed 50 (cm/s) and then waits until it
reaches location 1000 (cm), at which point it stops. The
resulting situation is s1 = do (endGo, do(waitFor(robotLoc = 1000),
do(startGo(50), S0))). Then, assuming an appropriate axiomatiza-
tion of our extended situation calculus, it is possible to show that

start(s1) = 20 ¹ robotLoc(s1) = constant(1000)

follows from the axioms. In other words, the robot moves for
20 seconds and stops at location 1000, as one would expect.

4 cc-Golog
cc-Golog, a derivative of ConGolog [4], which is a concurrent

version of GOLOG , is a formalism for specifying complex actions
and how these are mapped to sequences of atomic actions assu-
ming a description of the initial state of the world, action precon-
dition axioms and successor state axioms for each fluent. Com-
plex programs are defined using control structures familiar from
conventional programming language such as sequence, while-
loops and recursive procedures. In addition, parallel actions are
introduced with a conventional interleaving semantics.

a/waitFor(q) pr imitive action
f? test action
seq (s1,s2) sequence
if(f,s1,s2) conditional
while (f,s) loop
withPol (s1, s2) prioritized execution until s2 ends
tryAll (s1, s2) concurrent exec. until any si ends
withCtrl (f,s ) conditioned execution of s
proc b (x) s procedure definition

Given the space limitation, we cannot present the formal
semantics of cc-Golog in detail. Instead, we will only sketch the
intuition behind them (details can be found in [9]). The essential
difference between cc-Golog and ordinary programming lan-
guages is that cc-Golog’s semantics is not defined by specifying
which machine instruction are to be performed by the interpre-
ter, but instead to what sequence of atomic situation calculus
actions a cc-Golog plan is to be mapped.

As a consequence, the primitive instructions of cc-Golog con-
sist of atomic situation calculus actions (as in GOLOG). Note that a
waitFor is just an atomic action whose only effect is to make time
advance. Besides atomic actions, there is another class of primiti-
ve cc-Golog instructions: tests of the form f?. Here, f stands for a
situation calculus formula, for example isO pen(door6213). The in-
tuition behind f? is to block if f is false, and else continue with
execution. Note that a fundamental difference between conven-
tional programming languages and GOLOG is that a GOLOG in-
terpreter is able to reason about the state of the world (like the
state of a door). Reasoning is performed by regression [22], a spe-
cial form of deductive inference, which is quite efficient when the
initial description of the world is restricted to a collection of literals.

By means of the other control structures, more complex
programs can be composed. The semantics of seq, if and while
correspond to their intuitive meaning. tryAll and withPol speci-
ficy that two programs are to be executed concurrently. Intui-
tively, tryAll (s1, s2) starts executing both s1 and s2; the parallel
execution of tryAll stops as soon as one of s1 and s2 stop. As for
withPol (s1, s2), the idea is that a low priority plan s2 is executed,
which is interrupted whenever the program s1, which is called
a policy, is able to execute. The execution of the whole withPol
construct ends as soon as s2 ends. The possible interleavings
resulting from concurrent execution of several programs are ul-
timately constrained such that actions which can be executed
earlier are always preferred. That is, a waitFor (q ) can only be exe-
cuted if no concurrent branch of the actual program can execu-
te an earlier action, restoring the original idea that actions
should happen as ear ly as possible.  Finally, withCtrl (f,s ) is ac-
tually not a primitive instruction but a macro defined in terms
of other instructions. I ts intended meaning is that it executes s
as long as f is true, gets blocked if f becomes false and continu-
es execution if f becomes true again.

Policies offer a natural way to realize event-driven behavior,
especially, as the following example illustrates, if it makes use of
waitFor instructions. Here, we turn back to the introductory ex-
ample of a robot that is to (1) deliver mail to the offices; (2) say
„hello’’ whenever it passes near Henrik ’s room; (3) interrupt its
actual course of action whenever the battery level drops below
46 Volt and recharge its batteries. This task can be specified
through the following cc-Golog plan, where loop(s) is a short-
hand for while (true , s).

withPol (loop (waitFor (battLevel £ 46,
seq (grabWhls , chargeBatteries, releaseWhls))),

withPol (loop(waitFor (nearDoor6213,
seq(say (hello), waitFor(nearDoor6213))))

withCtr l (wheels , deliv erMail )))

In this program, the outermost policy is waiting until the bat-
tery level drops to 46. At this point, grabWheels, an atomic action
whose effect is to set the fluent wheels to false is immediately exe-
cuted. This has the effect that the execution of the program deli-
verMail is blocked. It is only after the complete execution of char-
geBatteries that wheels gets released so that deliverMail may resu-
me execution (if, while driving to the battery docking station, the
robot passes by Door6213, it would still say „hello’’).

We do not go into the details of deliverM ail except to note
that in order to move the robot continuously toward its var ious
goal locations, deliverMail will make use of startGo(x,y),
waitFor(atDestination) and stop actions. Here, startGo(x,y) is a
two-dimensional variant of the action startGo(vel) discussed in
section continuous change, with the additional effect of conti-
nuously reduce battLevel.

Korrekturabzug, Künstliche Intelligenz, Hef t 4/00 www.kuenstliche-intelligenz.de
ISSN 0933-1875, arenDTaP Verlag, Bremen fon +49 421 34889-30 fax: +49 421 34889-31



14

KI F a c h be i t r ä g e 4/00

As the example illustrates, the new action waitFor together
with the notion of concurrent, prioritized execution of policies
turns out to be very helpful when it comes to specifying robust
robot plans. As mentioned earlier, the concept of an instruction
whose effect is to wait until a condition becomes true is com-
mon in special non-logic-based robot programming languages
such as RPL [18], RAP [6], or COLBERT [12] (the same is true for
the concepts of concurrency and priorities). We believe that this
is due to the fact that in real robot applications it is typical that
the robot is to execute a primary task, like the mail delivery in
our example, and at the same time has to monitor and react to
continuously changing properties of the domain like the volta-
ge level of the robot’s batteries.

Another important feature is the ability of a policy to block
the execution of the primary task through the withCtrl-instruc-
tion. In our example, the battery-monitoring policy must be able
to wait for a continuous condition both in blocking and in non-
blocking mode: it must not block the primary task while it is
waiting until the battery level falls below 46 Volt; but thereafter,
it must block the pr imary task while it guides the robot to the
battery loading station and waits until the battery level climbs
back to a reasonable level.

5 Probabilistic Projection
Another important feature of real robot environments is the

inherent uncertainty in what the world is like and the outcome
of many of a robot’s actions, due to the fact that robot hard-
and software is imperfect and error-prone. For example, if a ro-
bot tries to pickup a cup, many different outcomes are possible:
the robot may completely miss the cup, the cup may drop on
the floor, the robot may push adjacent objects or might even
break the cup or an adjacent object.

For several reasons, such robot actions are often best thought
of as low-level processes with uncertain, probabilistic outcome.
For one, we might want to model, for example, that the pickup
succeed perfectly 80% of the time and has some other possible
outcomes with lower probability. Second, it is convenient to des-
cribe the pickup action as a complex process (as opposed to a
primitive situation calculus action). Indeed, the pickup action is
not atomic. It may result in the cup being held, it might additio-
nally break an adjacent object if one exists or the like.

I f we adopt the point of view that robot actions are better
seen as complex low-level processes, a high-level robot plan
can be seen as a description of a task which combines such
low-level processes in an appropriate way. In order to evaluate
and choose an appropriate high-level robot plan, we wish to
project the effects of the execution of such a plan. To do that,
we need to explicitly model the behavior of the processes. As
their outcomes are probabilistic in nature, we will arrive at a no-
tion of probabilistic projection.

To attack this problem, we first model the low-level proces-
ses by means of procedures in a probabilistic action language,
which we call pGOLOG. In a nutshell, pGOLOG is the determini-
stic fragment of GOLOG augmented with a new instruction,
prob, which allows us to express that a program is executed
only with a certain probability. Intuitively, the execution of
prob(p,s1,s2) results in the execution of s1, resp. s2 with proba-
bility p resp. 1 – p.5 Given a faithful characterization of the low-
level processes in terms of pGOLOG procedures, we can then
project the effect of the activation of these processes using

their corresponding pGOLOG models. We will soon discuss the
differences between probabilistic and non-probabilistic projec-
tions, but first illustrate how the above example of a low-level
pickup process can be specified as a pGOLOG program.

proc (pickup (Cup) =
prob(0.8, per fectPickup(Cup),

seq (perfectPickup(Cup), drop (Cup)),
if($obj.closeTo(obj, Cup) ¹ fragile (obj ),

prob (0.5, breakC loseObj, nil )))

This pGOLOG program models that with probability 80%
the pickup process will result in a flawless pickup of cup. Else, it
will lose the cup after lifting it, and with probability 50% will ad-
ditionally break a fragile adjacent object if one exists (note that
the total probability is thus 10%).

In many typical scenarios, there is also uncertainty about the
initial situation. To take this into account, we opt for a probabilistic
characterization of an agent’s epistemic state. More specifically,
we characterize an epistemic state by a set of situations considered
possible, and the likelihood assigned to the different possibilities.
We thereby follow [1], who introduce a binary functional fluent
p(s’, s) which can be read as „in situation s, the agent thinks that s’ is
possible with probability p(s ’, s).’’ All likelihoods must be nonnega-
tive and situations considered impossible will be given likelihood
0. To keep things simple, we additionally require that the likeli-
hood of all situations considered possible in S0 sum to 1.

Now we come back to the task of probabilistic projection.
Unlike in the non-probabilistic case discussed above, the gene-
ration of a projection of a plan doesn’t mean any longer that a
single unique execution scenario, the execution trace of the
plan is to be generated. Instead, the execution of a plan can re-
sult in many different execution traces, because the activation
of the low-level processes may result in different outcomes. Our
goal is then to assess the degree of belief in sentences like the
goal Ø$cup.broken(cup) after the execution of a plan. To do so,
all possible execution traces have to be considered.

To determine the probability that a sentence f holds after
the execution of a plan s, we determine every possible execution
trace of the plan and the activated low-level processes wrt each
initial situation considered possible. Bel(f [now], s ,s), the belief
that f holds af ter the execution of plan s in a situation s is then
defined to be the probability of all execution traces s’’ of s (wrt
the low-level processes) that fulfill f [now |s“ ](= f  with now repla-
ced by s’’), star ting from a possible initial configuration s’.  The exe-
cution traces are additionally weighted by the agent ’s belief in s’.

Summarizing, while during real execution the actual low-le-
vel processes get executed, for the task of projection we model
the behavior of the low-level processes by means of probabili-
stic pGOLOG programs. We stress that from the point of view of
the execution system, low-level processes are treated as atomic
events - the activation of the process. The pGOLOG procedures
only serve as models of the effects of the low-level processes
that are only needed during the projections of a plan. Indeed,
the execution system cannot execute pGOLOG procedures, for
one because it has incomplete or uncertain information about
the value of the fluents appearing in the pGOLOG program. In
the above example, the robot just may not know whether a ne-
arby object is fragile or not. Besides, there is no way how the
execution system can, for example, directly break a cup.

A promising property of this framework is that it is easily
amenable to Monte-Carlo methods for the estimation of the suc-
cess probability of a pGOLOG program. In a nutshell, Monte-Carlo
simulation can be achieved by pursuing only one of the bran-5 We c ompletely gloss over the technical details discussed in [10].

Korrekturabzug, Künstliche Intelligenz, Heft 4/00 www.k uenstliche-intelligenz.de
ISSN 0933-1875, arenDTaP Ver lag, Bremen fon +49 421 34889-30 fax: +49 421 34889-31



KI Fa c h b e i t r ä g e 4/00

15

ches of a prob instruction depending on the outcome of a ran-
dom number toss. The appealing property of Monte-Car lo me-
thods is that the number of samples to be considered depends
only on the desired precision of the estimate, not on the length
of the program, and therefore is not affected by the combinatori-
al explosion of the number of possible execution traces.

6 Experimental Results
Although the formal definition of cc-Golog and pGOLOG re-

quires second-order logic , it is easy to implement a PROLOG in-
terpreter for cc-Golog, just as in the case of the original ConGo-
log6. In order to deal with the constraints implied by the waitFor
instruction, we have made use of the ECRC Common Logic Pro-
gramming System Eclipse 4.2 and its built-in constraint solver libra-
ry clpr to implement a cc-Golog interpreter (similar to Reiter [24]).

Using this interpreter, we can generate projections of cc-Go-
log plans like the example mail delivery plan. Compared to earlier
work [2] on the projection of RPL programs using the XFRM sy-
stem [19], the results using cc-Golog are appealing: the cc-Golog
implementation is firmly based on a logical specification, while
XFRM relies on the procedural semantics of the RPL interpreter.
Furthermore, cc-Golog appears much faster: the projection of ex-
ample plan of [2] took 0.5 seconds in cc-Golog resp. 3.6 seconds
in XFRM on the same machine. We believe that cc-Golog owes
this somewhat surprising advantage to the fact that it lends itself
to a simple implementation with little overhead, while XFRM re-
lies on the rather complex RPL-interpreter involving many thou-
sand lines of Lisp code.

The results provided by the pGOLOG implementation are si-
milar. We compared the performance of our implementation
with that of Buridan, a classical probabilistic planner [14], using
the „Bomb/Toilet’’ and „Slippery Gripper’’ scenarios of [14]. Again,
our approach was not only able to compete with Buridan, but
outperformed it by an order of magnitude on the same machine.

7 Conclusions

In this paper, we have shown how several shortcomings of
GOLOG can be overcome with the aim of using GOLOG for more
realistic high-level robot controllers. With cc-Golog we demon-
strated how to deal with continuous change and time. A key fea-
ture is the use of a new primitive instruction !!!!!!!, which allows us
to model event-driven behavior. In pGOLOG, we showed how to
incorporate actions with probabilistic effects into the GOLOG-fra-
mework and we defined the notion of probabilistic projection.

An issue left open is how to incorporate the two extensions
into one coherent language. We hope to report on this in the
future and also on more experiments using the new language
for high-level controllers on a mobile robot in realistic domains.

In other work related to GOLOG, our group is involved with
diagnosing and repair ing execution failures [11]. Finally, work is
underway to connect a GOLOG-controller with a real-time
speech interface [5].

References
[1] Bacchus, F.; H alper n, J.; and Levesque, H. 1999. Rea-soning about noisy sen-

sors and effec tors in the situation calculus. Artificial Intelligenc e 111(1-2).
[2] Beetz, M., and Grossk reutz, H. 1998. C ausal models of mobile service ro-

bot b ehavior. In AIPS’98.
[3] Burgard, W.; Cremers, A.; Fox, D.; H¨ ahnel, D.; Lake-meyer, G.; Schulz, D.;

Steiner, W.; and Thrun, S. 2000. Exper iences with an inter active museum
tour-guide robot. Artificial Intelligence 114(1-2).

Henrik Grosskreutz studierte Informatik an den Uni-

versitäten Würzburg, Caen und Bonn. Seit 1998 ist er

Stipendiat im Graduiertenkolleg „Informatik und

Technik“ and der RWTH Aachen.

Ger hard L akemeyer received his Ph.D. from the Uni-

versity of Toronto and is currently Asso ciate Professor

and Head of the K nowledge-Based Systems Group a t

Aachen University of Technology. He has served on

the programme committee of numerous internatio-

nal confer-enc es and is a member of the edit orial

board of the Journal of Artificial Intelligence Research.

[4] de Giacomo, G.; Lesp erance, Y.; and Levesque, H. J. 1997. Reasoning ab out
concurrent execution, pr ioritized inter-rupts, and exogeneous actions
in the situation c alculus. In IJCAI’97.

[5] Dylla, F. 2000. Robust, real-time c ontrol of an aut onomous robot using
speech. Master’s thesis, D epartmen t of Computer Science, R WTH
Aachen. in progress (in German).

[6] Firby, J. 1987. An investigation into r eactive planning in complex doma-
ins. In Proc. of AAAI-87 , 202–206.

[7] Galton, A. 1990. A critical examination of A llen’s theory of ac tion and
time. Artificial Intelligence 42:159–188.

[8] Giac omo, G. D.; Lesperance, Y.; and Levesque, H. J. 1999. C ongolog,
a concurrent program-ming language based on the situa tion calculus:
foundations.Technical repor t, U niversity of Toron to, http:/
www.cs.toronto.edu/cogrobo/.

[9] Grosskreutz, H., and Lakemeyer, G. 2000a. cc-golog: Towar ds more reali-
stic logic-based robot controllers. In AAAI’2000.

[10] Grosskreutz, H., and Lakemeyer, G. 2000b. Turning high-level plans into
robot programs in uncertain domains. In ECAI’2000.

[11] Iwan, G. 1999. Explaining what went wrong in dynamic domains. 23rd Annu-
al German Conference on Artificial Intelligence (KI-99), post er presentation.

[12] Konolige, K. 1997. Colber t: A language for reac tive control in sapphira.
In KI’97, volume 1303 of LNAI.

[13] Kortenk amp, D.; B onasso, R.; and Murphy, R. 1998. AI-based Mobile
Robots: Case studies of successful rob ot sys-tems. MIT Press.

[14] Kushmerick, N.; Hanks, S.; and Weld, D. 1995. A n al-gorithm for probabili-
stic planning. Artificial Intelligence 76:239–286.

[15] Levesque, H. J.; Reiter, R.; Lesprance, Y.; Lin, F.; and Scherl, R. 1997. G olog:
A logic programming language for dynamic domains. Journal of Logic
Programming 31:59–84.

[16] Lin, F., and Reiter, R. 1994. State constraints revisited. Journal of logic and
computation 4(5):655–678.

[17] McCarthy, J. 1963. Situa tions, actions and causal laws. Technical rep ort,
Stanford University. Reprinted 1968 in Semantic Inf ormation Processing
(M.Minske ed.), MIT Press.

[18] McDer mott, D. 1992. Robot planning. AI Magazine 13(2):55–79.
[19] McDermott, D. 1994. An algorithm for prob-abilistic, totally-ordered tem-

poral projection. Research Rep ort YALEU/DCS/RR-1014, Yale University,
www.cs.y ale.edu/AI/Planning/xfrm.html.

[20] Miller, R. 1996. A c ase study in reasoning about actions and continuous chan-
ge. In ECAI’96.

[21] Pinto, J. 1997. Integrating discr ete and continuous change in a lo gical
framework. Computational Int elligence, 14(1).

[22] Reiter, R. 1991. The fr ame problem in the situation cal-culus: a simple
solution (sometimes) and a ccompleteness result for goal regression. In
In Artificial Intelligence and Mathematic Theory of C omputation: Papers
in Honor of John McCarthy.

[23] Reiter, R. 1996. Natural ac tions, c oncurrency and continuous time in the
situation c alculus. In Proc. KR’96, 2–13.

[24] Reiter, R. 1998. Sequential, temp oral golog. In Proc. KR’98.
[25] Sandewall, E. 1989. C ombining logic and differen tial equa tions for des-

cribing real-world systems. In KR’89, 412–420.
[26] Shanahan, M. 1990. Representing continuous change in the event cal-

culus. In ECAI’90.

Contact:
Department of Computer Science,
Aachen University of Technology,  D-52056 Aachen, Germany,
grosskreutz,gerhard@cs.rwth-aachen.de

Korrekturabzug, Künstliche Intelligenz, Hef t 4/00 www.kuenstliche-intelligenz.de
ISSN 0933-1875, arenDTaP Verlag, Bremen fon +49 421 34889-30 fax: +49 421 34889-31


