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Abstract

A special feature of programs in the action language Golog are non-deterministic constructs such as

non-deterministic choice of actions or arguments. It has been shown that in the presence of stochastic

actions and rewards reinforcement learning techniques can be applied to obtain optimal choices for
those choice-points. In order to avoid an explosion of the state space an abstraction mechanism

is employed that computes first-order state descriptions for the given program. Intuitively, the

idea is to generate abstract descriptions that group together states for which the expected reward
of executing the program is the same. A current limitation is that a non-deterministic choice of

arguments can be handled only if the possible candidates are known in advance. In this paper we

show how this restriction can be lifted. We also show how a first-order variant of binary decision
diagrams (BDDs) can be used to efficiently compute first-order state abstractions. Moreover, we give

a completely declarative specification of a learning Golog interpreter that incorporates the presented
state-abstraction mechanisms.

Keywords: Situation Calculus, Golog, Reinforcement Learning

1 Introduction

In classical reinforcement learning (RL) and Markov Decision Processes (MDPs), we
are given a set of states, actions which stochastically take us from a given state into
one of a number of states, and a reward function over states. The goal of learning
is to find the optimal policy, which tells us for each state which action to select to
maximize our expected reward. In principle this is well understood with methods such
as Q-learning solving the problem. However, for most practical applications the huge
state and action space is a concern, as explicit representations usually are not viable
computationally. To address this problem, state abstraction mechanisms have been
explored [2], including FOMDPs [4], which employ first-order logic to characterize a
possibly infinite state space using a finite set of formulas.

In this paper, we take this idea further by also constraining the action space using
programs written in the action language Golog. Roughly, instead of a state and a
set of primitive actions to choose from, we are given a formula describing the current
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state and a program we need to follow. In the extreme case, when the program is
completely deterministic, there is nothing to learn, as the program tells us exactly
what the next action is. However, in general the program allows for non-deterministic
choices, and here we again need to learn what choices are the best ones in terms of
maximizing expected rewards. As we will see, the idea of Q-learning can be adapted
to this setting.

More precisely, based on earlier work [4, 10], we start by presenting a method to
compute, for a given reward function and Golog program, first-order state formulas
describing the possible states before the program is executed. Roughly, these formulas
specify sets of states which are equivalent in the sense that the expected rewards are
identical when following a policy which is compliant with the program. Moreover,
only those properties of the states which are relevant to the expected reward are
reflected in those state formulas.

Though the definition of the partitions induced by programs are quite intuitive,
these are not practical for actually computing them. This is because huge numbers
of unsatisfiable formulas are generated that lead to an even faster increase of the size
of the induced partitions. We show how a first-order variant of BDDs can be used as
a concise representation for partitions and how these allow to efficiently compute the
induced partitions in many cases.

Similar to [2], we then construct a joint semi-MDP (SMDP) over a state space.
The states are tuples which consist of the remaining program (starting with a choice
point) and a corresponding state formula.

Lastly, we give the semantics for our new Golog dialect QGolog which incorporates
reinforcement learning techniques to learn the optimal decisions for the choice points
of a program by means of executing it and observing the outcomes. In essence, we
integrate a Q-learning algorithm for the SMDP described above.

The rest of the paper is organized as follows. After giving a very brief introduction
to the situation calculus and Golog, we present how Golog programs induce partitions
and how the induced partition can be directly computed using BDDs. In the following
section, we discuss the SMDP induced by a Golog program and specify how Q-learning
works in this setting. We then present some experimental results, discuss related work
and conclude.

2 The Situation Calculus and Golog

The situation calculus is a sorted first-order language with equality and sorts of type
action and situation. A situation is a history of executed actions; the initial situation
is denoted by S0; the successor situation which results from executing action a in
situation s is denoted as do(a, s). Properties of the world that might change from
situation to situation are described by means of (relational) fluents, which are ordinary
predicate symbols that have a situation term as their last argument. We also have
some special symbols in our theory which are Poss, choice, prob, and SR (more on
these later). A fluent formula is any formula not mentioning any of those special
symbols. (Fluent-) formulas which mention only a single situation term σ and which
do not quantify over situations are called uniform in σ. We sometimes consider
situation-suppressed formulas which are obtained by removing all situation arguments
from the fluents. If φ is a situation-suppressed formula, then φ[σ] denotes the formula
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which results from restoring the situation σ in all the fluents mentioned by φ. To
simplify matters, we assume that there are no object terms other than variables and
a countably infinite set of object constants. (We do allow arbitrary function symbols
for actions.)

The state of the world is changed by executing actions. For each such primitive
action A(~x) the preconditions are given by Poss(A(~x), s) ≡ ΠA(~x, s) where ΠA is
a fluent formula with variables among ~x and s.1 According to Reiter’s solution of
the frame problem [19] the effects of actions are encoded as so-called successor-state
axioms (SSAs), one for each fluent:

F (~x, do(a, s)) ≡ ΦF (~x, a, s)

where the ΦF are fluent formulas with free variables among ~x, a, and s.
A basic action theory (BAT) D consists of the foundational axioms Σ, which define

the space of situations, the successor state axioms Dssa, the action preconditions
Dap, the unique name axioms for actions Duna, and a set DS0 of first-order sentences
without action terms and uniform in S0 which describe the fluent values in the initial
situation.

For the purposes of this paper we make the following simplifying assumptions for
DS0 .

1. DS0 makes the unique names assumption for object constants, that is, DS0 contains
the set Dobjuna = {(a 6= b) | a and b are distinct object constants}.

2. DS0 is complete for fluent formulas , that is, for every fluent formula φ(S0) uniform
in S0 and which does not mention action terms, either DS0 |= φ(S0) or DS0 |=
¬φ(S0).

A useful property of such DS0 is that an existential is entailed iff a witness is.
Lemma 2.1
Let DS0 and ∃x. φ(x, S0) be as above. Then DS0 |= ∃x. φ(x, S0) iff DS0 |= φ(a, S0) for
some constant a.

Proof. The if direction is immediate. Also, if DS0 is unsatisfiable, the only-if direc-
tion holds vacuously.

So suppose DS0 is satisfiable. In [15] (Theorem 2) it is shown that any such DS0

is satisfiable iff it has a “standard” model M , where by standard we mean a model
where the constants are precisely the universe of discourse for objects, that is, there
are no unnamed objects. Assume, to the contrary, that DS0 |= ∃x. φ(x, S0) yet DS0 6|=
φ(a, S0) for all constant a. Since DS0 is complete, we therefore have DS0 |= ¬φ(a, S0)
for all constant a. In particular, this means for the standard model M that M |=
∀x.¬φ(x, S0). By completeness, it follows that DS0 |= ∀x.¬φ(x, S0), a contradiction.

Example 2.2
Consider the blocks world domain. The fluent on(x, y, s) expresses that block x is on
top of block y in situation s. The action move(x, y) moves block x onto block y. It
can be performed iff there is, in the current situation, no other block on x or on y
except if y is the table. Furthermore, x and y have to be distinct.

Poss(move(x, y), s) ≡ ¬∃z.on(z, x, s) ∧ (y 6= table ⊃ ¬∃z.on(z, y, s)) ∧ x 6= y

1In formulas like these free variables are understood to be implicitly universally quantified.
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A block x is on top of y iff it has just been moved there or iff it has been there before
and wasn’t moved away with the last action.

on(x, y, do(a, s)) ≡ a = move(x, y) ∨ on(x, y, s) ∧ ¬∃z.a = move(x, z)

A possible DS0 as above might then be:

DS0 = {∀x, y. on(x, y, S0) ≡ x = b1 ∧ y = table ∨ x = b2 ∧ y = b1} ∪ Dobjuna
Besides deterministic primitive actions like move we also include stochastic actions.

The idea is that, when a stochastic action is executed, nature chooses one of a finite
number of deterministic actions [20]. Formally, for a stochastic action ast the possible
choices of primitive actions o1, . . . , ok are defined as

choice(ast(~x), a) ≡
k∨
i=1

a = oi(~x).

We denote the probability with which oi(~x) is chosen as the outcome of action ast(~x)
in situation s by prob(oi(~x), ast(~x), s). Axioms of the form

k∑
i=1

prob(ni(~x), ast(~x), s) = 1

ensure that we indeed obtain proper probability distributions. Note, we freely use
real numbers and assume that they have the intended interpretation.

If the probability distribution with which nature chooses is known, this can also
be specified. In our setting, the distribution is generally not known. Nevertheless,
we assume that conditions under which the probability distribution are different are
known. In particular, we assume that there are sets situation-suppressed formulas
θ1, . . . , θr (one fore every stochastic action) which indicate that in all situations in
which θj holds the probability distribution over the outcome actions is the same.
Moreover, these formulas partition the set of situations (see Definition 4.1 below for
a formal description of this concept). Formally, we include axioms of the form

θj(~x, s) ∧ θj(~x, s′) ⊃ prob(Ni(~x), Ast(~x), s) = prob(Ni(~x), Ast(~x), s′).

Note that in the simple case where the distribution does not change at all, there is
only one θ = true.

To ensure full observability it has to be possible to determine the actual outcome
of a stochastic action. Therefore, sensing conditions senseCond(Ni) ≡ ϕi are defined
such that if in the situation resulting from executing a stochastic action Ast the
condition ϕi holds, then the outcome of Ast was Ni.

Furthermore, we define sensing functions SR. The idea behind those is that when a
Golog program is executed in the real world it is necessary to feed back, for instance,
sensor values to the Golog program. The SR-functions model the possible return
values. For example, we assume that the actual system controlled by the Golog
program is able to determine the actual outcome of executing a stochastic action in
the real world. This is then modeled by

SR(Ast(~x)) = r ≡ ∃n. choice(Ast(~x), n) ∧ r = n
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The regression of a formula φ through an action a is a formula φ′ = Regr(φ[do(a, s)]).
The idea is that, for a given BAT, φ holds after executing a only in case φ′ held before
the execution of a. Formally: D |= φ[do(a, s)] ≡ φ′[s] (Theorem 4.5.4 in [20]). The
regression operator is defined as follows:

Regr(F (~x, do(a, s))) = ΦF (~x, a, s)
Regr(Poss(A(~x), do(a, s))) = Regr(ΠA(~x, do(a, s)))
Regr(¬φ) = ¬Regr(φ)
Regr(φ1 ∧ φ2) = Regr(φ1) ∧Regr(φ2)
Regr(∃x. φ) = ∃x.Regr(φ)

The high-level agent programming language Golog [16] is based on the situation
calculus. Roughly, Golog allows us to write programs where the primitive actions are
those defined by a basic action theory. The available language constructs according
to [16] are:

� primitive actions a,
� test actions ϕ?,
� sequences of programs [δ1; δ2],
� conditional branchings if ϕ then δ1 else δ2 end,
� loops while ϕ do δ end,
� nondeterministic branchings nondet(δ1, . . . , δn),
� nondeterministic choice of arguments pick(v, η),
� nondeterministic iteration δ∗,
� and procedures proc P (~x) δ end.

The meaning of a Golog program can be defined with the help of two special predi-
cates Final(δ, s) and Trans(δ, s, δ′, s′), which can be read as “δ can legally terminate
in situation s” and “executing the first action of program δ in situation s leads to
situation s′ with remaining program δ′.” For example, if a is a primitive action, then
Trans([a; ρ], s, δ′, s′) holds iff Poss(a, s) holds, s′ = do(a, s), and δ′ = ρ. The defi-
nition of the Trans-predicate requires to reify programs as terms (cf. [11]). We will
make use of this too, later, to use programs as arguments of fluents. We will define
Trans only for the new constructs introduced in this paper and refer to [11] for the
others. To start with, for a stochastic action ast, T rans is defined as

Trans(ast, s, δ′, s′) ≡ ∃n. choice(ast, n) ∧ Trans(n, s, δ′, s′)
This allows to reason about all possible outcomes of a stochastic action regardless of
the probability with which oi will be the actual outcome of executing ast in the real
world. Certainly, if we really want to execute a stochastic action in the real world
this has to be handled differently since the actual outcome has to be determined (cf.
Section 8.1).

The configurations reachable by executing program δ in situation s are those in the
reflexive transitive closure of the transition relation. Formally:

Trans∗(δ, s, δ′, s′)
def.
= ∀T. [(. . . ) ⊃ T (δ, s, δ′, s′)]
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where (. . . ) stands for the conjunction of the universal closure of the following impli-
cations (cf. [11]):

True ⊃ T (δ, s, δ, s)
Trans(δ, s, δ′′, s′′) ∧ T (δ′′, s′′, δ′, s′) ⊃ T (δ, s, δ′, s′)

3 Markov Decision Processes

In the Markov decision process (MDP) model the agent has to decide on the next
action to be executed in the current state which is fully observable to the agent. Na-
ture then determines the subsequent state and a reward the agent obtains for getting
from the previous state to the current state by means of the selected action. For-
mally, a MDP is described by a tuple 〈S,A, T ,R〉. The set S describes the (possibly
infinite) state space. A is the set of actions available to the agent by which means
the agent may change the state of the system. T is a transition function assigning
probabilities to S ×A×S. T (s, a, s′) represents the probability of ending up in state
s′ after executing action a in state s. The reward function R maps S × A into the
reals; it returns the reward for taking a specific action in a specific state. Solving a
MDP refers to determining the optimal policy that in each state returns the action
that maximizes the expected future rewards. This is equivalent to finding the optimal
state-value function V ∗ or the optimal action-value function Q∗, respectively. The
optimal state-value function V ∗(s) returns the expected cumulative future reward
when starting in state s and following the optimal policy. Similar for Q∗(a, s): it
returns the expected cumulative future reward when performing action a in state s
and following the optimal policy thereafter.

The specific solution method we are concerned with in this paper is Q-learning
[26]. It is a model-free, off-policy temporal difference learning technique. As such
it learns from interacting with the environment, observing the state transitions and
the obtained rewards. Interacting with the system is necessary since the model of
the system is not known in advance. Furthermore, Q-learning directly approximates
the optimal action-value function. After executing the action at in the state st and
thereby reaching the state st+1 and receiving the reward rt+1 the Q-function for the
state-action pair at, st is updated according to the following update rule:

Q(st, at)← Q(st, at) + α
[
rt+1 + γmax

a
Q(st+1, a)−Q(st, at)

]
where α is the learning rate and γ the discount factor.

For Q-learning it is known that the Q-function converges to the optimal Q-function
Q∗ under the assumption that all state-action pairs continue to be updated infinitely
often.

4 First-Order Partitions

For a set of situation suppressed formulas S(~x) = {φ1(~x), . . . , φn(~x)}, S(~x)[s] denotes
the set of formulas {φi(~x)[s] | 1 ≤ i ≤ n}.
Definition 4.1
A set {φ1(~x), . . . , φn(~x)} of formulas φi is a partition iff the following conditions hold
for all completely specified DS0 and an arbitrary ground situation term σ:
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1. D |= ∀~x.∨ni=1 φi(~x)[σ] and (collectively exhaustive)

2. D |= ∀~x.φi(~x)[σ] ⊃ ¬
(∨

j 6=i φj(~x)[σ]
)

(mutually exclusive)

Definition 4.2
Let S1(~x1) = {φ1(~x1), . . . , φn(~x1)} and S2(~x2) = {ψ1(~x2), . . . , ψm(~x2)} be sets of
state formulas.

� The binary ⊗-operation is defined as:

S1(~x1)⊗ S2(~x2) = {φi(~x1) ∧ ψj(~x2) | 1 ≤ i ≤ n, 1 ≤ j ≤ m}

� The binary ∪-operation is defined as:

S1(~x1) ∪ S2(~x2) = {φ1(~x1), . . . , φn(~x1), ψ1(~x2), . . . , ψm(~x2)}

Let S(~x) = {φ1(~x), . . . , φn(~x)} be a set of state formulas.

� The unary Ex-operation is defined as:

Ex S(~x) =

{
n∧
i=1

ψi |ψi = ∃x. φi(~x) or ψi = ¬∃x. φi(~x)

}

The set of formulas resulting from applying the Ex-operator on S(~x) contains all
possible combinations of the ∃x. φi(~x) and ¬∃x. φj(~x).

Example 4.3
This example illustrates the operation of the Ex -operator.

Ex {φ(x),¬φ(x)} = {∃x. φ(x) ∧ ∃x.¬φ(x),¬∃x. φ(x) ∧ ∃x.¬φ(x)}
∃x. φ(x) ∧ ¬∃x.¬φ(x),¬∃x. φ(x) ∧ ¬∃x.¬φ(x)}

Lemma 4.4
If S1(~x1) and S2(~x2) are partitions then S1(~x1)⊗ S2(~x2) is a partition. Also, ({φ} ⊗
S(~x)) ∪ {¬φ} and ({φ} ⊗ S1(~x1)) ∪ ({¬φ} ⊗ S2(~x2)) are partitions.

Lemma 4.5
If S(~x) is a partition then Ex S(~x) is a partition.

Proof. Since S(~x) is a partition there exists for each interpretation M and each
variable mapping ν a φi(~x) ∈ S(~x) such thatM, ν |= φi(~x). For all j ∈ {1, . . . , n}\{i},
either M, ν |= ∃x. φj(~x) or M, ν |= ¬∃x. φj(~x). Consequently, there is exactly one
combination (¬)∃x. φ1(~x) ∧ . . . ∧ ∃x. φi(~x) ∧ . . . ∧ (¬)∃x. φn(~x) for which M, ν is a
model.

4.1 Having a Closer Look at the Ex-Operator

The idea behind the Ex-operator is to build a partition consisting of formulas that
make assumptions about the existence and non-existence, respectively, of satisfying
assignments of x for the formulas of the input partition. More precisely, every formula
in Ex S(x) states that for every formula in S(x) = {φ1(x), . . . , φn(x)} whether there
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exists a satisfying x or whether there exists no such x. Thus, if |S(x)| = n then
| Ex S(x)| = 2n. If there exists a formula ψ independent of x and formulas τi(x) (one
for each φi(x)) such that for every φi(x) ∈ S(x) it holds that either φi(x) ≡ ψ ∧ τi(x)
or φi ≡ ¬ψ ∧ τi(x) the exponential growth can be avoided. Let N+ be the set
of indices for which φi(x) ≡ ψ ∧ τi(x), i ∈ N+, and N− be the set of indices for
which φj(x) ≡ ¬ψ ∧ τj(x), j ∈ N−. For every φi(x), i ∈ N+, it then holds that
∃x. φi(x) ≡ ψ ∧ ∃x. τi(x). Analogously for every φj(x), j ∈ N−. Clearly, every
formula in Ex S(x) that mentions a φi(x) and a φj(x) where either

� one is negated and the other one is not and i ∈ N+ and j ∈ N+ or
� one is negated and the other one is not and i ∈ N− and j ∈ N− or
� both are negated or not negated and i ∈ N+ and j ∈ N− (or vice versa)

is (trivially) unsatisfiable, since it contains the subformula ψ ∧ ¬ψ. Given those
formulas ψ and the τi(x) the set

A =

{
ψ ∧

∧
i∈N+

(¬)τi(x)

}
∪
¬ψ ∧ ∧

j∈N−
(¬)τj(x)


contains for every satisfiable formula φi(x) ∈ S(x) a formula φ′i(x) such that φi(x) ≡
φ′i(x). Let |N+| = p and, consequently, |N−| = n − p. Then, |A| = 2p + 2n−p ≤ 2n.
By re-iterating this process for the sets {φi(x) | i ∈ N+} and {φi(x) | i ∈ N−} a parti-
tion that contains even less (trivially) unsatisfiable formulas can be computed. Still,
these partitions with less formulas are equivalent to Ex S(x), i.e., for every satisfiable
formula in Ex S(x) there exists an equivalent formula in the smaller partitions.

Below, when we detail the implementation of the Ex-operator, we will come back
to this idea to avoid generating unsatisfiable formulas by applying the Ex-operator.
Especially, we show how adequate ψ and τi(x) can be determined efficiently.

4.2 The Reward Partition

Throughout this paper we assume the reward function to be rew(s) and that it can
be presented in the following form:

rew(s) = r ≡
k∨
i=1

φrewi [s] ∧ r = ri

where the ri are distinct numerical constants. Since rew(s) is a function (i.e., it
assigns a unique reward to every situation) it induces a partition {φrew1 , . . . , φrewn },
the so-called reward partition P rew.

5 Partitions Induced by Golog Programs

Given a reward function (or more precisely the induced reward partition) and the
dynamics of the system (the preconditions and effects of actions) one can compute
for a Golog program a partition such that the formulas in that partition distinguish
states from each other for which the expected reward for executing the program is
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different. We call the partition the partition induced by the program. Below we detail
how such partitions induced by Golog programs are computed.

Since this process of computing the partition induced by a program is recursive
we are limited to finite Golog programs. A Golog program is called finite if every
one of its possible execution traces is finite. Consequently, we have to disallow re-
cursive procedure calls, have to transform while-loops into a finite number of nested
conditional branchings, and have to replace nondeterministic iterations by a nonde-
terministic branching over zero to n many iterations. Certainly, this restricts the
expressive power of the programs. For instance, a program that, while there is a
green block on the table, picks a block and removes it from the table terminates only
if there are no more green blocks on the table—no matter how many green blocks
have been there initially. The finite version of such a program that only checks n
times whether there is a green block on the table could maximally remove n green
blocks from the table. Nevertheless, since we only have to restrict the programs we
want to learn the optimal execution strategy for, we still can formulate a program
that tells the agent to learn to pick a block and remove it from the table and repeat
this until there are no more green blocks on the table. Without loss of generality we
further assume that every program is nil-terminated, that is, every program is of the
form [δ;nil].

For a finite Golog program, P(δ) is the partition induced by the program δ. Then,
the partition induced by the empty program nil is the reward partition:

P(nil) = Prew

The expected reward for executing the empty program only depends on the reward
in the current situation since the empty program doesn’t change the state.

The partition induced by a program which starts with a sequence [δ1; δ2] is defined
as the partition induced by the program [δ1; [δ2; δ′]] where δ′ is the remaining program:

P([[δ1; δ2]; δ′]) = P([δ1; [δ2; δ′]])

If the program starts with a primitive action a the induced partition is defined as:

P([a; δ]) = ({Poss(a, s) ∧Regr(φi[do(a, s)])|φi ∈ P(δ)} ⊗ Prew)
∪ ¬Poss(a, s) (5.1)

The set of states in which the preconditions for the action a are given is further
subdivided according to the formulas φi in the partition induced by the remaining
program regressed through the action a. Additionally, these are split up according to
their current reward value. The set of states where the preconditions do not hold are
not differentiated any further.

In case the program starts with a stochastic action ast whose possible outcomes are
defined to be n1, . . . , nk and the conditions under which the probability distribution
over the outcomes changes are θ1, . . . , θr then

P([ast; δ]) = Pprast ⊗
k⊗
i=1

P([ni; δ]) (5.2)

where Pprast = {θ1, . . . , θr}.
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The partition induced by a program starting with a test action ϑ? basically is the
partition induced by the remaining program where ϑ is conjunctively added to each
formula in the partition and a further formula ¬ϑ is added to the partition.

P([ϑ?; δ]) = ({ϑ} ⊗ P(δ)) ∪ {¬ϑ}
Quite similar, the partition induced by a program starting with a conditional

branching is computed only that the set of states where ¬ϑ holds is further sub-
divided by the partition induced by the program in the else-branch:

P([if ϑ then δ1 else δ2; δ]) = ({ϑ} ⊗ P([δ1; δ])) ∪ ({¬ϑ} ⊗ P([δ2; δ]))

For programs starting with a nondeterministic branching the induced partition is
computed by multiplying the partitions induced by all the possible remaining pro-
grams with each other.

P([nondet(δ1, . . . , δn); δ]) =
n⊗
i=1

P([δi; δ])

For a nondeterministic choice of argument the formulas in the induced partition
express the existence and non-existence of objects that satisfy the formulas in the
partition induced by the remaining program. This is exactly what the Ev-operator
achieves:

P([pick(v, η); δ]) = Ev P([η; δ]) (5.3)

For a procedure call P (~t) where the procedure is defined as proc P (~x) δP the
partition is computed by replacing the formal parameters in the body δP of the
procedures with the actual parameters and computing the induced partition for the
program consisting of the body and the remaining program:

P([P (~t); δ]) = P([δP ~x
~t
; δ])

Theorem 5.1
For any finite Golog program δ and a reward function rew(s) that induces a reward
partition Prew the set of of formulas P(δ) describes a partition.

Proof. Directly follows from Lemma 4.4 and 4.5.

In the remainder of this section we examine further properties of the partitions
induced by programs. We intent to use these partitions as the basis of an abstraction
mechanism that, informally speaking, allows to generalize the assessment of a program
from ground situations to all situations in which a particular formula in the induced
partition holds. Consequently, we need make sure that this generalization is valid. In
particular it has to be shown that if the agent chooses a particular execution strategy
for a program δ (i.e., resolves the nondeterminism in the program in a particular
way) then for any two situations σ1 and σ2 such that there is a formula in P(δ) with
D |= φ[σ1] ∧ φ[σ2] the expected reward for executing the program according to the
selected execution strategy is the same. First, we formally define the set of all possible
execution strategies for a program δ.
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Definition 5.2
For any program δ the (possibly infinite) set Det(δ) contains all deterministic versions
of δ:

Det(nil) = {nil}, Det(a) = {a}, Det(ast) = {ast}, Det(ϑ?) = {ϑ?}
Det(if ϑ then δ1 else δ2) =

{if ϑ then δ′1 else δ′2 | δ′1 ∈ Det(δ1) and δ′2 ∈ Det(δ2)}

Det(nondet(δ1, . . . , δn) =
n⋃
i=1

Det(δi)

Det(pick(v, η)) =
⋃
c∈C

Det(ηvc )

Det(P (~t)) = Det(δP ~x
~t
) with proc P (~x) δP (~x)

Det([δ1; δ2]) = {[δ′1; δ′2] | δ′1 ∈ Det(δ1) and δ′2 ∈ Det(δ2)}
where C is the set of all constants.
Lemma 5.3
For each δD ∈ Det(δ) and D it holds that if δD is legally executable in a ground
situation σ then so is δ. Formally:

if D |= ∃δ′, σ′. T rans∗(δD, σ, δ′, σ′) ∧ Final(δ′, σ′)
then D |= ∃δ′, σ′. T rans∗(δ, σ, δ′, σ′) ∧ Final(δ′, σ′)

Definition 5.4
For a given D, let ∆ be a probability distribution over the outcomes of the stochastic
actions:

∆(ast, ni, s)→ [0, 1] such that D |= choice(ast, ni)

Then, for a δD ∈ Det(δ) the function R̂(δD, σ,∆) returns a tuple 〈r, pr〉 where r is the
expected reward of executing δD in the ground situation σ and pr is the probability
that δD can be successfully executed in σ.

R̂(nil, σ,∆) = 〈r, 1.0〉 for D |= rew(σ) = r

R̂([a; δ′], σ,∆) =


〈r + r′, pr′〉 if D |= Poss(a, σ); for D |= rew(σ) = r

and R̂(δ′, do(a, σ),∆) = 〈r′, pr′〉 ,
〈r, 0.0〉 otherwise; for D |= rew(σ) = r

R̂([ϑ?; δ′], σ,∆) =

{
R̂(δ′, σ,∆) if D |= ϑ[σ],
〈r, 0.0〉 otherwise; for D |= rew(σ) = r

R̂([ast; δ′], σ,∆) =

〈∑
i

∆(ast, ni, σ) · ri,
∑
i

∆(ast, ni, σ) · pri
〉
,

for R̂([ni; δ′], σ,∆) = 〈ri, pri〉

R̂([if ϑ then δ1 else δ2; δ′], σ,∆) =

{
R̂([δ1; δ′], σ,∆) if D |= ϑ[σ],
R̂([δ2; δ], σ,∆) otherwise
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We say that the partition Pprast = {ϑ1, . . . , ϑr} and the probability distribution ∆
conform to each other iff for all ground situations σ, σ′ it holds that ifD |= ϑj [σ]∧ϑj [σ′]
then ∆(ast, ni, s) = ∆(ast, ni, s′) for all ni and ϑj .

With the definition of the set of deterministic programs for any nondeterministic
program and the definition of R̂ we can now formulate a theorem that states that
the formulas in a partition induced by a program differentiate situations in which the
expected future reward for executing the same deterministic version of a program is
different.

Theorem 5.5
For a given D, any program δ, all ∆ that conform to Pprast for all stochastic actions
ast, and ground situations σ1, σ2 it holds that if, for any δD ∈ Det(δ), R̂(δD, σ1,∆) 6=
R̂(δD, σ2,∆) 2 then there exist distinct φi, φj ∈ P(δ) with D |= φi[σ1] ∧ φj [σ2].

Proof. By induction on the program structure of δ with the empty program nil
being the base case. R̂(nil, σ1,∆) = 〈rew(σ1), 1.0〉, R̂(nil, σ2,∆) = 〈rew(σ2), 1.0〉,
and by assumption rew(σ1) 6= rew(σ2). Since P(nil) = Prew there clearly have to be
distinct φi, φj ∈ P(nil).

The inductive cases have to be examined according to the beginning of the program.

� δ = [a; δ′] and δD = [a; δ′D], δ′D ∈ Det(δ′):
If R̂(δD, σ1,∆) 6= R̂(δD, σ1,∆) then rew(σ1) 6= rew(σ2), D |= Poss(a, σ1) 6≡
Poss(a, σ2), or R̂(δ′, do(a, σ1),∆) 6= R̂(δ′, do(a, σ2),∆).
In the first case there are distinct φrewi , φrewj ∈ Prew with D |= φrewi [σ1]∧φrewj [σ2].
In the second case either φrewi [σ1] ≡ Poss(a, σ1) and φrewj [σ2] ≡ ¬Poss(a, σ2)
or vice versa. In the third case there have to be distinct φ′i, φ

′
j ∈ P(δ′) with

D |= φ′i[do(a, σ1)] ∧ φ′j [do(a, σ2)] according to the inductive assumption.
According to Equation 5.1 there are for each φ ∈ P(δ) unique φ′ ∈ P(δ′),
φrew ∈ Prew, and φposs ∈ {Poss(a, s),¬Poss(a, s)} such that D |= ∀s. φ[s] ⊃
(φ′[do(a, s)] ∧ φrew[s] ∧ φposs[s]). Consequently, in each of the above cases there
have to be distinct φi, φj ∈ P(δ).

� δ = [ast; δ′] and δD = [ast; δ′D], δ′D ∈ Det(δ′):
If R̂(δD, σ1,∆) 6= R̂(δD, σ2,∆) then ∆(ast, ni, σ1) 6= ∆(ast, ni, σ2) or
R̂([ni; δ′], σ1,∆) 6= R̂([ni; δ′], σ2,∆) for at least one of the outcomes ni.
In the former case there are distinct θi, θj ∈ Pprast with D |= θi[σ1] ∧ θj [σ2]. In the
latter case there are distinct φ′i, φ

′
j ∈ P([ni; δ′]) with D |= φ′i[σ1]∧φ′j [σ2] according

to the inductive assumption.
According to Equation 5.2 there are for each φ ∈ P(δ) unique θ ∈ Pprast and unique
φi ∈ P([ni; δ′]) for each outcome ni such that D |= ∀s. φ[s] ⊃ (θ[s] ∧∧i φi[s]).
Consequently, in each of the above two cases there have to be distinct φi, φj ∈ P(δ).

� δ = [ϕ?; δ′] and δD = [ϕ?; δ′D], δ′D ∈ Det(δ′):
ThenD |= ϕ[σ1]∧¬ϕ[σ2] (or the other way around) or R̂(δ′D, σ1,∆) 6= R̂(δ′D, σ2,∆).
In the former case there have to be distinct φi, φj ∈ P(δ) with D |= φi[σ1] ⊃ ϕ[σ1]
and D |= φj [σ2] ⊃ ¬ϕ[σ2] (or vice versa). In the latter case there are distinct
φ′i, φ

′
j ∈ P(δ′) with D |= φ′i[σ1] ∧ φ′j [σ2] and then also distinct φi, φj ∈ P(δ) with

φi ≡ ϕ ∧ φ′i and φj ≡ ϕ ∧ φ′j .
2〈r, pr〉 6=

˙
r′, pr′

¸
iff r 6= r′ or pr 6= pr′.
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� δ = [if ϕ then δ1 else δ2; δ′] and δD = [if ϕ then δ1D else δ2D; δ′D], δ1D ∈ Det(δ1),
δ2D ∈ Det(δ2), δ′D ∈ Det(δ′):
Then ϕ[σ1] 6≡ ϕ[σ2] or if D |= ϕ[σ1] ∧ ϕ[σ2] then R̂([δ1D; δ′D], σ1,∆) 6=
R̂([δ2D, δ

′
D], σ2,∆) or if D |= ¬ϕ[σ1] ∧ ¬ϕ[σ2] then R̂([δ2D; δ′D], σ1,∆) 6=

R̂([δ2D; δ′D], σ2,∆). By the same argument as in the previous case there have to be
distinct φi, φj ∈ P(δ) with D |= φi[σ1] ∧ φj [σ2].

� δ = [pick(v, η); δ′], δ = [nondet(δ1, . . . , δn); δ′], or δ = [P (~t); δ′]) for a procedure
P (~x):
In each of these cases the δD ∈ Det(δ) are of one of the above forms and thus
by the same arguments as given above there are distinct φi, φj ∈ P(δ) with D |=
φi[σ1] ∧ φj [σ2].

Roughly speaking, what we are after is to find out what the optimal deterministic
version of a given program is. But instead of doing this for every situation we intent
to do it only once for each formula in the partition induced by the program. The
following theorem establishes that if there is one deterministic version of the program
which is optimal in one situation and another one optimal in another situation and
each of these deterministic versions is suboptimal in the other situation then those
situations are distinguished by the induced partition. This means that for every
formula in the induced partition there is a one or more deterministic versions that
are all equally good in all situations in which the formula holds.

Theorem 5.6
For a given D and for all δ, ∆ that conform to Pprast for all stochastic actions ast,
and ground situations σ1 and σ2 it holds that if there are distinct δrD, δ

s
D ∈ Det(δ)

which maximize3 R̂(δrD, σ1,∆) and R̂(δsD, σ2,∆), respectively, with R̂(δrD, σ1,∆) 6=
R̂(δsD, σ1,∆) or R̂(δrD, σ2,∆) 6= R̂(δsD, σ2,∆) then there exist distinct φi, φj ∈ P(δ)
such that D |= φi[σ] and D |= φj [σ′].

Proof. Again, for the proof we differentiate according to the beginning of δ.

� δ = [nondet(δ1, . . . , δn); δ′], δrD ∈ Det([δi; δ′]), δsD ∈ Det([δj ; δ′]), i 6= j:
Then there have to be distinct φ′i, φ

′′
i ∈ P([δi; δ′]) with D |= φ′i[σ1] ∧ φ′′i [σ2] or

distinct φ′j , φ
′′
j ∈ P([δj ; δ′]) with D |= φ′j [σ1]∧φ′′j [σ2]. Otherwise R̂([δi; δ′], σ1,∆) =

R̂([δi; δ′], σ2,∆) and R̂([δj ; δ′], σ1,∆) = R̂([δj ; δ′], σ2,∆). In such a case either
continuing in σ1 as well as σ2 with [δi; δ′] or [δj ; δ′] as the remaining program is
the better choice and consequently the other one is not the maximizing choice.
Assume there are distinct φ′i, φ

′′
i ∈ P([δi; δ′] with D |= φ′i[σ1]∧ φ′′i [σ2]. Then there

also have to be distinct φi, φj ∈ P(δ) such that D |= φi[σ1] ∧ φ′i[σ1] and D |=
φj [σ2] ∧ φ′′i [σ2]. Likewise for distinct φ′j , φ

′′
j ∈ P([δj ; δ]) with D |= φ′j [σ1] ∧ φ′′j [σ2].

� δ = [pick(v, η); δ′], δrD ∈ Det([ηvc1 ; δ′]), δsD ∈ Det([ηvc2 ; δ′]) such that for any
δc1D , δ

c2
C ∈ Det(δ) that only differ in the choice for v it holds that the expected

rewards for executing δc1D and δc2D in σ1 as well as σ2 are different. That is,
choosing c1 and c2 actually makes a difference w.r.t. R̂.

3δD ∈ Det(δ) maximizes R̂(δD, s,Delta) iff δD = arg maxδ′
D
∈Det(δ)f(R̂(δ′D, s,∆)) for arbitrary but fixed

f : 〈r, pr〉 → v.
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Consequently, there have to exist distinct φ′i(v), φ′j(v) ∈ P([η; δ′]) with D |=
φ′i(c1)[σ1] ∧ φ′j(c2)[σ2]. Then, there are also distinct φi, φj ∈ P(δ) such that
D |= φi[σ1] ∧ ∃v. φ′i(v)[σ1] and D |= φj [σ2] ∧ ¬∃v. φ′i(v)[σ2]. Otherwise δsD could
make the same choice for v in σ2 as δrD in σ1 and thus could obtain the same
reward.

� For all other cases a combination of the arguments given above and in the proof
for Theorem 5.5 suffices to prove the assertion. Precisely, the “other cases” are
programs that begin with deterministic constructs or nondeterministic constructs
where the choices made for these by δrD and δsD, respectively, are irrelevant w.r.t.
R̂.

6 Representing Partitions by BDDs

Although the above definition of P(δ) has the desired properties, it has a severe
drawback that prohibits a direct implementation: possibly, the number of formulas
in a partition which are trivially unsatisfiable becomes prohibitively large. For the
Ev-operator this problem was already discussed above and a hint at a solution was

presented (cf. Section 4.1). But the problem might also occur when the ⊗-operator
is applied.

We show how a variant of binary decision diagrams (BDDs) can be used to com-
pactly represent partitions. But not only does this improve the representational
efficiency, by directly manipulating BDDs instead of partitions the computational
efficiency is improved, too.

A BDD representing a Boolean function f(x1, . . . , xn) is a DAG consisting of n
decision nodes and two terminal nodes labeled with ’0’ and ’1’, respectively. Every
decision node is labeled with one of the Boolean variables x1, . . . , xn and has exactly
two child nodes, the high child and the low child. For a node v in the BDD the Boolean
function represented by the sub-BDD rooted in v is defined as fv(x1, . . . , xn) = xi ·
fhigh(v)(x1, . . . , xn) + x̄i · flow(v)(x1, . . . , xn) where xi is the label of node v.

The variant of BDDs [6] that represent partitions consisting of n situation sup-
pressed formulas are defined by the following BNF grammar:

B ::= L | if ϕ then Bh else Bl

where L is the label of a terminal node. The decision nodes are represented as
if ϕ then Bh else Bl where ϕ is a situation-suppressed formula associated with this
decision node; Bh is the high-child and Bl is the low-child of the decision node. For
any ground situation σ if D |= ϕ[σ] holds then the high branch leading to Bh is
followed; otherwise the low branch leading to Bl is followed. The terminal nodes are
labeled with subsets of {1, . . . , n}.

The formulas associated with the decision nodes are either atomic formulas or they
are quantified formulas where the scope of the quantifiers is minimized as much as
possible. In order to construct the BDD representing a partition P = {φ1, . . . , φn}
the φi need to be transformed first such that they can be written as conjunctions or
disjunctions over sub-formulas that conform to the above description. This is achieved
by means of the rewrite rules shown below which push the quantifiers inwards as far
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as possible and thus reveal the “propositional structure” [22] of the formulas.

∃x. [φ(x, ?) ∨ ψ(x, ?)]→ ∃x. [φ(x, ?)] ∨ ∃x. [ψ(x, ?)]
∀x. [φ(x, ?) ∧ ψ(x, ?)]→ ∀x. [φ(x, ?)] ∧ ∀x. [ψ(x, ?)]
∃x. [φ(x, ?) ◦ ψ(?)]→ ∃x. [φ(x, ?)] ◦ ψ(?), ◦ ∈ {∧,∨}
∀x. [φ(x, ?) ◦ ψ(?)]→ ∀x. [φ(x, ?)] ◦ ψ(?), ◦ ∈ {∧,∨}

The ? denotes other free variables which are not bound by the quantifiers.
The partition represented by a BDD B consists of n distinct formulas φi where

n is the number of distinct terminal nodes in B. A formula φi is represented by
all paths that lead from the root node to the terminal node i. φi is reconstructed
by disjunctively combining the formulas that are represented by each of these paths.
The formula represented by a single path is the conjunction of the formulas associated
with the decision nodes on that path. Inherently, the BDD representation facilitates
to identify distinguishing subformulas: if the ψ is the formula associated with the
root node of the BDD then it holds that for all φi represented by the BDD either
|= φi ⊃ ψ or |= φi ⊃ ¬ψ.

Lemma 6.1
For a partition P let FP be the set of sub-formulas that result from applying the
above rewrite formulas on the formulas of the partition until the quantifiers cannot
be pushed in any further. For any total ordering over FP there exists a unique reduced
BDD representing the partition P .

A proof for BDDs that only have two distinct terminal nodes is given in [6]. It
trivially generalizes to BDDs with n distinct terminal nodes.

Example 6.2
This example illustrates the generation of the BDD representing the partition
{Poss(move(x, y), s),¬Poss(move(x, y), s)}. The resulting BDD is shown in Fig-
ure 1. The application of the rewrite rules is demonstrated below. The boxed subfor-
mulas cannot be broken down any further and, consequently, are the formulas that
are associated with the decision nodes in the BDD.

Poss(move(x, y), s) ≡ ¬∃z. [on(z, x, y) ∨ y 6= table ∧ on(z, y, s)] ∧ x 6= y

≡ ∀z. [¬(on(z, x, s) ∨ y 6= table ∧ on(z, y, s))] ∧ x 6= y

≡ ∀z. [¬on(z, x, s) ∧ ¬(y 6= table ∧ on(z, y, s))] ∧ x 6= y

≡ ∀z. [¬on(z, x, s) ∧ (y = table ∨ ¬on(z, y, s))] ∧ x 6= y

≡ ∀z. [¬on(z, x, s)] ∧ ∀z. [y = table ∨ ¬on(z, y, s)] ∧ x 6= y

≡ ∀z. [¬on(z, x, s)] ∧
(
y = table ∨ ∀z. [¬on(z, y, s)]

)
∧ ¬x = y

6.1 Limitations of the Rewrite Rules

Certainly, the above rewrite rules are not capable of generating formulas such that
all equivalent sub-formulas become syntactically alike. And, consequently, it might
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∀z.¬on(z, x)

∀z.¬on(z, y)

y = table

x = y

{2}{1}

Fig. 1: BDD representing the partition {Poss(move(x, y), s),¬Poss(move(x, y), s)}.
The high branches are indicated by solid lines, the low branches by dotted lines.

be that after applying the above rewrite rules on the formulas of the partition these
contain syntactically different sub-formulas ψ and ψ′ but |= ψ ≡ ψ′ or |= ψ ≡ ¬ψ′.
Although this means that there might be no common sub-formula ψ such that for
every φi either φi ≡ ψ∧ τi or φi ≡ ¬ψ∧ τi, a BDD representing the partition can still
be constructed. Failing to identify equivalent sub-formulas, though, leads to a BDD
that is larger in size than the minimal BDD. What the BDDs look like in the cases
where the equivalence between ψ and ψ′ and ψ and ¬ψ′, respectively, could not be
made out is illustrated below. For syntactically different ψ,ψ′, the BDD on the left
represents the partition {ψ,¬ψ′} (where ψ ≡ ψ′); the BDD on the right represents
the partition {ψ,ψ′} (where ψ ≡ ¬ψ′}).

ψ

ψ′

{1} {2}

ψ

ψ′

{1} {2}

Although there is no formula in the partition that mentions ¬ψ as a sub-formula with
the knowledge that {ψ,¬ψ′} is a partition we know that it is correct to differentiate
the state where ψ does not hold according to ψ′. This “solution method” scales
to cases where there are more formulas in the partition and the formulas are more
complex.

7 BDDs Induced by Golog Programs

Not only do BDDs allow for a compact representation of a partition but by directly
manipulating BDDs instead of the partitions they represent we will show how the
generation of (trivially) unsatisfiable formulas can be reduced drastically. So, even-
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tually, we strive to directly compute the BDD representing the partition induced by
a Golog program without computing the partition first and then generate the BDD
representing it—at least where this is possible. As we will see there are two excep-
tions. For short, we call the BDD representing the partition by a program δ the BDD
induced by δ.

Analogously to the operations on partitions we used to compute the partition in-
duced by a program (cf. Definition 4.2) we define similar operations on BDDs. In
particular these are the binary operator B1⊗B2, the ternary operator B1�φB2, and
the unary operator Ev B.

The data structure used to store the BDDs builds on a cache that contains mappings
of the form

〈
φ,Bh, Bl

〉→ id, i.e., a unique identifier is assigned to BDDs. By storing
the identifiers of the high- and low-child instead of the corresponding BDDs allows to
efficiently store common sub-BDDs. In order to keep the presentation of the following
algorithms simple we assume that the function calls to query and to modify the cache
happen transparently every time a new (sub-) BDD is constructed. Additionally, we
assume a globally given ordering over the formulas associated with the decision nodes
and that the BDDs operated on conform to that ordering.

With B(P ) we denote the BDD representing the partition P ; with P(B) we denote
the partition represented by the BDD B.

The Operator B1 ⊗B2

The operator B1 ⊗B2 is the equivalent to the ⊗ operator for partitions: it computes
the BDD that represents the partition P(B1)⊗ P(B2).

In Algorithm 1 the implementation for this operator is sketched. If both input
BDDs only consist of terminal nodes the algorithm returns a terminal node whose
label is the union of the labels of the input terminal nodes. If only one of the input
BDDs is a terminal node then the output BDD basically coincides with the other
BDD but the labels of the terminal nodes are modified by taking the union of the
original label and the label of the input terminal node. If both input BDDs are non-
terminal nodes the ordering of the formulas associated with the respective root nodes
is compared and the process is continued accordingly. The formula preceding in the
ordering is associated with the root node of the newly generated BDD and the high
and low-child are computed by combining the high and the low-child, respectively, of
the preceding input BDD with the other input BDD. In case of equality (by which
we mean that there is a unifier for the two formulas) both high and low-children are
combined with each other. Given that the two input BDDs conform to the ordering
the generated BDD will do so, too.

The Operator B1 �φ B2

The ternary operator B1 �φ B2 is not a direct equivalent to any operator defined on
partitions. As inputs it takes two BDDs, B1 and B2, and a formula φ. From these it
computes a BDD that represents the partition {φ} ⊗ P(B1) ∪ {¬φ} ⊗ P(B2).

In the presentation of the algorithm below we assume wlog that in a preprocessing
step a BDD representing the partition {φ,¬φ} is computed whose terminal nodes are
labeled with “{+}” (for the case where φ holds) and “{−}” (otherwise).
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Algorithm 1: B1 ⊗B2

if B1 and B2 are terminal nodes then
return B1 ∪B2

if B1 is a non-terminal node and B2 is a terminal node then
ϕ←− ϕ1

Bh ←− Bh1 ⊗B2

Bl ←− Bl1 ⊗B2

return B

if B1 is a terminal node and B2 is a non-terminal node then
[. . . ]

if ϕ1 = ϕ2 then
ϕ←− ϕ1

Bh ←− Bh1 ⊗Bh2
Bl ←− Bl1 ⊗Bl2
return B

else if ϕ1 ≺ ϕ2 then
ϕ←− ϕ1

Bh ←− Bh1 ⊗B2

Bl ←− Bl1 ⊗B2

return B

else // ϕ2 ≺ ϕ1

[. . . ]

Then, basically, the operator combines the three BDDs in a similar fashion as the
⊗-operator. The only exception is if Bφ, the BDD representing {φ,¬φ}, is a terminal
node. In that case either B1 or B2 is returned depending on the label of the terminal
node.

The Operator Ev B
The Ev B operator produces a BDD that represents the partition generated by Ev P(B).
Contrary to the two operators for BDDs introduced above, ⊗ and �, the Ev B op-
erator requires to first reconstruct the partition represented by the BDD B. This
necessity arises from the definition of the Ev -operator for partitions. Each formula
in the resulting partition makes a statement about the existence or non-existence of
objects such that each φi in the input partition can be satisfied. Transferred to the
BDD representation this means that the formulas associated with the decision nodes
of the output BDD have to be constructed on the basis of all paths through the input
BDD and not just from its nodes (an example is given in Figure 2).

For reasons of exposition we refrain from presenting a formal algorithm for the Ev B
operator. Instead we give an informal explanation that holds on to the structure of
the actual algorithm.

1. Reorder the BDD B such that along all paths of the BDD the nodes labeled with
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Algorithm 2: B1 �B({φ,¬φ}) B2)

if Bφ = {+} then
return B1

if Bφ = {−} then
return B2

if B1 and B2 are non-terminal nodes then
if ϕφ ≺ ϕ1 and ϕφ ≺ ϕ2 then

ϕ←− ϕφ
Bh ←− B1 �Bhφ B2

Bl ←− B1 �Blφ B2

// all other possibilities for the ordering of ϕ1, ϕ2, and ϕφ
else if . . . then

[. . . ]

return B

else if B1 is a non-terminal node and B2 is a terminal node then
// combine B1 and Bφ with each other
[. . . ]

else if B1 is a terminal node and B2 is a non-terminal node then
// combine B2 and Bφ with each other
[. . . ]

else if B1 and B2 are terminal nodes then
return Bφ

formulas that do not mention v as a free variable come first. Let the resulting
BDD be B′.

2. On each path through B′ identify the first node N that is labeled with a formula
that mentions v as a free variable. Let the sub-BDD that has N as its root node
be BN . For every BN perform the following:

(a) Assume the labels of the terminal nodes of BN are l1, . . . , ln. For reasons of
readability we refer to those labels as 1, . . . , n in the following. Let P(BN ) =
{φ1(v, ?), . . . , φn(v, ?)} where other free variables mentioned by the φi are de-
noted by ?. Each φi(v, ?) is equivalent to

∨mi
j=1 ψ

i
j(v, ?) where the formula

ψij(v, ?) is the conjunction of the formulas associated with the decision nodes
along the jth path from the root node of BN to a terminal node with the label
i. Then, ∃v. φi(v, ?) ≡

∨mi
j=1 ∃v. ψij(v, ?).

(b) Construct a new BDD incrementally over the {φi(v, ?)}: For every i ∈ {1, . . . , n},
BCi denotes a BDD that represents φi, C ⊆ {1, . . . , n}, and it looks like this:
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∃v. ψi
1(v, ?)

∃v. ψi
mi

(v, ?)

∃v. ψi
2(v, ?)

�C∪{i}
i+1

. . .

�Ci+1

The idea behind the interim nodes �C∪{i}i+1 and �Ci+1 in BCi is to memorize the
index for the next iteration (i+1) and the indices of the φj for which a satisfying
v exists. More precisely, at a node �Ci it is known that for each j ∈ C the formula
∃v. φj(v, ?) holds. Note, that in BCi the set of indices for the left interim node
(where at least one of the ∃v. ψij(v, ?) holds) is C ∪ {i}.
Now, the new BDD is constructed by starting with B∅1 and then iteratively
replacing every occurrence of an interim node �Ci with i ≤ n by the BDD BCi .

(c) After this process is completed for all φi the remaining interim nodes �Cn+1 are
replaced by terminal nodes labeled C. The resulting BDD is called B′N .

(d) Replace the sub-BDD BN in B′ with B′N .

An example is given in Figure 2. There, ψ1
1(v) = ¬ϑ(v), ψ1

2(v) = ϑ(v) ∧ ϕ(v), and
ψ2

1(v) = ϑ(v) ∧ ¬ϕ(v).
The implementation of the Ev-operator for BDDs picks up the idea presented above

(cf. Section 4.1) to reduce the number of (trivially) unsatisfiable formulas in the
partitions generated by the Ev-operator for partitions. The common sub-formulas
can be easily identified due to the representation as a BDD and the exponential blow-
up in the size of the partition/BDD is diminished by moving down the decision nodes
in the BDD which are associated with formulas that mention v as a free variable. Let
|P(B)| = n and let there by m sub-BDDs BNi (cf. step 2 in the algorithm) with
|P(BNi)| = ni. Then, the number of formulas in the partition represented by the
BDD Ev B is n+

∑m
i=1 2ni − ni.

7.1 Computing the Induced BDDs

With the previously defined operators at hand the BDD induced by a Golog program δ
can be defined. In particular, we show how to directly compute the BDD representing
the partition induced by a program. With the exception of the Ev-operator and the
regression of all formulas in the partition this can be achieved by directly operating
on BDDs.

In the following we use a number of abbreviations:

� Brew is an abbreviation for B(Prew) and

� B(δ) is an abbreviation for B(P(δ)).
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ϑ(v)

{2}

ϕ(v)

{1}

∃v.¬ϑ(v)

∃v. ϑ(v) ∧ ϕ(v)

∅

∃v. ϑ(v) ∧ ¬ϕ(v) ∃v. ϑ(v) ∧ ¬ϕ(v)

{1, 2} {2}{1}

Ev

Fig. 2: Illustration of the BDD produced by the Ev-operator. The input BDD is
shown on the left side; it represents the partition {¬ϑ(v) ∨ ψ(v), ϑ(v) ∧ ¬ψ(v)}.

Analogously to the definition of P(nil), the BDD induced by the empty program
is defined to be the BDD representing the reward partition:

B(nil) = Brew

The BDD induced by a program starting with a primitive action a is defined as:

B([a; δ]) = B′ �Poss(a,s) {?}
where B′ = Brew⊗B({Regr(φ[do(a, s)]) |φ ∈ P(Bδ)} and {?} is a terminal node with
a new label ?.

For the remaining language constructs the function B(δ) is defined in analogy to
P(δ).

� The program starts with a stochastic action ast which has the outcomes n1, . . . , nk
and the partitions induced by the conditions under which the probability distri-
bution over the outcomes varies is Pprast :

B([ast; δ]) = B(Pprast)⊗
k⊗
i=1

B([ni; δ])

� The program starts with a test action ϑ?:

B([ϑ?; δ]) = B(δ)�ϑ {?}
Again, the ? denotes a “fresh” label.

� The program starts with a conditional branching statement:

B([if ϑ then δ1 else δ2; δ]) = B([δ1; δ])�ϑ B([δ2; δ])

� The program starts with a nondeterministic branching:

B([nondet(δ1, . . . , δn); δ]) =
n⊗
i=1

B([δi; δ])
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� The program starts with a nondeterministic choice of argument:

B([pick(v, η); δ]) = Ev B([η; δ])

� The program starts with a procedure call:

B([P (~t); δ]) = B([δP ~x
~t
; δ])

8 The QGolog Interpreter

The programs we consider may contain nondeterministic constructs, the nondetermin-
istic branching and the nondeterministic choice of arguments, in particular. These
are the choice points in the program—here the agent needs to make a decision on
how to proceed with the execution of the program. Our intention is to learn what the
best decisions at the choice points of a program are by integrating Q-learning into
the action language Golog.

The partition induced by a program beginning with a nondeterministic construct
allows for first-order state as well as action abstraction. The formulas in the partition
induced by a program differentiate situations in which the expected reward for exe-
cuting the program differs. For instance, assume the program nondet(δ1, . . . , δn); δ
that allows the agent to first follow one of the δi, 1 ≤ i ≤ n, and then the program
δ. Let {φ1, . . . , φm} be the partition induced by that program. Since we know that
the φj distinguish situations in which any possible continuation of the program leads
to different expected rewards it is not necessary to maintain a Q-table that contains
entries for choosing to continue with δi in any possible ground state. Instead it suffices
to store Q-values for all combinations of δi and φj .

Action abstraction (together with state abstraction) can be achieved for programs
beginning with a nondeterministic choice of argument, e.g. pick(v, η); δ. Here, the
partition induced by the program frees the agent from having entries in the Q-
table for every possible choice for v. Not only that there might be infinitely many,
but it might not always be known in advance what choices are available. Assume
{ψ1(v), . . . , ψl(v)} is the partition induced by the program η; δ. Then, choosing a v
that satisfies ψ1 potentially leads to another expected reward than choosing a v that
satisfies ψ2. The Q-table can thus be reduced to combinations of the abstract states
given by Ev {ψ1(v), . . . , ψl(v)} (cf. Eq. 5.3) and the abstract choices for v given by
ψ1(v), . . . , ψl(v). Not in every state described by a formula in Ev {ψ1(v), . . . , ψl(v)}
it is possible to choose a v satisfying each of the ψi(v), . . . , ψl(v)—it might be the case
that there exists no v satisfying a certain ψi. Since the formulas in Ev {ψ1(v), . . . , ψl(v)}
make assumptions about the existence and nonexistence of v’s satisfying the ψi(v)
we only allow the agent to choose a v satisfying a ψi if the (unique) formula in
Ev {ψ1(v), . . . , ψl(v)} that holds in the current situation guarantees the existence

of a v satisfying ψi. Formally, if φ[σ] holds with φ ∈ Ev {ψ1(v), . . . , ψl(v)} and
φ |= ∃v. ψi(v) for an i with 1 ≤ i ≤ l then choosing a v satisfying ψi is a licit choice.

Whereas for programs that begin with a nondeterministic branching the possible
choices can be read off of the program this is not that simple for programs beginning
with a nondeterministic choice of argument. But with the BDD-based representation
of the induced partitions presented in Section 7 this can be achieved fairly easily.
Remember that the terminal nodes in the BDD induced by a program [pick(v, η); δ]
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are labeled with subsets of the labels of the terminal nodes of the BDD induced by
the program [η; δ]. Precisely, these sets contain the labels of the terminal nodes which
correspond to formulas in the partition induced by [η; δ] for which a satisfying v exists.

We only intend to learn Q-values for the choices that the agent can make at the
choice points of a program—in between two successive choice points no decisions need
to be made since the program is deterministic. Consequently, the execution of the
program can be regarded as transitioning from one choice point to the next, making
a decision at each of these. Due to stochastic actions the transitions from one choice
point to the next may be probabilistic. Semi-MDPs (SMDPs) are like MDPs only
that they additionally consider the duration between state changes. In our case the
number of actions (deterministic or stochastic) may vary between choice points. In
order to take this into account we make use of the SMDP-version of the Q-update:

Q(st, at)← Q(st, at) + α ·
(
Rt + γk ·max

a
Q(st+1, a)−Q(st, at)

)
The reward Rt obtained for executing the SMDP-action at (not to be confused with
a situation calculus action) in state st is computed as the discounted sum of rewards
obtained for executing the k actions in the sequence that let from the previous choice
point to the current choice point:

Rt = rt + γ · rt+1 + γ2 · rt+2 + · · ·+ γk · rt+k−1

where the ri correspond to the value of the reward function rew(do([a1, . . . , ai−1], σ))
with σ being the situation at the previous choice point.

Contrary to the general (S)MDP-setting where the agent may freely choose between
all available actions, the choices are limited by the given program the agent has to
follow in our setting. Consequently, we need to store Q-values for all triplets δ, φ, and
A where δ is the remaining program, φ ∈ P(δ), and A identifies one of the possible
ways to continue with the execution of δ in a situation where φ holds. If δ begins
with nondet(δ1, . . . , δn) then A can take on the values δ1, . . . , δn; if δ begins with
pick(v, η) then A is of the form pick(v, [ϕ?; η]) where ϕ is a formula that describes
one of the licit choices for v. Formally, the set of possible choices for a choice point δ
if φ ∈ P(δ) holds in the current situation is defined by A(δ, φ):

� A(nondet(δ1, . . . , δn); δ, φ) = {δ1, . . . , δn}
� A(pick(v, η); δ, φ) = {pick(v, [ϕ?; η]) |ϕ ∈ P([η; δ]) and φ |= ∃v. ϕ}
The interpreter manages the Q-table by means of the fluent q(φ, δ, A, v, s). It states

that the Q-value of proceeding with the remaining program δ according to A if φ holds
in the current situation s, φ ∈ P(δ), is v. With the action setQ(φ, δ, A, v) the entries
in the Q-table can be manipulated. The successor state axiom for the q-fluent is
defined as

q(δ, φ,A, v, do(a, s)) ≡ a = setQ(δ, φ,A, v)
∨ q(δ, φ,A, v) ∧ ¬∃v′. a = setQ(δ, φ,A, v′)

We assume that the q-fluent is properly initialized in DS0 . That is, for every program
δ which begins with a nondeterministic construct and is a remaining program of the
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program for which the optimal execution shall be learned, for every φ ∈ P(δ), and
for every possibility A to continue with δ, the q-fluent holds for a unique, numerical
constant v in S0. Precisely, we assume that we have sentences of the following form
in DS0 for every such δ and φ

q(δ, φ,A, v, S0) ≡
∨

A′∈{A1,...,An}
A = A′ ∧ v = vA′

where A1, . . . , An are the possible choices to continue with the program δ in a situation
where φ holds and the vAi are numerical constants.

We introduce the new language construct learn(δ) that resolves the nondetermin-
ism in δ and records how good the choices are that have been made. The semantics
of QGolog programs is mostly defined with the help of the QDo macro:

QDo(δ∗, φ∗, A∗, δ, s, r, k, π)

where δ∗ is the remaining program at the last encountered choice point, φ∗ ∈ P(δ∗)
held in the situation current at the last choice point, and A∗ is the choice the agent
made at the previous choice point. These values have to be remembered for the next
update of the respective Q-value. The remaining arguments of the QDo-macro are
the remaining program δ, the current situation s, the reward r accumulated since the
last choice point, the number of primitive actions k performed since the last choice
point, and the computed policy π. The Trans-predicate for learn(δ) is defined as:

Trans(learn(δ), s, δ′, s′) ≡ s′ = s ∧QDo(δ, φstart, Astart, δ, s, 0, 0, δ′)

That is, the program may proceed from a configuration 〈learn(δ), s〉 to a configuration
〈δ′, s′〉 where s′ = s and δ′ is the policy computed by the QDo-macro. Since not every
program has to begin with a choice point we add a distinguished start state φstart
(for instance, φstart = true) and start choice Astart. We also assume that the q-fluent
is properly initialized in DS0 for the parameters δ, φstart, and Astart.

The predicateQDo is defined depending on the beginning of the remaining program.
If the remaining program is the empty program nil everything that remains to be done
is to compute the Q-update for the choice made at the last choice point and add a
corresponding action to the policy:

QDo(δ∗, φ∗, A∗, nil, s, k, r, π)
def.
=

∃qt, qt+1. q(δ∗, φ∗, A∗, qt, s) ∧ qt+1 = qt + α · (r − qt)
∧ π = setQ(δ∗, φ∗, A∗, qt+1)

In case the remaining program starts with a primitive, deterministic action and the
preconditions for that action do hold in the current situation, the remaining policy π′

is determined by QDo where the number of actions performed since the last choice
point increased by one and the reward obtained in the successor situation do(a, s) is
added to the accumulated reward. If the preconditions are not given in the current
situation a negative reward rfail is obtained. It is necessary to choose a value for rfail
such that every successful execution of the program leads to a higher accumulated



Reinforcement Learning for Golog Programs with First-Order State-Abstraction 25

reward than any unsuccessful one.

QDo(δ∗, φ∗, A∗, [a; δ], s, k, r, π)
def.
=

Poss(a, s) ∧ ∃r′, π′. r′ = rew(do(a, s))

∧QDo(δ∗, φ∗, A∗, δ, do(a, s), k + 1, r + γk · r′, π′) ∧ π = [a;π′]
∨ ¬Poss(a, s) ∧ ∃qt, qt+1. q(δ∗, φ∗, A∗, qt, s)

∧ qt+1 = qt + α · (r + γk · rfail − qt)
∧ π = setQ(δ∗, φ∗, A∗, qt+1)

If the program starts with a test action and the test holds QDo is called recursively
for the remaining program with unchanged parameters for s, k, and r. Otherwise the
choice made at the last choice point is penalized in the same fashion as above.

QDo(δ∗, φ∗, A∗, [ϑ?; δ], s, k, r, π)
def.
=

ϑ[s] ∧QDo(δ∗, φ∗, A∗, δ, s, k, r, π)
∨ ¬ϑ[s] ∧ ∃qt, qt+1. q(δ∗, φ∗, A∗, qt, s)

∧ qt+1 = qt + α · (r + γk · rfail − qt)
∧ π = setQ(δ∗, φ∗, Q∗, qt+1)

The policy generated for programs that start with a stochastic action are somewhat
different. Since the outcome of the stochastic action is not known in advance the
computation of the policy needs to be interrupted, the stochastic action needs to
be executed online, and the actual outcome needs to be observed. Afterwards the
computation of the policy needs to be picked up again. In order to perform the next
Q-update it is necessary to remember the choice made at the last choice point, the
number of executed actions, and the accumulated reward. This is exactly what the
language construct l is for. It is similar to learn(δ) only that it allows to additionally
specify the aforementioned parameters.

Trans(l(δ∗, φ∗, A∗, δ, s, k, r), s, δ′, s′) ≡ QDo(δ∗, φ∗, A∗, δ, s, k, r, δ′) ∧ s = s′

With this the QDo-macro for programs beginning with a stochastic action can be
defined as:

QDo(δ∗, φ∗, A∗, [ast; δ], s, k, r, π)
def.
=

∃r1, . . . , rk.
k∧
i=1

ri = rew(do(ni, s))

π = [SR(ast); if senseCond(n1) then

l(δ∗, φ∗, A∗, δ, k + 1, r + γk · r1)
else if senseCond(n2) then

. . .

else if senseCond(nk) then

l(δ∗, φ∗, A∗, δ, k + 1, r + γk · rk)]
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The policy π begins with the function SR(ast) that returns one of the defined out-
comes ni:

SR(ast(~x), s) = r ≡ r = n1 ∨ . . . ∨ r = nk

During the execution in the real world SR(ast) is replaced by the observed outcome
(cf. Section 8.1).

The definition of QDo for programs that start with a conditional branching is
straightforward:

QDo(δ∗, φ∗, A∗, [if ϑ then δ1 else δ2; δ], s, k, r, π)
def.
=

ϑ[s] ∧QDo(δ∗, φ∗, A∗, [δ1; δ], s, k, r, π)
∨ ¬ϑ[s] ∧QDo(δ∗, φ∗, A∗, [δ2; δ], s, k, r, π)

as it is the case for programs starting with a procedure call:

QDo(φ∗, δ∗, A∗, [P (~t); δ], s, k, r, π)
def.
=

QDo(φ∗, δ∗, A∗, [δP ~x
~t
; δ], s, k, r, π)

where the procedure is defined as proc P (~x) δP .
The remaining two cases, namely programs that begin with either a nondetermin-

istic branching or a nondeterministic choice of argument, represent the choice points
in the program. Here, a Q-update needs to be performed for the Q-value of the
choice made at the last choice point. In both cases QDo first determines which of
the formulas in the induced partition holds in the current situation and then updates
the Q-value for the choice made at the previous choice point. The latter consists
of looking up the current Q-value of the choice made at the previous choice point,
determining the maximizing choice for the current choice point and its Q-value, and
to compute the updated Q-value for the choice made at the last choice point. QDo is
then called recursively with the current program, the formula in the induced partition
that holds in the current situation, and the choice made for the current choice point.
Here, the interpreter follows a greedy policy, i.e., it always chooses the maximizing
action. How state space exploration can be incorporated into the interpreter is shown
in Section 8.2.

QDo(δ∗, φ∗, A∗, [nondet(δ1, . . . , δn); δ], s, k, r, π)
def.
=∨

φ∈P([nondet(δ1,...,δn);δ])

φ[s] ∧ ∃qt. q(δ∗, φ∗, A∗, qt, s)

∧ ∃A, qmax. QMax([nondet(δ1, . . . , δn); δ], φ,A, qmax, s)

∧ ∃qt+1. qt+1 = qt + α · (r + γk · qmax − qt)∧
∧QDo([nondet(δ1, . . . , δn); δ], φ,A, [δA; δ], s, 0, 0, π′)
∧ π = [setQ(δ∗, φ∗, A∗, qt+1);π′]

QMax(φ, δ, A, qmax, s) is an auxiliary macro that determines the choice A maximizing
the Q-value that can be made at the choice point δ if φ holds and its Q-value qmax.
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The definition is given below.

QMax(δ, φ,A, qmax, s)
def.
=

q(δ, φ,A, qmax, s) ∧
∧

B∈A(δ,φ),
B 6=A

∃qB . q(δ, φ,B, qB , s) ∧ qB ≤ qmax

Note that the choices for a choice point beginning with a nondeterministic choice
of argument are identified by Golog programs of the form pick(v, [ϑ?; η]); δ). By
computing a Trans-step for such a program the interpreter binds the variable v in η
such that ϑ holds. Particularly, the Trans step for the program [pick(v, [ϑ?; η]); δ] is
computed by finding an adequate binding x for v such that there exists a Trans-step
for [ϑ?; ηvx] and thus the x has to satisfy ϑ. Compare with the definition of the Trans
predicate:

Trans(pick(v, η), s, δ′, s′) ≡ ∃x. Trans(ηvx, s, δ′, s′)
The policy π first updates the q fluent and then continues with the policy π′ computed
for the remaining program which is computed by recursively calling QDo.

QDo(δ∗, φ∗, A∗, [pick(v, η); δ], s, k, r, π)
def.
=∨

φ∈P([pick(v,η);δ])

φ[s] ∧ ∃qt. q(δ∗, φ∗, A∗, qt, s)

∧ ∃A, qmax. QMax([pick(v, η); δ], φ,A, qmax, s)

∧ ∃qt+1. qt+1 = qt + α · (r + γk · qmax − qt)∧
∧ ∃δ′. T rans(A, s, δ′, s)
∧QDo([pick(v, η); δ], φ,A, δ′, s, 0, 0, π′)
∧ π = [setQ(δ∗, φ∗, A∗, qt+1);π′]

Since it is necessary to observe the execution of a program δ in the real world several
times in order to learn the optimal execution of the program this either requires to
embed the learning in a loop:

while ϕ do learn(δ) end

or to progress the fluents relevant to for the Q-learning (especially the q fluent and
others; see below) to the situation that was reached after executing the program and
replace any occurrence of these fluents in another D′S0

with the progressed fluents.
Since we assumed a completely specified DS0 the progression is computable (cf. [17]).
Note, that since the Q-values are accessible within the program it is possible to
formulate an exit condition for the loop above that depends on the current Q-values.
e.g.:

while ∃v. q(δ, φstart, Astart, v) ∧ v < 5.0 do learn(δ) end

8.1 Online Execution

The online execution of a QGolog program is performed similarly to [24, 9]. As long
as the program is not final in the current situation a Trans-step Trans(δ, s, δ′, s′) is
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computed and if ∃a. s′ = do(a, s) then the action a is executed in the real world. An
exception is if δ = [SR(ast); δ′]. Then, the stochastic action ast is executed in the
real world and by sensing the resulting state of the world the outcome of ast that
models those changes is determined. Assume that after executing ast in situation s
in the real world (at least as far as the agent perceives it) is in a state that coincides
with do(ni, s) where ni is a modeled outcome of ast. In the next step the execution
system then computes Trans-step for the remaining program δ′ in situation do(ni, s):
Trans(δ′, do(ni, s), δ′′, s′′)

8.2 State Space Exploration

The interpreter presented above follows a greedy policy, i.e., at every choice point it
chooses to continue with the execution of the program according to the choice that
maximizes the Q-function for the current choice point. In order to prove the conver-
gence of the Q-learning process it is required, however, that with a certain probability
that decreases over time a non-maximizing choice is selected. This encourages the
exploration of the state space and ensures that, eventually, every possible choice at
every choice point is tried out infinitely many times.

In order to integrate the state space exploration into the interpreter we introduce
the fluent ε(s) storing the probability with which a non-maximizing choice is selected.
The action setEpsilon(v) allows to manipulate the fluent ε(s) similar to the setQ-
action and the q-fluent. Additionally, we assume that the sensing action senseRnd
accesses a random number generator and sets the fluent rnd(s) to a value between 0
and 1.

To incorporate the state space exploration the definition of the QDo macro needs
to be modified for programs that start with either a nondeterministic branching or a
nondeterministic choice of argument. Therefore, we introduce two new macros that
compute programs that depending on the value of the fluent rnd(s) select one of the
possible choices. More specifically, the remaining program l(δ, φ,Ai, δ, 0, 0) reflects
the selection of the choice Ai. The definition of the macros is similar to the definition
of the BestDoAux macro in [5].

chooseSmdpActionNdet({A1, . . . , An}, φ, δ, i, π)
def.
=

chooseSmdpActionNdet({A1, . . . , An−1}, φ, δ, i+ 1, π′)

∧ π = if rnd ≤ i

n+ i− 1
then l(φ, δ, An, δ, 0, 0) else π′

When called with the empty set as the first argument, chooseSmdpActionNdet as
well as chooseSmdpActionP ick (see below) return π = nil.

The macro that generates a program to select a choice for a choice point that begins
with a nondeterministic choice of arguments is only slightly different. It additionally
determines the remaining program δ′ by computing a Trans step on the program
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that is associated with the choice Ai.

chooseSmdpActionP ick({A1, . . . , An}, φ, δ, i, s, π)
def.
=

Trans(An, s, δ′, s)
∧ chooseSmdpActionP ick({A1, . . . , An−1}, φ, δ, i+ 1, s, π′)

∧ π = if rnd ≤ i

n+ i− 1
then l(φ, δ, An, δ′, 0, 0) else π′

Lastly, the QDo macro for the nondeterministic branching and the nondeterministic
choice of argument needs to be modified. The set of choices {A1, . . . , An} corresponds
to A([nondet(δ1, . . . , δn); δ], φ) and A([pick(v, η); δ], φ), respectively.

QDo(δ∗, φ∗, A∗, [nondet(δ1, . . . , δn); δ], s, k, r, π)
def.
=∨

φ∈P([nondet(δ1,...,δn);δ])

φ[s] ∧ ∃qt. q(δ∗, φ∗, A∗, qt, s)

∧ ∃A, qmax. QMax([nondet(δ1, . . . , δn); δ], φ,A, qmax, s)

∧ ∃qt+1. qt+1 = qt + α · (r + γk · qmax − qt)∧
∧QDo([nondet(δ1, . . . , δn); δ], φ,A, [A; δ], s, 0, 0, π′)
∧ chooseSmdpActionNdet({A1, . . . , An}, φ, [nondet(δ1, . . . , δn); δ], 1, π′′)
∧ π = [setQ(δ∗, φ∗, A∗, qt+1); senseRnd;

if rnd > ε then π′′ else π′]

QDo(δ∗, φ∗, A∗, [pick(v, η); δ], s, k, r, π)
def.
=∨

φ∈P([pick(v,η);δ])

φ[s] ∧ ∃qt. q(φ∗, δ∗, A∗, qt, s)

∧ ∃A, qmax. QMax([pick(v, η); δ], φ,A, qmax, s)

∧ ∃qt+1. qt+1 = qt + α · (r + γk · qmax − qt)∧
∧ ∃δ′. T rans(A, s, δ′, s)
∧QDo([pick(v, η); δ], φ,A, δ′, s, 0, 0, π′)
∧ chooseSmdpActionP ick({A1, . . . , An}, φ, [pick(v, η); δ], 1, s, π′′)
∧ π = [setQ(δ∗, φ∗, A∗, qt+1); senseRnd;

if rnd > ε then π′′ else π′]

The above extension of the interpreter implements ε-greedy action selection. In a
similar fashion other action selection methods can be realized (e.g. softmax action
selection; cf. [25]).

9 Evaluation

We implemented the QGolog-interpreter using the BDD representation for parti-
tions and a small simulation environment to actually run programs and simulate the
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interaction with the environment in ECLiPSe prolog. The purpose of this evalua-
tion is twofold. One, we want to examine whether the abstraction mechanisms in
QGolog facilitates learning in domains with large state spaces. Two, we intend to
explore the practicability of the BDD-based representation and manipulation of first-
order formulas. Therefor, we performed experiments in two different domains, the
blocksworld and the logistics domain. In the latter boxes can be transported from
one city to another by loading them on trucks, driving the trucks to the other city,
and unloading the boxes there.

9.1 Blocksworld

For the experiments we extended the formalization of the blocksworld scenario. In
particular we added the stochastic action movest(x, y). Its outcomes are described
by the (deterministic) action move(x, y) and by a noop-action. That is, moving one
block on top of another block might fail and in that case nothing changes. Formally:

choice(movest(x, y), a) ≡ a = move(x, y) ∨ a = noop.

The probability distribution over the outcome actions depends on whether the box to
be moved is heavy or not:

Pprmovest(x,y) = { heavy(x),¬heavy(x) }

In the (simulated) execution the action movest(x, y) failed with a probability of 0.1
if the box x is not heavy and with a probability of 0.9 if the box x is heavy.

The QGolog-program we ran is the following:

learn(pick(x,pick(y,movest(x, y))))

Although, quite simple it allows to assess the effectiveness of the state space as well
as the action space abstraction mechanisms. In a domain instance with n blocks
a flat Q-learner would need to consider up to n2 (ground) actions and a state space
exponential in n. The partition induced by the reward function differentiates situation
in which there exists a green block on top of a red block from those where there is no
green block on top of a red block:

Prew = { ∃x, y. green(x) ∧ red(y) ∧ on(x, y),
¬∃x, y. green(x) ∧ red(y) ∧ on(x, y) }

The agent received a reward of 5 if there is a green block on top of red block and -1
otherwise.

Our (non-optimized) implementation generated a BDD representing
P(pick(x,pick(y,movest(x, y)))) which consists of 505 decision and 504 terminal
nodes. That is, by exploiting common sub-structures in the formulas (cf. Sect. 4.1) we
could effectively reduce the number of formulas in P(pick(x,pick(y,movest(x, y))))
from its theoretical maximum of 232 to 504. By optimizing the orderings of the nodes
in the BDDs this number can be reduced even further.

During learning we ran the program given above in randomly generated domain
instances—for every iteration we used a previously unseen instance. In every instance
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Fig. 3: The result of executing the program learn(pick(x,pick(y,movest(x, y))))
again and again, every time in a previously unseen instance of the domain. The
results are average over 10 runs.

there are 5 to 50 blocks arbitrarily arranged on the table. A block can either be red,
green, or blue. It has to be noted that not in each of the generated instances a
situation in which there is a green on top of a red block can be reached by executing
the program. In this case the best choice for the agent is to select any two blocks
that can be moved on top of each other. The learning rate as well as the exploration
probability were set to 0.1; the discount factor was set to 0.9. These values were kept
constant throughout the experiments.

In Fig. 3 the development of the Q-value for the distinguished initial state
(φstart, δstart) and the start action Astart is shown. The results are averaged over
10 runs. One can see that after only 10 iterations on average the agent starts to make
the “right” decisions. A flat Q-learner would be absolutely chanceless here, since in
every iteration a new instance of the domain is presented to the agent.

9.2 Logistics Domain

The objective in our version of the logistics domain was to have a box in city c1, i.e.,
in situation where there is a box in c1 a reward of 5 is obtained; else the reward is -1.
We encoded this in the program which allows the agent to choose between loading a
box on a truck, driving that truck to c1, and unloading the box there or to skip the
first step and directly drive a truck to c1 or to just unload a box from a truck:

learn(nondet(pick(b,pick(t, [load(b, t), drive(t, c1), unload(b, t)])),
pick(b,pick(t, [drive(t, c1), unload(b, t)])),
pick(b,pick(t, unload(b, t)))))

A box can be loaded on a truck iff both are in the same city:

Poss(load(b, t), s) ≡ ∃c. boxIn(b, c, s) ∧ truckIn(t, c, s)

A box can be unloaded from a truck iff the box is on the truck:

Poss(unload(b, t), s) ≡ loaded(b, t, s)
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Fig. 4. Learning in the logistics domain. The results are averaged over 10 runs.

And lastly, a truck can always be driven to any city:

Poss(drive(t, c), s) ≡ true
The successor-state axioms for the fluents boxIn, truckIn, and loaded are given below:

boxIn(b, c, do(a, s)) ≡ ∃t1. truckIn(t1, c, s) ∧ a = unload(b, t1)
∨ boxIn(b, c, s) ∧ ¬∃t2. a = load(b, t2)

truckIn(t, c, do(a, s)) ≡ a = drive(t, c)
∨ truckIn(t, c) ∧ ¬∃c. a = drive(t, c)

loaded(b, t, do(a, s)) ≡ a = load(b, t)
∨ loaded(b, t, s) ∧ a 6= unload(b, t)

The BDD induced by the program above as it was computed by our implementation
contains 2568 decision nodes and 1904 terminal nodes. The values for the learning
rate, the exploration probability, and the discount factor were as above. Again, we
used randomly generated instances during learning. These contained between 3 and
10 cities, between 2 and 8 trucks, and between 3 and 12 boxes that could either be
in one of the cities or on one of the trucks. The results are shown in Fig. 4. Again,
after only a couple of iterations the agent makes repeatedly “good” decisions.

Although the programs presented above and the corresponding induced BDDs are of
moderate size, only slight extensions or variations of the program or the formalization
of the domain can lead to unmanageable large BDDs. For instance, for a variation
of the program given above, where the destination is not given but has to be chosen
by the agent, we were not able to compute the induced BDD (though it should be
possible if the ordering of the nodes of the BDDs is optimized).

learn(nondet(pick(b,pick(t, [load(b, t),pick(c, drive(t, c)), unload(b, t)])),
pick(b,pick(t, [pick(c, drive(t, c)), unload(b, t)])),
pick(b,pick(t, unload(b, t)))))
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The problem is the increased number of nested nondeterministic choices of arguments.
Each leads to an exponential growth of the induced partition/BDD (not necessarily
in the size of the partition/BDD induced by the remaining program, but still expo-
nential).

10 Related Work

The work presented here, basically combines two different ideas that have been taken
up by various approaches to handle the problem of using reinforcement learning for
problems that have quite large state spaces. In particular, these ideas are to restrict
the space of the policies that is considered when searching for the optimal policy
and the abstraction of the state (and action-) space. The intuition behind the latter
concept is to generalize a value function over groups of ground states that are similar
to each other w.r.t. the value function.

The approach presented in [18] follows the idea of constraining policies. It describes
the HAM language that allows to define machines by a set of states and transitions
between the states. A state might either be an action state, a call state, a choice
state, or a stop state. For a model M and a HAM H the “induced MDP H ◦M” is
defined to have a set of states consisting of the cross-product of states in H and M .
For every state in H ◦M where the machine component is an action state the model
and machine transitions are combined; for every state in H ◦M where the machine
component is a choice state actions that only change the machine component of the
state are introduced. It is shown that from an optimal policy for H ◦M an optimal
policy for H can be derived. In a further step H ◦M is reduced to the states where
the machine is in a choice state. This produces an equivalent SMDP and the optimal
policy for this SMDP will be the same as for H ◦ M . Note, that these ideas are
quite similar to what we did: the state in our decision process consist of tuples 〈φ, δ〉
where the remaining program δ is comparable to the machine state and the state
of the environment is described by φ. Also, we reduced the set of states to choice
states. Compared to Golog the HAM-language is not quite as expressive (although
it was extended in [1] by means of parametrization, aborts, interrupts, and memory
variables).

The ALisp programming language [2] allows to constrain the policies as well as it
allows for state abstraction. Also, it includes the approach to learn the policy for
a procedure independent of its calling-context as it was presented in [8]. The state
abstraction, though, requires the user to specify the features that are relevant w.r.t.
the value function.

DTGolog presented in [5] constitutes another approach that uses the Golog pro-
gramming language to restrict the policies for the MDP underlying the program. The
decision-theoretic approach that is implemented in the DTGolog interpreter, though,
requires the complete model of the environment including the probability distributions
over the outcomes of the stochastic actions. The solution computed by the interpreter
is specific to the current situation, i.e., no state space abstraction is performed.

The approaches mentioned above use programs to limit search-space for the optimal
policy of an MDP. There exists intentions to explore the relationship between the BDI
architecture and (PO)MDPs [23, 21]. Roughly, the idea is to translate policies for
MDPs into plans the BDI framework can handle and vice-versa. The intuition behind
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this is that the BDI model scales better than MDPs for certain problems. In these
cases it is advantageous to determine a BDI plan, first, and then translate that into
a policy for the MDP.

State-space abstraction, that is, aggregating ground states and treating them all
alike during the search for an optimal (or a close to optimal) policy, is an appropri-
ate way to reduce the computational complexity. An abstraction mechanism for a
state-space can either be safe or approximative. The former means that any optimal
policy computed for the abstracted state-space corresponds to an optimal policy in
the original state-space. For instance, in [8] certain criteria are mentioned that al-
low for a safe state abstraction in the MAXQ-framework. Approximative abstraction
mechanisms on the other hand result from a simplification of the original problem.
These approaches are not guaranteed to find optimal solutions, some even cannot
ensure that the solution found incorporating abstraction is applicable in the original
problem. Numerous approximative abstraction mechanisms are described in the lit-
erature; two examples are [7] and [3]. A further characteristic of such an abstraction
mechanism is the level of abstraction. Whereas the approaches mentioned above all
work with propositional descriptions of the state, we present some works that employ
first-order logic (or some restricted subset of it) for the description of the states.

The symbolic dynamic programming (SDP) approach presented in [4] also relies on
the situation calculus to describe the dynamics of the model. The result of applying
SDP is a first-order definition of the state-value function. Particularly, this state-value
function is computed by a first-order variant of the value iteration algorithm.

In [22] it is shown how to overcome the representational complexity that arises from
dealing with the expressiveness of first-order logic and that made a practical applica-
tion of SDP method infeasible. A representation of the (first-order) value function by
means of a first-order algebraic decision diagram (FOADD) is proposed. This inspired
the use of BDDs in our approach. FOADDs allow to detect context-specific indepen-
dence (CSI) and thereby simplify the representation by removing decision nodes that
represent conditions that have no influence on the represented value function under
their specific context.

A symbolic dynamic programming approach for the Fluent Calculus is presented
in [12]. In [13] this approach is refined by introducing a normalization algorithm that
discovers and prunes redundant states which might result from performing regression.
Neglecting such redundant states avoids unnecessary computations in the further steps
of the value iteration algorithm.

Other approaches to deal with the computational complexity of first-order logic is
to avoid it by using a less expressive language to describe the abstract states. An
example for this is presented in [14]. Instead of using full first-order logic the approach
employs a relational logic that only allows for (implicit) existential quantification.

The work presented in [10] inspired the work presented in this paper. Whereas the
approaches above exploit the logical definition of the actions to induce abstract defi-
nitions of states, in [10] the authors show how such abstract state description can be
derived in the presence of a program that constrains the set possible policies. Specif-
ically, the programs are programs in the language GTGolog which is an extension of
Golog and incorporates game-theoretic optimization theory. Although, the basic idea
of what we presented here is very similar, there are some notable differences:

� We used BDDs to represent the partitions induced by the program and introduced
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operations on BDDs that allow to computed the BDD representing the partition
induced by a program.

� The nondeterministic choice of arguments is not restricted to a choice between a
specified, finite list of ground objects. Instead we allow for an unrestricted version
of the pick(v, η) construct and partition the choice for v by means of first-order
formulas such that these capture the influence of the choice made for v on the
future expected reward.

� Our approach is based on the “reduced” SMDP (cf. [18]). That is, each state
in the state space corresponds to a choice state in the program. Specifically, the
state is not changed with every (primitive) action (as it is done in [10]) but only
at the choice points in the program which is reasonable since the execution of the
program between those choice points is deterministic.

� We integrated Q-learning into the interpreter of our QGolog dialect. This has
the advantage that it allows to reason about the expected rewards for executing
a program in a certain situation. For example, in a high-risk situation the agent
might deliberate about whether it is better to follow the program for which a
policy has been learned or to follow a possibly non-optimal hand-coded program
that has been especially written with safety in mind.

11 Conclusions

The work presented in this paper builds up on the idea presented in [10] to understand
the execution of the program as a process over a state space where the states can be
described as a combination of the world state and the machine state (similar to [18]).
The machine states are identified with the remaining program and the (abstract)
world states are described by means of first-order formulas. These can be derived
given the program and the axiomatization of the primitive actions mentioned by the
program. This allows to derive descriptions of the states which are limited to features
that are of relevance for the further execution of a program w.r.t. the expected reward.
QGolog exploits this kind of abstraction in two ways: first, it generalizes experiences
made in a particular situation to all situations in which first-order formula describing
the abstract state holds. Second, this abstraction extends to actions. When the
program allows the agent to choose an argument, the Q-update not only happens for
the particular choice the agent makes but for all possible choices the satisfy a specific
first-order formula.

On the one hand the abstraction mechanisms allow to obtain quite good policies af-
ter fairly few iterations in cases where non-abstracting approaches would be hopelessly
lost. On the other hand this requires to deal with the full complexity of first-order
logic. This was already pointed out in [4] and to a certain degree this problem could
be alleviated by using suitable data-structures. But for larger problems this is not
sufficient. Here, we see two somewhat related approaches (that might also be com-
bined with each other) which we intend to explore in future work. The first one is a
hierarchical decomposition of the problem in a way similar to the MAXQ framework
[8]. In the context of Golog programs, procedures quite “naturally” define a hierarchi-
cal structure. The goal then is to learn the optimal execution of a procedure’s body
independent of its calling context. The second way to reduce the inherent complexity
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are approximative methods. In [22] an approach for first-order MDPs that approxi-
mates the true value function by a linear combination of basis function has already
been discussed but it is not directly applicable to the case where a program is given.
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decision processes. In ICAPS Workshop on Planning and Scheduling in Uncertain Domains,

2010.

[4] Craig Boutilier, Raymond Reiter, and Bob Price. Symbolic dynamic programming for first-

order MDPs. In Proceedings of the Seventeenth International Joint Conference on Artificial
Intelligence, IJCAI 2001, pages 690–700. Morgan Kaufmann, 2001.

[5] Craig Boutilier, Raymond Reiter, Mikhail Soutchanski, and Sebastian Thrun. Decision-theoretic,

high-level agent programming in the situation calculus. In Proceedings of the Seventeenth Na-
tional Conference on Artificial Intelligence (AAAI) and Twelfth Conference on Innovative Ap-

plications of Artificial Intelligence (IAAI), pages 355–362. AAAI Press, 2000.

[6] Randal E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transac-

tions on Computers, 35(8):677–691, 1986.

[7] Thomas Dean, Rober Givan, and Sonia Leach. Model reduction techniques for computing
approximately optimal solutions for markov decision processes. In Proceedings of the Thirteenth

Conference on Uncertainty in Artificial Intelligence, pages 124–131, 1997.

[8] Thomas G. Dietterich. Hierarchical reinforcement learning with the MAXQ value function

decomposition. Journal of Artificial Intelligence Research, 13:227–303, 2000.

[9] Alexander Ferrein, Christian Fritz, and Gerhard Lakemyer. On-line decision-theoretic golog for

unpredictable domains. In KI 2004: Advances in Artificial Intelligence, 27th Annual German

Conference on AI, volume 3238 of Lecture Notes in Computer Science, pages 322–336. Springer,
2004.

[10] Alberto Finzi and Thomas Lukasiewicz. Adaptive multi-agent programming in GTGolog. In KI

2006: Advances in Artificial Intelligence, 29th Annual German Conference on AI, volume 4314

of Lecture Notes in Computer Science, pages 389–403. Springer, 2007.

[11] Guiseppe De Giacomo, Yves Lespérance, and Hector Levesque. Congolog, a concurrent pro-
gramming language based on the situation calculus. Artificial Intelligence, 121(1–2):109–169,

2000.

[12] Axel Großmann, Steffen Hölldobler, and Olga Skvortsova. Symbolic dynamic programming
within the fluent calculus. In Proceedings of the IASTED International Conference on Artificial

and Computational Intelligence, pages 378–383. ACTA Press, 2002.

[13] Steffen Hölldobler and Olga Skvortsova. A logic-based approach to dynamic programming. In

Proceedings of the Workshop on “Learning and Planning in Markov Processes–Advances and
Challenges” at the Nineteenth National Conference on Artificial Intelligence (AAAI), pages

31–36. AAAI Press, 2004.

[14] Kristian Kersting, Martijn Van Otterlo, and Luc De Raedt. Bellman goes relational. In Machine
Learning, Proceedings of the Twenty-first International Conference (ICML 2004), volume 69 of
ACM International Conference Proceeding Series, pages 465–472. ACM, 2004.

[15] Hector Levesque. A completeness result for reasoning with incomplete knowledge bases. In

Proceedings of the Sixth International Conference on Principles of Knowledge Representation
and Reasoning (KR’98), pages 14–28. Morgan Kaufmann, 1998.



Reinforcement Learning for Golog Programs with First-Order State-Abstraction 37

[16] Hector Levesque, Raymond Reiter, Yves Lesperance, Fangzhen Lin, and Richard Scherl. Golog:
A logic programming language for dynamic domains. The Journal of Logic Programming, 31(1-

3):59–83, 1997.

[17] Fangzhen Lin and Ray Reiter. How to progress a database. Artificial Intelligence, 92(1-2):131–

167, 1997.

[18] Ronald Parr and Stuart J. Russell. Reinforcement learning with hierarchies of machines. In

Advances in Neural Information Processing Systems 10 (NIPS 1997), pages 1043–1049. MIT

Press, 1998.

[19] Ray Reiter. The frame problem in situation the calculus: a simple solution (sometimes) and
a completeness result for goal regression. Artificial intelligence and mathematical theory of

computation: papers in honor of John McCarthy, pages 359–380, 1991.

[20] Raymond Reiter. Knowledge in Action. MIT Press, 2001.

[21] Gavin Rens, Alexander Ferrein, and Etienne van der Poel. Bdi agent architecture for a POMDP
planner. In Proccedings of the 9th International Symposium on Logical Formalization of Com-

monsense Reasoning: Commonsense 2009, 2009.

[22] Scott Sanner and Craig Boutilier. Practical solution techniques for first-order MDPs. Artificial

Intelligence, 173(5-6):748–788, 2009.

[23] Gerardo I. Simari and Simon Parsons. On the relationship between mdps and the bdi architec-

ture. In Proceedings of the Fifth International Joint Conference on Autonomous Agents and

Multiagent Systems, pages 1041–1048. ACM, 2006.

[24] Mikhail Soutchanski. An on-line decision-theoretic golog interpreter. In Proceedings of the
Seventeenth International Joint Conference on Artificial Intelligence, IJCAI 2001, pages 19–

24. Morgan Kaufmann, 2001.

[25] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT Press,
1998.

[26] Christopher J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, Cambridge Uni-

versity, 1989.

Received October 7, 2011


