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Abstract In this paper, we present a thorough integration of qualitative repre-
sentations and reasoning for positional information for domestic service robotics
domains into our high-level robot control. In domestic settings for service robots
like in the RoboCup@Home competitions, complex tasks such as “get the cup
from the kitchen and bring it to the living room” or “find me this and that object
in the apartment” have to be accomplished. At these competitions the robots may
only be instructed by natural language. As humans use qualitative concepts such
as “near” or “far”, the robot needs to cope with them, too. For our domestic robot,
we use the robot programming and plan language Readylog, our variant of Golog.
In previous work we extended the action language Golog, which was developed
for the high-level control of agents and robots, with fuzzy set-based qualitative
concepts. We now extend our framework to positional fuzzy fluents with an asso-
ciated positional context called frames. With that and our underlying reasoning
mechanism we can transform qualitative positional information from one context
to another to account for changes in context such as the point of view or the
scale. We demonstrate how qualitative positional fluents based on a fuzzy set se-
mantics can be deployed in domestic domains and showcase how reasoning with
these qualitative notions can seamlessly be applied to a fetch-and-carry task in a
RoboCup@Home scenario.
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1 Introduction

Suppose you want to instruct your domestic robot with the instruction “Get me my
cup from the kitchen table”. Besides natural language processing and sophisticated
robot control for navigation, localization, object recognition etc., the robot needs
to be equipped with a flexible high-level control entity that can figure out from
the instruction that the robot needs to go to the kitchen, pick up “my cup” (if
there are more cups on the table, which is the right one?), grab it, and bring
it to the human instructor. A field dealing with these kinds of problems is the
field of cognitive robotics. Classical applications here are delivery tasks, where the
robot should deliver a letter or fetch a cup of coffee. The field of cognitive robotics
is studying knowledge representation and reasoning problems which are faced by
autonomous robots. The central purpose of studying such problems is to design the
high-level control for autonomous systems. The high-level control enables the robot
to act goal-directed and purposefully towards achieving its mission goals. That
means that the robot is not executing a previously programmed fixed sequence of
commands, but should figure out how to achieve a certain goal in an intelligent
way by itself. See, for instance, [29] for an excellent overview of the field.

In these domains, it becomes obvious that solving such tasks deploying rea-
soning and knowledge representation is superior to, say, reactive approaches in
terms of flexibility and expressiveness. An even more advanced application do-
main is RoboCup@Home [57,58]. As a distinguished league under the roof of the
RoboCup federation the robots have to fulfil complex tasks such as “Lost&Found”,
“Fetch&Carry”, or “WhoIsWho” in a domestic environment. In the first tasks the
robot has to remember and to detect objects, which are hidden in an apartment, or
has to fetch a cup of coffee from, say, the kitchen and bring it to the sitting room,
while in the latter the robot needs to find persons and recognize their faces. The
outstanding feature of these applications is that they require integrated solutions
for a number of sub-tasks such as safe navigation, localization, object recognition,
and high-level control (e.g. reasoning). A particular complication is that the robot
may only be instructed by means of natural interaction, e.g. speech or gestures.
Human-robot interaction is hence largely based on natural language. For example,
in the Fetch&Carry task it is allowed to help the robot with hints like “the teddy
is near the TV set” or “the cup is on the kitchen table”.

The domestic real world features two important aspects: space and humans.
What is more, humans tend to use qualitative concepts and notions like near
or far to refer to positions in Euclidean space. The robot needs to be able to
interpret these concepts to cope with them. When reasoning techniques are de-
ployed to come up with a problem solution for these domestic tasks, also such
mechanisms need to be able to cope with those qualitative concepts. But even as
logic-based reasoning approaches make inherently use of qualitative concepts, the
rest of the complex robot architecture does not. Hence, one needs to bridge the
gap between the qualitative high-level control and the quantitative robot control
system. Another property when dealing with such qualitative notions is that they
are dependent on the context in which they were expressed. For a human, a dis-
tance“far” w.r.t. the living room has a smaller scale than “far” with respect to the
garden. This means that a robot dealing with these concepts also needs to know
the context in which a qualitative instruction is given.
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In this paper, we present a unified reasoning framework for qualitative posi-
tional information. We present models for qualitative notions of space, i.e. qual-
itative distance and orientation based on fuzzy sets, and integrate them into the
situation calculus [33], a framework for reasoning about actions and change. We
show how reasoning can be done with these qualitative notions in the situation
calculus. Further, we formalize the concept of positional contexts, so-called frames.
Each positional information needs to be related to a particular frame. We present
a unified way to transform qualitative positional information into different frames.
Finally, we present a high-level controller for RoboCup@Home’s fetch-and-carry
task in Readylog [17]. Readylog is a robot programming and plan language
whose formal semantics is based on the situation calculus and which allows for
reasoning and programming a robot under real-time constraints. It was deployed
for cognitive robotics tasks ranging from intelligent soccer to domestic service
robots (e.g. [17,28,48]). With this high-level controller, we show how the theoret-
ical concepts of qualitative positional information and frames can be seamlessly
integrated into and deployed for a robot controller for domestic service robots.
The contributions are in detail:

– We represent qualitative categories as fuzzy sets and formalize them in the
situation calculus. The appealing feature is that fuzzy sets allow for categories
to overlap, that is, it can be represented that a quantitative value belongs to
several qualitative categories at the same time.

– We introduce so-called fuzzy fluents, extensions of functional fluents, that can
take qualitative categories as function values. This allows for representing that
dist(A,B) = far, i.e. that A is far away from B. We further formalize mem-
bership to a qualitative category and a defuzzifier function that allows to re-
quantify a qualitative category.

– We introduce positional fuzzy fluents and the notion of frames which allow
to relate positional fuzzy fluents to a positional context. With that we can
transform positional information from one context into another and we can,
for example, account for that “far” in the living room is related to a larger
scale than “far” in the bathroom (assuming the bathroom is smaller).

– Finally, we present a Readylog controller for the fetch-and-carry task and
show in an extended example how the qualitative concepts are used to solve
this service robotics task.

The rest of the paper is organized as follows. In Section 2, we discuss related
work to our approach mainly focusing on qualitative-spatial representations and
qualitative-spatial reasoning systems, work from the field of fuzzy logic related
to qualitative representations and their applications in robotics. Section 3 intro-
duces the situation calculus, our high-level robot programming and plan language
Readylog, and gives a brief introduction to fuzzy sets. In Section 4 we introduce
our qualitative reasoning framework, formalizing fuzzy fluents, qualitative dis-
tance and orientation. We show how reasoning with qualitative categories works
by giving a simple example from a one-dimensional robot world. Section 5 extends
our framework with positional fuzzy fluents and the notion of the positional con-
text (frames). We axiomatize the domestic robot domain in the situation calculus
and present a Readylog controller for the fetch-and-carry task as known from
RoboCup@Home competitions. Although we focus on the theoretical foundations
for qualitative spatial representations and reasoning in the situation calculus in
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this paper, the controller indicates how this work can be turned into a real-world
application. We conclude with a discussion and an outlook to future work in Sec-
tion 6.

2 Related Work

In this section we review related work on both, qualitative spatial representations
and reasoning as well as representations based on fuzzy logic. Furthermore, we
briefly discuss combinations of the above and their application to robotics.

2.1 Qualitative Spatial Representation and Reasoning

Cohn and Hazarika give an overview of major qualitative spatial representation
and reasoning techniques in [8]. They survey the main aspects of qualitative repre-
sentations and they also consider methods for qualitative reasoning. Their survey
covers ontological aspects and topological approaches as well as methods on dis-
tance, orientation, and shape.

An overview of constraint-based techniques for qualitative spatial reasoning
along with a discussion of their computational properties is given in [45]. One of
the most well-known works on qualitative spatial reasoning is the region connec-
tion calculus (RCC) introduced by Randell, Cui, and Cohn in [43]. The funda-
mental approach bases on extended spatial entities, that is regions, and the rela-
tions, namely connections, between them. Although the RCC provides a powerful
method to describe and reason about spatial structures, especially for topological
structures, we opt against using this calculus or any of its derivatives for several
reasons. Firstly, we do not intend to use regions for representing spatial objects in
our target domain, at least not yet. Secondly, we think that we do not have to rely
on the generality provided by the RCC. From our point of view, the description of
spatial settings needed for our specific application in domestic environments can
be achieved more easily. We are looking for a mechanism that allows for qualita-
tive representation of positional information rather than topological relations in
the first place.

A well-known approach to qualitative representations of positional information
was proposed by Freksa and Zimmermann in [22]. It bases on directional orien-
tation information. The approach is motivated by considerations on how spatial
information is available to humans and to animals: directly through their per-
ception. Thus, cognitive considerations about the knowledge acquisition process
build the basis here. Qualitative orientation information in two-dimensional space
is given by the relation between a vector from start point A to an end point B and
a point C. The vector represents the orientation of a possible movement. Different
positions of the point C can be described in relation to a line through A and B,
and further in relation to additional lines through A and B orthogonal to the line
from A to B. Reasoning with these relations is possible through four operations.
The approach presented in [21, 22] is quite intuitive, not only because it is based
on human cognition. Any relation is based on a vector between two points which,
however, cannot be taken for granted in the context of our work, since spatial set-
tings in a domestic environment do not always involve a movement, but they may
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also describe static situations. Even if we consider the intrinsic orientation of an
object to construct such a vector, not all the relations are meaningful if the vector
does not have a length. Further, we aim for unified representation for distance and
orientation. This is also why we do not consider OPRAm [36] or variants thereof
despite the favourable property of adjustable granularity.

Another approach to qualitative orientation relation was introduced by Her-
nandez [25]. Instead of using geometric models which are very precise, Hernandez
establishes a cognitive model of space. He argues that cognitive spatial concepts
are qualitative in nature and preciseness is normally not needed in cognitive mod-
els. Although the representation might correspond to many ‘real’ situations, it
avoids falsifying effects of an exact geometric approach which are likely due to the
common limited acuity of perception. Hernandez states that the direct modelling
of qualitative statements allows for a more efficient way to handle partial and un-
certain spatial information. The orientation relation is meant to represent where
objects are placed relatively to each other. The framework proposes to model
qualitative orientation with angular intervals. The number of intervals, that is,
the number of distinctions is determined by a level of granularity. An orientation
relation states where a primary object is located in relation to a reference object.
Further, there is a reference frame which determines the direction in which the
primary object is located in relation to the reference object. Hernandez presents
methods for changing the reference frame as well as methods for composing rela-
tions.

A basic method for qualitative distances was discussed in 1995 by Hernandez,
Clementini, and Felici in [26]. Three elements are needed to establish a distance
relation, namely a primary object, a reference object, and a frame of reference.
The distance dist(A,B) between the reference object A and the primary object B
is expressed as one out of a set of distance relations. These relations are formed
by partitioning the plane into regions. These partitions represent the distinctions
being made. The context in which the distinctions are made is represented by
the frame of reference. It accounts for contextual information such as type and
scale of the distance relations as well as for the distance system, which contains
the distance relations and a set of structure relations describing how the distance
relations relate to each other. Among their representation of distances through
geometric intervals, they describe basic inference mechanisms such as composition
and switching between different frames of reference.

Two years later, in 1997, Clementini, Felici, and Hernandez presented a uni-
fied framework for qualitative representation of positional information in two-
dimensional space in [7]. In order to represent positional information they combine
the distance relation and the orientation relation mentioned above. Again, they
also introduce basic inference and reasoning mechanisms. Our representation of
positional information is largely based on the approach presented in [7] and we
detail it in Section 4.2.

A combination of an approach to qualitative spatial reasoning with reasoning
about actions and change, namely the Situation Calculus, is approached in [14].
While the general idea of integrating the spatial reasoning with the reasoning
about actions and change is very appealing and we support the use of the situa-
tion calculus as an adequate mechanism for reasoning in agent control, we argue
that the underlying concept of spatial neighbourhood based on the dipole calculus
does not quite match our needs. There have been further approaches to integrate
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qualitative spatial reasoning techniques with agent control in the Situation Cal-
culus such as [42] and [13]. Nevertheless, we think that our integration of fuzzy
set-based qualitative positional information in the situation calculus is worthwhile
pursuing, especially for the domestic service robotics scenario targeted here.

An early approach that tried to combine metric and topological representations
using fuzzy notions was presented in [34]. Similarly to our basic idea of retaining
the connection between qualitative concepts and metric representations, they use
associated frames of reference and ranges for positions. These are first used to build
a fuzzy map on which later route planning can be done. The fuzzy notions used,
according to the authors, may or may not be related to fuzzy logic. We, instead,
try to achieve a formal integration of the fuzzy set semantics as the basis of our
integration of qualitative spatial information. Furthermore, we are more interested
in representations of general positional information than on route planning.

The concept of frames that we introduce in Section 5.2 to capture the context
of a positional reference is not new. It has been found to develop in children
already [41]. In schema theory [1] the similar concept of a schema is used to
structure modelling of functional units such as perception or motion. It has even
been attempted to replicate the construction of meaning by means of learning
structure, e.g. from grammatical constructions [10]. In this article, we rely on
frames to capture the contextual information needed to be able to relate positional
information given with different contexts to one another. Therefore we restrict
ourselves to frames in a positional sense and we try to keep it as simple as possible.

2.2 Fuzzy Logic

The underlying concept in fuzzy logic is that of linguistic variables as introduced
by Zadeh in [56]. These linguistic terms can be used for representation as well
as for control. According to [11], “fuzzy sets and possibility theory offer a unified
framework for taking into account the gradual or flexible nature of many predi-
cates, requirements, and the representation of incomplete information”. It is suited
to represent human-like taxonomies in pattern classification, or lexical imprecision
of natural language.

In an earlier work, Sugeno and Yasukawa [52] discussed the adequacy of fuzzy
logic-based approaches for qualitative modelling. In their work they describe the
process of generating a qualitative model based on fuzzy representations from a set
of sample input-output data describing the system behaviour. Based on heuristics
they identify the input data which influence the output. Then, they approximate
the number of fuzzy rules needed to describe the output data. The result is a fuzzy
controller, i.e. a set of fuzzy rules, which describes the mapping from the given
input values to the output values. Later, Tikk et al. [53] improved the original
idea and proposed several algorithms for building trapezoid approximations of
membership functions and for rule base reduction. Here, fuzzy logic is used for
approximating a given system in a qualitative way.

In [5], Bolloju uses qualitative variables based on fuzzy sets to facilitate decision
making. While the approach of Bolloju is similar to ours, his approach is very
limited in the way decisions can be made. Similar lines as to use fuzzy qualitative
variables are followed in [12,39]. In our approach however, we can make use of the
full expressiveness of the situation calculus for taking decisions. A closely related
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approach is [54]. They propose a fuzzy test-score semantics for soft constraints.
They propose a function fholds which evaluates the result of combinations of soft
constraints in allusion to the holds predicate known from action logics. Although
they state to use the situation calculus, besides the function fholds they do not
give a full axiomatization.

As an example for the large body of work dealing with fuzzy control and robots,
we like to mention [32, 47]. Soffiotti [47] shows how fuzzy controllers can be used
to design robust behaviour-producing modules, and even how high-level reasoning
and low-level execution can be integrated on a mobile robot. He attributes the
success of fuzzy logic in control to “its ability to represent both the symbolical and
the numerical aspects of reasoning. Fuzzy logic can be embedded in a full logical
formalism, endowed with a symbolic reasoning mechanism; but it is also capable
of representing and processing numerical data.” Liu et al. [32] describe a robot
kinematics in a qualitative fashion making use of fuzzy descriptions. They use fuzzy
qualitative trigonometric functions to describe the movements of a PUMA robot
manipulator. This fuzzy qualitative description is, according to the authors, very
helpful for calibration procedures in terms of measuring accuracy or repeatability.
They further stress that the fuzzy qualitative predicates provide the connection
between the numerical data and interval symbols, which are then used for building
up the behaviour vocabulary from which in turn the motion control of the robot
can be derived. Many other successful examples for fuzzy control applications are
given in [27]. Good overviews of the fields are also given in [11,35,40,55].

2.3 Fuzzy Approaches to Spatial Representations and Applications in Robotics

Schockaert et al. [51] approach a generalization of the region connection calcu-
lus (RCC) to allow for representations and reasoning in terms of fuzzy rela-
tions between vague regions using fuzzy set theory. Similarly, there have been
approaches [2] to integrate the RCC into the situation calculus. Although the
same reasons as given earlier hold for why we do not use the RCC, both these
ideas are appealing and might be examined in future work.

Bloch and Saffiotti make use of fuzzy set theory-based representations for robot
maps in [4]. They state that an application of their approach to self-localization
and reasoning seems possible. Still, they mainly cover directional information only
and the accuracy of the localization is pretty coarse yet. In [3], Bloch investigates
the use of a fuzzy set-based framework for spatial reasoning with a focus on the use
in image understanding, structure recognition, and computer vision. The author
claims to be able to derive useful representations and a reasoning mechanism by
making use of connections to mathematical morphology and formal logics. Inter-
estingly, the approach presented allows for quantitative, semi-qualitative, fuzzy,
and symbolic representations. We aim to retain the above flexibility in a slightly
different way, though, keeping the connection of our qualitative spatial representa-
tions to Euclidean space and casting reasoning into classic geometric operations.

In [37], Müller et al. present an application of qualitative spatial representa-
tions to robot navigation. They consider the following scenario: In a hospital, a
patient should visit a certain room for a medical examination. Since the patient
is handicapped, a wheelchair is used to get to the examination room. Normally,
the patient would be guided by a nurse, but the hospital is equipped with intelli-
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gent power wheelchairs due to time constraints. The nurse is able to instruct the
wheelchair where to go so that the patient can automatically be transported to
the examination room. To extract the qualitative notions, Müller et al. use meth-
ods presented in [38] which mainly base on the approach by Clementini et al. [7]
that was already mentioned. They generate qualitative motion vectors by using
qualitative distance and orientation relations. Then, these qualitative vectors are
generalized to simplify the motion track. By this method they stress on the coarse
form and only regard the major directional changes and the overall shape of the
course of motion. For a detailed account on the algorithms applied we refer to [38].

The usefulness of fuzzy sets to make use of qualitative fluents in the situation
calculus was already shown in [18]. We also defined fuzzy controllers in Golog based
on the fuzzy set semantics in [19]. In this paper we revisit the use of fuzzy sets for
building qualitative representations, now with a special emphasis on qualitative
spatial information, in particular in domestic environments.

3 Theoretical Background

3.1 The Situation Calculus

The situation calculus is a second order language with equality which allows for
reasoning about actions and their effects. The world evolves from an initial situa-
tion due to primitive actions. Possible world histories are represented by sequences
of actions. The situation calculus distinguishes three different sorts: actions, situ-
ations, and domain dependent objects.

A special binary function symbol do : action × situation → situation exists,
with do(a, s) denoting the situation which arises after performing action a in sit-
uation s. The constant S0 denotes the initial situation, i.e. the situation where no
actions have yet occurred. We abbreviate the expression do(an, · · · do(a1, S0) · · · )
with do([a1, . . . , an], S0).

The state the world is in is characterized by functions and relations with a
situation as their last argument. They are called functional and relational fluents,
respectively. As an example consider the position of a robot operating in a domestic
environment. One aspect of the world state is the robot’s location robotLoc(s). Sup-
pose the robot is in the kitchen in the initial situation S0. It holds robotLoc(S0) =
kitchen. The robot now performs the action travel(kitchen, parlour). The position
of the robot therefore needs to be updated to “parlour”: robotLoc(do(travel(kitchen,
parlour), S0)) = parlour .

The third sort of the situation calculus is the sort action. Actions are character-
ized by unique names: for distinct action names a and b it holds that a(x) 6= b(x)
and a(x) = a(y) ⊃ x = y. For each action one has to specify a precondition axiom
stating under which conditions it is possible to perform the respective action and
effect axioms formulating how the action changes the world in terms of the spec-
ified fluents. An action precondition axiom has the form Poss(a(x), s) ≡ Φ(x, s)
where the binary predicate Poss : action × situation denotes when an action can
be executed, and x stands for the arguments of action a. For our travel action, the
precondition axiom may be Poss(travel(x, y), s) ≡ robotLoc(s) = x. After having
specified when it is physically possible to perform an action, it remains to state
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how the respective action changes the world. One has to specify negative and pos-
itive effects in terms of the relational fluent F , i.e. ϕ−F (x, s) ⊃ ¬F (x, do(a, s)) and
ϕ+
F (x, s) ⊃ F (x, do(a, s)), respectively. The effect axiom for a functional fluents f

is ϕf (x, y, a, s) ⊃ f(x, do(a, s)) = y. However, describing the positive and negative
effect says nothing about those effects which do not change the fluent. The prob-
lem of describing the non-effects of an action is referred to as the frame problem.
The number of frame axioms is very large. For relational fluents there exist in
the order of 2 · A ·F frame axioms, where A is the number of actions, and F the
number of relational fluents. McCarthy & Hayes [33] were the first to mention this
problem.

A solution to the problem was proposed in [44] with so-called successor state
axioms. The idea behind these axioms is that, if the truth value of F changes
from false to true from situation s to situation do(a, s), then ϕ+

F (x, a, s) must have
been true. Similarly, for the second axiom. Reiter shows that under consistency
assumptions for fluents together with the explanation closure axioms, the normal
form axioms for fluent F are logically equivalent to

F (x, do(a, s)) ≡ ϕ+
F (x, a, s) ∨ F (x, a, s) ∧ ¬ϕ−F (x, a, s). (1)

The above formula is called successor state axiom for the relational fluent F . The
successor state axiom for the functional fluent f has the form [44]:

f(x, do(a, s)) = y ≡
ϕf (x, y, s) ∨ f(x, s) = y ∧ ¬∃y′.ϕf (x, y′, a, s) (2)

The background theory must entail the consistency properties

¬∃x, a, s.ϕ+
F (x, a, s) ∧ ϕ−F (x, a, s) (3)

¬∃x, y, y′, a, s.ϕf (x, y, a, s) ∧ ϕf (x, y′, a, s) ∧ y 6= y′. (4)

The number of F successor state axioms together with A action precondition
axioms plus the unique names axioms is far less than the 2 · F ·A explicit frame
axioms that would be needed otherwise.

The background theory, also called basic action theory (BAT), is a set of sen-
tences D consisting of

D = Σ ∪ Dssa ∪ Dap ∪ Duna ∪ DS0
,

where

– Σ is the set of foundational axioms for situations ensuring, for instance, that
no action can be performed before S0. Refer to [44] for details.

– Dssa is a set of successor state axioms for functional and relational fluents,
one for each fluent as given in Eq. 1 for relational fluents, and in Eq. 2 for
functional fluents (together with the consistency property Eqs. 3 and 4).

– Dap is a set of action precondition axioms, one for each action. The set Dap is
the set of precondition axioms of the form Poss(a(x), s) as described above.

– Duna is the set of unique names axioms for all actions.
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– DS0
is a set of first order sentences that are uniform in S0 and describe the

fluent values in the initial situation.1

To address the so-called projection problem, i.e. determining if a sentence holds
for some future situations, a regression mechanism is used in the situation calculus.
Basically, if one wants to prove that a sentence W is entailed by the basic action
theory and W mentions a relational fluent F (t, do(a, σ)) (with F (x, do(a, s)) ≡
ΦF (x, a, s) being F ’s successor state axiom) one determines a logically equivalent
formula W ′ by substituting ΦF (t, α, σ) for F (x, do(a, σ)). This way, the regression
operator R reduces complex situation terms to terms that only mention S0.

The regression theorem [30] states that D |= W iff DS0
∪ Duna |= R[W ], with

W a regressable sentence of Lsitcalc and D a basic action theory. This means
that the evaluation of regressable sentences can be reduced to a theorem proving
task in the initial theory DS0

together with unique names axioms for actions. No
successor state, precondition or foundational axioms are needed for this task.

3.2 The Robot Programming and Plan Language Readylog

Readylog [16, 17] is our variant of Golog [31] and also makes use of Reiter’s
BATs as described above. The aim of designing the language Readylog was to
create a Golog dialect which supports the programming of the high-level con-
trol of agents or robots in dynamic real-time domains such as domestic envi-
ronments or robotic soccer. Readylog borrows ideas from [6, 9, 23, 24, 31] and
features the following constructs (see also Fig. 1): (1) sequence (a; b), (2) non-
deterministic choice between actions (a|b), (3) solve a Markov Decision Process
(MDP) (solve(p, h), p is a Golog program, h is the MDP’s solution horizon), (4)
test actions (?(c)), (5) event-interrupt (waitFor(c)), (6) conditionals (if (c, a1, a2)),
(7) loops (while(c, a1)), (8) condition-bounded execution (withCtrl(c, a1)), (9) con-
current execution of programs (pconc(p1, p2)), (10) probabilistic actions
(prob(valprob, a1, a2)), (11) probabilistic (offline) projection (pproj (c, a1)), and
(12) procedures (proc(name(parameters), body)). The idea of Golog to combine
planning with programming was accounted for in Readylog by integrating decision-
theoretic planning; only partially specified programs which leave certain decisions
open, which then are taken by the controller based on an optimization theory, are
needed.

A nice feature of Golog and Readylog is that its semantics is based on the
situation calculus. That means that both languages have a formal semantics and
properties of programs can be proved formally. We do not want to get in to the
details of the formal semantics here, as only little of it is needed to understand
the examples in Sect. 5. Further, we did not introduce formal concepts of stochas-
tic actions and several other concepts that Readylog makes use of. We refer the
interested reader to [17] for the complete formal definition of the language. Golog
languages come with run-time interpreters usually programmed in Prolog. Also, a
Readylog implementation is available in Prolog. However, we are also working
towards developing non-prolog implementations for Golog [15, 20].

1 Sentences uniform in s are sentences which do not quantify about situations, nor mention
Poss or <. “<” stands for an ordering relation on situations and is needed in the foundational
axioms (see e.g. [44]).
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nil empty program
α primitive action
ϕ? wait/test action
waitFor(τ) event-interrupt
[σ1;σ2] sequence

if ϕ then σ1 else σ2 endif conditional
while ϕ do σ endwhile loop
withCtrl ϕ do σ endwithCtrl guarded execution
σ1 ||σ2 prioritized execution

forever do σ endforever infinite loop
whenever(τ, σ) interrupt triggered by continuous function
withPol(σ1, σ2) prioritized execution until σ2 ends
prob(p, σ1, σ2) probabilistic execution of either σ1 or σ2

interrupt interrupts
pproj(c, σ) probabilistic (off-line) projection
{proc P1(ϑ1)σ1 endproc; · · · ; proc Pn(ϑn)σn endproc};σ0 procedures
solve(h, f, σ) initiate decision-theoretic optimization over σ
σ1 |σ2 nondeterministic (dt) choice of programs
(π x)[σ]/pickBest(x, σ, h) nondeterministic (dt) choice of arguments

Fig. 1 Overview of Readylog constructs

3.3 Fuzzy Sets

A crisp set A over a universe of discourse U can be defined by a characteristic
function µA as µA = 1, if x ∈ A, and µA = 0, otherwise. For two sets A,B ⊂ U ,
the union A ∪ B is defined as µA∪B(x) = 1 if x ∈ A or x ∈ B, and µA∪B(x) = 0
if x /∈ A and x /∈ B. For the intersection A ∩ B it holds: µA∩B = 1 if x ∈ A and
x ∈ B, and µA∩B = 0 if x /∈ A or x /∈ B. The complement Ā is defined such that
µĀ(x) = 1 if x /∈ A; µĀ(x) = 0 if x ∈ A. Crisp set operations enjoy the property
of being commutative, associative, and distributive. Further, De Morgan’s laws as
well as the Law of Contradiction and Excluded Middle hold.

A fuzzy set F with a universe of discourse U , is characterized by a membership
function µF : U → [0, 1]. The membership function provides a measure of the
degree of similarity of an element in U to the fuzzy set. A fuzzy set F in U can
be represented as a set of ordered pairs of a generic element x and its grade of
membership: F = {(x, µF (x))|x ∈ U}. Union, intersection, and complement can
be defined the same way as for crisp sets. Note that unlike for crisp sets, the Law of
Contradiction and the Excluded Middle do not hold, i.e. A∪ Ā 6= U and A∩ Ā 6=
∅. In general, for set intersection several different so-called t-norms have been
proposed, usually written as µR∩S(x) = µR(x) ? µS(x), for set union t-conorms
or s-norms, written as µR∪S(x) = µR(x) ⊕ µS(x) were formulated (see e.g. [11]).
Here, we rely on the min t-norm µA∩B(x) = min[µA(x), µB(x)], the max t-conorm
µA∪B(x) = max[µA(x), µB(x)] and the complement defined as µĀ(x) = 1−µA(x).

To be able to conclude something useful with fuzzy variables, we need infer-
ence rules which define how to reason with variables of this kind. In the following,
we give several examples of the type of inference possible by stating examples
from [55]: (1) Categorical rules like X is small ; (2) Entailment rules like Mary is
very young and very young implies young implies Mary is young ; (3) Conjunc-
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tion/Disjunction rules like the pressure is not very high and/or the pressure is not
very low implies the pressure is not very high and/or not very low ; (4) Composi-
tional rules like X is much larger than Y and Y is large implies X is much larger
◦ large; (5) Negation rules like not(Mary is young) implies Mary is not young ;
(6) Extension principle like X is small implies X2 is 2small with 2small meaning
very small. Another way to see these rules is by interpreting X and Y as deci-
sion variables and A as a soft constraint, allowing for a degree of membership. If
there are only two membership values (true or false), then these constraints can
be regarded as hard constraints (see e.g. [11]).

4 Qualitative Representations with Fuzzy Sets in the Situation
Calculus

In this section we introduce fuzzy sets into the language of the situation calculus
and introduce fuzzy fluents and the concept of membership in Sect. 4.1, extending
our previous work [18]. We define the centre-of-gravity defuzzifier to handle fuzzy
fluents, before we introduce qualitative fuzzy fluents for positional information in
Sect. 4.2. We finish this section with a one-dimensional example displaying the
concept of qualitative distance in Sect. 4.3.

4.1 Fuzzy Fluents

Definition 1 (Reals and Linguistic Terms) We introduce two new sorts to
the situation calculus: real and linguistic. We do not axiomatize reals here, and
assume their standard interpretation together with the usual operations and or-
dering relations. Linguistic terms are a finite set of constant symbols c1, . . . , ck
in the language. They refer to qualitative classes; examples are close or far. We
further require a unique names assumption for these linguistic categories. �

Now, having introduced reals and linguistic terms into the language of the
situation calculus, we can define the degree of membership of a particular value to
a given category. For ease of notation we assume that the domain of a particular
category is from the domain of real numbers. In general, the domain can be defined
arbitrarily.

Definition 2 (Fuzzy Sets) Let c1, . . . , ck be categories of sort linguistic. We
introduce a relation F ⊆ linguistic × real × [0, 1] relating each linguistic term c of
the domain, a real number, and a degree of membership in the category c as

∀c, u, µu.F(c, u, µu) ≡
(c = c1 ⊃ u = uc1,0 ∧ µu = µc1,0 ∨ · · · ∨ u = uc1,m1 ∧ µu = µc1,m1) ∨ . . . ∨
(c = ck ⊃ u = uck,0 ∧ µu = µck,0 ∨ · · · ∨ u = uck,mk ∧ µu = µck,mk),

where all uci,j and µci,j are constants of sort real and µci,j ∈ [0, 1] respec-
tively, i.e. ∀c, u, µu.F(c, u, µu) ⊃ 0 ≤ µu ≤ 1. To ensure that, for each cate-
gory, each pair (u, µu) is unique, we require unique names for linguistic terms:
∀c∃u, µu∀µu′ .F(c, u, µu) ∧ F(c, u, µu′) ⊃ µu = µu′ . We further require one of the
uci,j to equal the centre-of-gravity of the respective category, i.e. uci,j = cog(ci)
(cf. Def. 5). �
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Note that the above definition yields a formalization of discrete fuzzy sets
as described in Sect. 3.3. That means that all value-membership pairs belonging
to a particular linguistic category are enumerated. While we regard a discrete
formalization here, our examples (Sect. 4.3) and the implementation make use
of a continuous formulation of fuzzy sets. Further note that variables occurring
free in the logical sentences are implicitly universally quantified in the following
definitions. An example of fuzzy sets (Sect. 4.3) is deferred until we introduced
fuzzy fluents.

Definition 3 (Fuzzy Fluent) A fuzzy fluent f is a functional fluent restricted
to take only values from sort linguistic or from sort real. We write f(x, s) to refer
to a fuzzy fluent, and f(x, s) to refer to a non-fuzzy fluent. �

To query whether or not a fluent value belongs to a certain category, we in-
troduce, similar to fuzzy control theory, predicates is, is{, is?, and is⊕. These
predicates are true if a fuzzy fluent value belongs to the category in question to a
non-zero degree.

Definition 4 (Membership)

1. To query if a fuzzy fluent belongs to a given category, we define the predicate
is ⊆ real × linguistic as

is(f(t, σ), γ)
.
= ∃u, µu.f(t, σ) = u ∧ F(γ, u, µu) ∧ µu > 0

2. Similarly, we define is{ ⊆ real × linguistic, to know if a fuzzy fluent does not
belong to a certain category

is{(f(t, σ), γ)
.
= ¬∃u, µu.f(t, σ) = u ∧ F(γ, u, µu) ∨
∃u, µu.f(t, σ) = u ∧ F(γ, u, µu) ∧ µu < 1.

A fluent value does not belong to a certain category, if either the value in
question is not defined in terms of a fuzzy set, or the value exists and its
degree of membership is less than 1.

3. For complex queries, for example if a fuzzy fluent value belongs to several
overlapping categories at the same time, we define a predicate is? ⊆ real ×
(linguistic)n for arbitrary n as

is?(f(t, σ), γ0, . . . , γn)
.
= ∃u, µu,0, . . . , µu,n.f(t, σ) = u ∧ F(γ0, u, µu,0)

∧ · · · ∧ F(γn, u, µu,n) ∧ (µu,0 ? · · · ? µu,n > 0).

4. Similarly, for asking whether or not a fuzzy fluent value belongs to one category
or the other, we introduce the predicate is⊕ ⊆ real × (linguistic)n

is⊕(f(t, σ), γ0, . . . , γn)
.
= ∃u, µu,0, . . . , µu,n.f(t, σ) = u ∧ F(γ0, u, µu,0)

∧ · · · ∧ F(γn, u, µu,n) ∧ (µu,0 ⊕ · · · ⊕ µu,n > 0).

�
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Note that the σ’s in the above definition are used as a meta-variable for terms
of sort situation. How the predicate “is” is used to query whether or not a fuzzy
fluent belongs to a qualitative category will be shown in our one-dimensional robot
domain in Sect. 4.3.

First, we need to define a defuzzifier, a function that computes a single numer-
ical value for a given linguistic category. Note that, while we choose the centre-
of-gravity defuzzifier here, our approach is not restricted to this. Instead, any
defuzzifier could be used just as well. Then, we define a defuzzifying function that
selectively applies the defuzzifier to any linguistic term.

Definition 5 (Defuzzifying Qualitative Category Values) Let τ be a term
of Lsitcalc. We define a function defuzz inductively as:

1. if τ is an atomic term
(a) and τ is of sort linguistic, then defuzz (τ) = cog(τ)
(b) otherwise defuzz (τ) = τ

2. if τ is a non-atomic term of the form f(t) with t = t1, . . . , tn,
then defuzz (τ) = f(defuzz (t1), . . . , defuzz (tn))

In defuzz we make use of the function cog, which defines the centre-of-gravity
defuzzifier. It is defined as:

cog(c) = û ≡
∃u0, . . . , uk, µu0 , . . . , µuk .F(c, u0, µu0) ∧ · · · ∧ F(c, uk, µuk) ∧
u0 6= · · · 6= uk ∧ ∀u∗, µ∗.(u∗ 6= u0 ∧ · · · ∧ u∗ 6= uk ∧
µ∗ 6= µu0 ∧ · · · ∧ µ∗ 6= µuk ⊃ ¬F(c, u∗, µ∗)) ∧

û =
k∑

i=0

ui ·µui

/ k∑
i=0

µui

�

A fuzzy fluent’s function value is eventually substituted by its defuzzified value
when applying the defuzzifying function defuzz . This can, for example, be used in
a fluent’s successor state axiom as we show in the example in Section 4.3. Note that
the number k in the definition of the centre-of-gravity defuzzifier above refers to
the number of all value-membership pairs defined in the fuzzy set for the linguistic
categories plus one value for each category itself (Def. 2). Further note that the
number of value-membership pairs is required to be finite. As the above definition
of a defuzzifier is not closed under division in general, note that the definition is
however well-defined. This is because we postulate that the centre-of-gravity for
a qualitative category will be added to the set explicitly. In our implementation,
where we make use of continuous fuzzy sets, this requirement can be dropped, as
the set then is closed under division.

By now, we defined fuzzy fluents as a specialization of functional fluents oper-
ating on reals and linguistic terms, introduced qualitative categories as constants
of sort linguistic, and defined a fuzzy set in our domain axiomatization which al-
lows for defining which values make up a qualitative category to which degree. We
can further query whether or not a fuzzy fluent belongs to a qualitative category.
Moreover, we can ask if a fuzzy fluent belongs to several categories at the same
time, or if it belongs to the complementary category.
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We have now defined everything we need to reason with qualitative predicates
based on fuzzy membership functions. After we introduce qualitative positional
information in the next section we illustrate an application with an example in
Section 4.3.

4.2 Qualitative Positional Information

Based on a representation mechanism for qualitative orientation presented by Her-
nandez in [25] and a basic method for qualitative distances discussed in 1995
in [26] by Hernandez, Clementini, and Felici in their 1997 paper [7], Clementini
et al. present a unified framework which allows for qualitative representation of
positional information. This is done by combining the orientation and the distance
relation. The position of a primary object po is represented by a pair of distance
and orientation relations with respect to ro, a reference object. Both relations de-
pend on a so-called frame of reference which accounts for several factors such
as the size of objects and different points of view. Thus, to represent positional
information, we need to define an orientation and a distance relation.

The orientation relation describes where objects are placed relatively to each
other. Based on the fundamental observation of how three points in the plane
relate to each other, an orientation relation can be defined in terms of three basic
concepts: the primary object po, the reference object ro, and the frame of reference
which contains the point of view. The point of view and the reference object are
connected by a straight line. The view direction is then determined by a vector
from the point of view to the reference object. The location of a primary object
is expressed with regard to the view direction as one of a set of relations. The
number of distinctions made is determined by the level of granularity. There are
different levels of granularity for orientation relations. On the first level, the point
of view and the reference object are connected by a straight line such that the
primary object can be to the left, to the right, or on that line. Thus, the first level
partitions the plane into two half-planes. On the second level, there would be four
partitions, the third level would have eight, and so on (cf. Figs. 2(a) and 2(b)).
Based on the frame of reference there is a ’front’ side of the reference object.
Independent from the level of granularity there is a uniform circular neighbouring
structure. In general, at a level of granularity k the set {α0, α1, . . . , αn} denotes
the n+ 1 orientation relations where n = 2k − 1.

The distance relation requires the three elements ro, po, and the frame of
reference. Moreover, a distance relation requires a distance system. A commonly
used distance system is the Euclidean space, which is reflexive (dist(P1, P1) =
0), symmetric (dist(P1, P2) = dist(P2, P1)), and follows the triangle inequality
(dist(P1, P2) + dist(P2, P3) ≤ dist(P1, P3)). The distance of two points expressed
in a qualitative way often depends not only on their absolute positions but also
on cultural and experimental factors and on the frame of reference. Similar to the
orientation relation we can distinguish distances at various levels of granularity
(cf. Figs. 2(c) and 2(d)). An arbitrary level n of granularity with n+1 distinctions
yields the set Q = {q0, q1, . . . , qn} of qualitative distances. Given a reference object
ro, these distances partition the space around ro such that q0 is the distance closest
to ro and qn the one farthest away.
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Fig. 2 Different levels of granularity for orientation and distance according to [7]
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Fig. 3 The one-dimensional domestic robot world.

From a quantitative point of view, the combined description of a position with
the above model using distance and orientation can be seen as the representation
of a point in polar coordinates. A point p in polar coordinates is defined by the dis-
tance r from the origin to this point and the angle ϕ measured from the horizontal
x-axis to the line from the origin to p in the counter-clockwise direction. Thus, the
position of a point p is described as (r, ϕ). This description directly corresponds
to the combination of the distance and the orientation relation.

We will make use of this correspondence by relating qualitative positional in-
formation given as distance and orientation in the above sense to quantitative
positions in Euclidean space. This way we can simply use methods from Euclidean
geometry to conduct spatial reasoning. In our example in Section 5.4 we con-
sider simple cases for reasons of simplicity. In future work, however, the reasoning
may go beyond transforming one qualitative description to more complicated cases
such as computing the composition of two positional relations and alike. For this
to work properly, we need to consider some more information associated to posi-
tional information in different contexts. Before we will detail this in Sect. 5, we give
a one-dimensional example to show how our integration of qualitative positional
information in the situation calculus works in the next section.

4.3 A One-dimensional Example

To illustrate reasoning with qualitative positional information using linguistic
terms and the representations introduced above, consider the following simple ex-
ample. A robot is situated in a one dimensional room with a length of ten metric
units as depicted in Fig. 3. To keep things simple, we restrict ourselves to inte-
ger values for positions in the following. We have one single action called gorel(d)
denoting the relative movement of d units of the robot in its world. For sake of
simplifying the notation in this example, we assume that this action is always
possible, i.e. Poss(gorel(d), s) ≡ >. The action has impact on the fluent pos which
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µ
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back middle front

(a) Qualitative positions of a robot in a one-dimensional world.

µ

distance0 1 2 3 4 5 6 7 8 9

0.5

1.0
close medium far

(b) Qualitative distance in the one-dimensional world.

Fig. 4 Membership functions for position and distance in our one-dimensional robot domain.

denotes the absolute position of the robot in the world. The position of the table
is defined by the macro postable = p

.
= p = 9. In the initial situation, the robot

is located at position 0, i.e. pos(S0) = 0. We partition the distance in categories
close, medium, and far, and introduce qualitative categories for the position of the
robot as back, middle, and front. We give the (fuzzy) definition of those categories
below, where we use (ui, µui) as an abbreviation for u = ui ∧ µ = µui . The fuzzy
categories for the position of the robot in the world can be defined as

F(position, u, µu) ≡
(position = back ⊃ (0, 0.25) ∨ (1, 0.75) ∨ (2, 0.75) ∨ (3, 0.25) ∨ (3/2, 0.5)) ∨
(position = middle ⊃ (3, 0.25) ∨ (4, 0.75) ∨ (5, 0.75) ∨ (6, 0.25) ∨ (9/2, 0.5)) ∨
(position = front ⊃ (6, 0.25) ∨ (7, 0.75) ∨ (8, 0.75) ∨ (9, 0.25)),

while the distances can take the values

F(distance, u, µu) ≡
(distance = close ⊃ (0, 1.0) ∨ (1, 1.0) ∨ (2, 0.75) ∨ (3, 0.25) ∨ (13/12, 0.5)) ∨
(distance = medium ⊃ (3, 0.25) ∨ (4, 0.75) ∨ (5, 0.75) ∨ (6, 0.25) ∨ (9/2, 0.5)) ∨
(distance = far ⊃ (6, 0.25) ∨ (7, 0.75) ∨ (8, 1.0) ∨ (9, 1.0) ∨ (95/12, 0.5)).

For readability reasons, we assume in this example that the robot can only
move around in integer steps. Restricting to integers requires to use an altered
version cog′(c) of the centre-of-gravity defuzzifier formula: cog′(c)

.
= bcog(c)c. Of

course our function defuzz has to mention cog′ instead of cog then. A graphical
illustration of the membership functions for position and distance is given in Fig. 4.
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In the definition of the successor state axiom of the fluent pos, we have to
handle its qualitative categories. We need to apply the function defuzz (c) to the
qualitative term which yields always a quantitative representative:

pos(do(a, s)) = y′ ≡ y′ = defuzz (y)∧
a = gorel(d) ∧ y = pos(s) + d′ ∨ a 6= gorel(d) ∧ y = pos(s).

We want to evaluate the robot’s position and its distance to the table. Therefore
we define a functional fluent dist which returns the distance between the robot
and the table:

dist(do(a, s)) = d ≡
∃p1.postable = p1 ∧ ∃p2.pos(do(a, s)) = p2 ∧ d = p1 − p2.

Now that we have linguistic terms for position and distance, we want to show-
case that qualitative statements can in fact be used easily and that their inte-
gration in our reasoning framework yields correct results for the same. For that,
we consider three main uses of qualitative notions: (1) in specifications of the ini-
tial situation, (2) linguistic terms in action arguments, and (3) fluents taking a
qualitative category as the result of an action.

4.3.1 Linguistic Terms in the Initial Situation

Suppose the robot’s position in situation S0 is characterized by the linguistic term
back and the table is located at position 9, i.e. DS0

= {pos(S0) = back, dist(S0) =
9}. Suppose now that the robot travels 4 units to the right. Then we can show
that

D |= is(pos(do(gorel(4), S0)),middle) ∧ is(dist(do(gorel(4), S0)),medium).

Proof Sketch Using regression and the successor state axiom for the fluent dist
we apply the centre-of-gravity cog′(back) = 1 if the value of a fuzzy fluent is a
linguistic term in the initial situation. It thus holds in S0 that D |= is(dist(S0), far).
By performing the action gorel(4) the robot moves four positions to the right. The
proposition holds because pos(do(gorel(4), S0)) = 1 + 4 = 5 and F(middle, 5, 0.75)
has a non-zero membership value. The quantitative distance from 5 to 9 equals 4
units or medium distance, as is given by F(medium, 4, 0.75). �

4.3.2 Qualitative Statements in Action Arguments

Suppose now that the robot’s control program contains the action gorel(far) men-
tioning the qualitative term far. At which position will the robot end up in situation
s = do(gorel(far), S0)? It follows that

D |= is(pos(do(gorel(far), S0)), front)

i.e. the robot ends up in the front part of its world after executing gorel(far).

Proof Sketch Determining the robot’s position in situation do(gorel(far), S0) we
again use regression. It is sufficient to show that DS0

|= is(R[pos(do(gorel(far),
S0))], front) which is—according to the successor state axiom above—regressed
to pos(S0) = cog′(back) ∧ F(far, 7, 0.75) ∧ d′ = cog′(far) ∧ is(y = cog′(back) +
cog′(far), front) ≡ is(y = 1 + 7, front) ≡ y = 8 ∧ F(front, 8, 0.75) ∧ 0.75 > 0. Hence,
we can infer that the robot ends up at position front. �
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4.3.3 Using Qualitative Categories for Fluents as a Result of an Action

Assume that apart from gorel(x) there is another action go(x) which makes the
robot move directly to position x. The successor state axiom of go(x) is given as
pos(do(a, s)) = y ≡a = go(x) ∧ y = x ∨ a 6= go(x) ∧ y = pos(s). What happens if
we put in a qualitative category there, i.e. at which position will the robot end up
in situation s = do(go(front), S0)? It turns out that we have

D |= is(pos(do(go(front), S0)), front)

i.e. the robot ends up in the front part of its world after executing go(front).

Proof Sketch When regressing a formula that contains a linguistic term, the de-
fuzzification function (e.g. centre-of-gravity cog′(c)) is applied if the result of a pre-
vious successor state axiom assigned a qualitative term to the fuzzy fluent. Then,
D |= is(pos(do(go(front), S0)), front) iff DS0

|= is(R[pos(do(go(front), S0))], front)
which is regressed to pos(S0) = cog′(back) ∧ x = front ∧ u = cog′(front) ∧
is(u, front) ≡ is(u = 7, front) ≡ u = 7 ∧ F(front, 7, 0.75) ∧ 0.75 > 0. Thus, it
can be inferred that the robot will end up at position front. �

5 An Extension for Spatial Domestic Environments

In this section, we extend the qualitative notations of the previous section with
information about their spatial context. In Sect. 5.1, we introduce the domestic
robot domain, before we introduce and formalize the concept of frames in Sect. 5.2.
Sect 5.3 shows the formalization of the domain in the situation calculus. In partic-
ular, we show how different reference frames can be transformed into each other
and how we deploy unit fuzzy sets to formalize the concept of distance and ori-
entation in the domestic domain. In Sect. 5.4 we present a high-level Readylog
controller for the fetch-and-carry task in the domestic domain. There, we show (a)
how domestic high-level controllers can be formulated in Readylog in a straight-
forward way, and (b) how the qualitative information are seamlessly integrated
into the high-level program of the robot.

5.1 The Domestic Robot Domain

Our target domain is the Domestic Robot Domain. In this domain, a service robot
is instructed by a human operator via natural language to fulfil tasks such as
Fetch&Carry in an apartment environment. Fig. 5 shows an example domain. In
this domain, there are several rooms and several pieces of furniture or objects. The
human-machine interaction should be as natural as possible. Therefore, our goal
is to support instructions such as “get me the left cup on table2” or “bring me a
coke to the living room”. A closer look at such instructions reveals that mainly
qualitative positional information is used by the human instructor, i.e. qualitative
distance and orientation. Further, to be able to put the information given by
the human instructor into the right context, the concept of a frame of reference
possibly including a point of view mentioned already is required. For example,
“far” in the context of the living room refers to a larger distance than “far” in
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Fig. 5 The domestic robot domain

the bath room. To cope with these types of contexts and different points of view,
we introduce the concept of frames in the next section and formalize them in the
situation calculus.

For positional information in our domestic domain, we need qualitative distance
and orientation which we already introduced in Section 4.2. However, it makes
sense to fix things like the distance system and the number of granularity levels
for the indoor environment. We do so by specifying membership functions for
distance and orientation, respectively. That means we fix a level of granularity of
5 for the distance relation with the categories very-close, close, medium-far, far, and
very-far. Of course, in different frames, these categories have different scales. As the
parlour is larger than the bath room, we have to scale these categories according to
their respective frame. Our concept of frame is doing exactly that. This, however,
requires, that the categories for distance are defined on a unit scale. We show our
definitions of qualitative unit distance in Sect. 5.3. For the qualitative orientation,
we select a level of granularity of 3, meaning that we distinguish 23 = 8 different
qualitative orientations. In order to relate the orientation to its context, each frame
needs to have a distinguished front side. Our concept of frame in the next sections
covers this as well.

5.2 Positional Fuzzy Fluents and Positional Frames

For each domain object which should be reasoned about in a qualitative fashion,
we need to know the object’s coordinate and its reference frame. For example,
table23 could be either defined to be at a certain position in room room17, or its
position could be instantiated with a global world coordinate. In the former case,
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Fig. 6 Examples of different frame in our domain.

we would attach frame room17 to the positional information of the table, in the
latter we would attach frame world . Fig. 6 is showing different example frames.
Attaching its frame to an object allows for transforming the object’s coordinates
to any other given frame.

Associated with a frame is a local Cartesian coordinate system IR2 of an object
in the world. The origin of a frame’s coordinate system is defined with respect to
a super-ordinated frame, with the world being the most general frame. For each
frame fs denoting the source frame, we need to specify, how the frame’s coordinate
system can be transformed into the target frame ft. The parameters we need are
the origin (xo, yo) of the target system expressed in the coordinates of the source
frame, the angle θo between the source and the target frame and mo a scaling
factor between the units of the respective distance systems.

As objects can be moved in the world, these parameters are not rigid and have
to be defined in terms of fluents. We therefore require without loss of generality
that for each object in the world, there is a sentence of the following form in Dssa:

frmparam(fs, ft, s) = (xo, yo, θo,mo)
.
= posfs

(ft, s) = (xo, yo, θo,mo)

with posfs
defining the position, angle, and scaling factor of an object fs expressed

in the frame ft. Note that frmparam is defined as a macro. The domain axiomatizer
has to provide sentences about the initial position of an object and a successor
state axiom describing how the position of the respective object changes. Further
note that the basic action theory is just used, not extended. Therefore, all results
for BATs still apply.

To give an example, consider Fig. 6(a). To express the position of the table
in the world, we need to add the sentence postable23

(room17, S0) = (5, 4, 0, 1) to
DS0

and frmparam(table23, room17, s) = (xo, yo, θo,mo)
.
= postable23

(room17, s) =
(xo, yo, θo,mo) toDssa. Now, we can keep track of the position of the table w.r.t. its
coordinate in the kitchen. Defining the position of objects w.r.t. a superordinate
frame also allows to derive, say, the coordinate of a cup on the kitchen table, even
if the table was moved around in the kitchen.
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To convert between a source and a target frame, we define a function chfrm as

chfrm(xs, ys, fs, ft, s) = (x, y)
.
=

∃xo, yo, θo,mo.frmparam(fs, ft, s) = (xo, yo, θo,mo) ∧

[fs 6= ft ∧ (x, y)T =

(
cos θo − sin θo
sin θo cos θo

)
·
(
xo + xs
yo + ys

)
∨

fs = ft ∧ (x, y) = (xs, ys)]

The scaling factor mo is used to determine the unit lengths of each interval of the
distance system. Each frame requires a distinct front side in order to provide a
standard point of view. We assume the standard view point along the y-axis of
the frame’s coordinate system.

Note, that the above definition of chfrm directly corresponds to a coordinate
transformation in Euclidean space in terms of translation and rotation as well
as scaling. This is exactly the correspondence that we exploit to retain a simple
way to reason with positional information. Enabling the direct relation between
the qualitative description and a coordinate based numerical representation does
exactly this.

Before we show an extended example of the coordinate transformations making
use of frmparam and chfrm in the next section, we show that our concept of frame
satisfies the properties of the frame of reference FofR as given in [7]. According
to [7], the frame of reference for the distance relation is the tuple FofR = (D,S, T )
with D a distance system, S a distance scaling factor, and T the type of relation.
The type can be either (1) intrinsic, i.e. the distance is determined by an inherent
characteristics of the reference object such as its size, shape, or topology; (2) ex-
trinsic, i.e. the distance is determined by some external factor, for instance, the
arrangement of objects or a measure for the costs involved in travelling (e.g. time);
and (3) deictic, i.e. the distance is determined by an external point of view, e.g. the
viewpoint of an observer perceiving an object.

From that we can derive the positional frame of reference, defining the distance
and orientation of the primary object po, the reference object ro, and a point of
view pov . If the relation between po and ro is intrinsic, then the scale is depending
only on properties of ro such as the size or the weight of the reference object.
Fig. 7(a) is showing an example. In the left-hand figure po is close to ro because
ro’s size is huge, hence the distance between both objects related to ro is small. In
the right-hand figure on the other hand, ro is small, and although the quantitative
distance between the centres of both objects is the same, po is now far away from
po. In the extrinsic case shown in Fig. 7(b), the relation between objects is only
dictated by the reference frame and its size. In the left-hand case of Fig.7(b), po
is at a medium distance on the back-left side of ro. Note that, in the right-hand
figure, the scale is different and the θ between fA and fB is about 30 degrees.
Hence, po is far-left-in-front of ro. The third case in Fig. 7(c) shows the deictic
case including an external point of view pov . Therefore, in the left figure, po is left
of po, while in the right figure, po is right of ro.

These cases are all captured with our concept of frame as given above together
with fluents defining the respective coordinate transformation between two differ-
ent reference systems by translation, rotation, and scaling. For example, in the
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(a) An intrinsic distance relation dist(po, ro). Here the relation depends on the size of ro.
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(b) Extrinsic relations dist(po, ro) for distance and θ(po, ro) for orientation.
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(c) A deictic orientation relation θ(po, ro). Depending on the position of
pov , po is either left or right of ro.

Fig. 7 Different frames of reference

first case depicted in Fig. 7, we only need to adapt the scaling, while in Fig. 7(b)
we need to adopt translation, rotation, and scaling. Finally, for the last case shown
in Fig. 7(c), we need to express both, the po and the ro in the coordinate system
of pov . Then, we can establish the relation between po and ro as seen from pov .

5.3 Axiomatizing the Domestic Robot Domain

In this section, we axiomatize the domestic robot domain based on the introduced
qualitative distance and orientation relations together with their respective frames.
We start with the required fuzzy sets. We now fix our distance and orientation
system for the domestic robot domain. A number of 5 levels of granularity for
the distance and 3 levels of granularity for the orientation seems to be sufficient.
With that, we can define the fuzzy sets on which our qualitative positional fluents
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Fig. 8 Membership functions for distance and orientation in our domestic robot domain.

are based. We omit the formal definition of the fuzzy sets F(distance, u, µu) and
F(orientation, u, µu). Instead, we show their continuous membership functions in
Fig. 8. The formal definition of both fuzzy sets is similar to the ones for position
and distance in Sect. 4.3. The only differences to Fig. 4 are that we use 5 different
categories, that the x-axis has unit scale, and that we enlarged the categories for
front, left, back, and right.

Our domain, as depicted in Fig. 5, consists of the rooms hallway, kitchen,
parlour, bedroom, and bathroom. Further, we have different tables, the kitchenette,
the nightstands, or the coatrack, on which objects can be placed or from which
objects can be taken. Each of these objects have their own local frame, which is
defined w.r.t. the room where they are located in. We assume a room’s origin to be
at its centre. The origin of the world is also at the centre of Fig. 5, i.e. at position
(15, 15). Therefore, the parlour has its origin at world coordinate (4,−7). In the
following, we give some examples for the chfrm predicate, omitting a tedious and
not very exciting complete axiomatization of all conversions between all room,
object and world frames.

Our world is 30 × 30 square units large. Therefore, δworld
very far =

√
2 · 30 ≈ 42.42.

The parlour has a size of 22 × 16 square units and δparlourvery far ≈ 27.20 That means
that our distance relation has to be multiplied with m = 1.56 to convert very-
far distances from the parlour into the world frame. Therefore assuming that the
parlour does not move in the world,

frmparam(parlour ,world , s) = (4,−7, 0, 1.56).
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To convert a coordinate from the parlour-frame to the world-frame we simply
apply the chfrm-predicate. Then, the coordinate (1, 2)parlour = (5,−5)world as

(5,−5)T =

(
1 0
0 1

)
·
(

4 + 1
−7 + 2

)
.

The function chfrm can also be used for deictic relations between objects.
Recall, that for a deictic relation, a separate point of view is required (see Fig. 7).
For now, we assume that the view direction is always along the positive y-axis
of the frame coordinate system. With this assumption, categories such as left or
right are uniquely determined. Note, however, that this assumption can be easily
overcome by adding a standard view point to the definition of the frame, e.g. by
a predicate pov(frame, x, y), denoting that the standard point of view of frame
frame is along the line between the origin of the frame coordinate system and the
point (x, y).

To keep track of the position of objects in our world, we need a number of
fuzzy positional fluents, one for each object. Each fluent describes the object’s
position w.r.t. a frame. As we want our robot to fulfil fetch-and-carry tasks in
this domain, we need actions like goto(x, y), grab(object), or drop(object), and an
action move(object, x, y) to be able to model that objects in the world have been
moved or carried around. The positional fluent for the kitchen table could thus be:

poskitchentable(kitchen, do(a, s)) = (x, y, θ,m) ≡
∃x′, y′, θ′.a = move(kitchentable, x′, y′, θ′) ∧ x = x′ ∧ y = y′ ∧ θ = θ′ ∧
∃x′′, y′′, θ′′.poskitchentable(kitchen, s) = (x′′, y′′, θ′′,m) ∨

¬∃x′, y′, θ′.a 6= move(kitchentable, x′, y′, θ′) ∧
poskitchentable(kitchen, s) = (x, y, θ,m).

In the initial situation, the position of the kitchen table is:

poskitchentable(kitchen, S0) = (−1,−0.5, 1.56, 1).

Similarly, we can define and keep track of the position of the robot:

posrobot(world, do(a, s)) = (x, y, θ,m) ≡
∃x′, y′.a = goto(x, y) ∧ x = x′ ∧ y = y′ ∧
∃x′′, y′′.posrobot(world, s) = (x′′, y′′, θ,m) ∨
¬∃x′.y′.a = goto(x, y) ∧ posrobot(world, s) = (x, y, θ,m)

with its initial position given by posrobot(world, S0) = (−2.5,−2.5, 0, 1). Note that
in the definitions of the position of the kitchen table and the robot, we carry over
the value of the scaling factor m from the previous situation. Of course, we need
further fluents to describe our domain. For example, to decide whether or not we
can pickup an object: picking it up is only possible if the robot does not already
have something in its gripper:

Poss(pickup(obj), s) ≡ ∀x.¬holding(x, s) with

holding(x, do(a, s)) ≡ a = pickup(x) ∨ a 6= drop(x) ∧ holding(x, s).
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To be able to quantify over the positions of objects in our world, we define a
macro object at pos as

object at pos(s) = (x, y)
.
=

∃f.poskitchen(f, s) = (x′, y′, θ′,m′) ∧ chfrm(x′, y′, f, world, s) = (x, y) ∨
∃f.poskitchentable(f, s) = (x′, y′, θ′,m′) ∧ chfrm(x′, y′, f, world, s) ∨ · · ·

which is a disjunction over all object positions (transformed into world coordinates)
in a particular situation s. This macro is true, if any object is located at the position
(x, y). As our definition of chfrm captures also the case where source and target
frame are the same, the above definition is sound and works also in the case where
f = world . With that we are, for instance, able to query if there is any object at
position (5, 5):

D |= ∃x, y.object at pos(s) = (x, y) ∧ x = 5 ∧ y = 5.

Next, we define a function dist , which yields the distance between two coordi-
nates and returns the value in the scale of a given frame

dist(x1, y1, f1, x2, y2, f2, ft, s) = d ≡
∃x′1, y′1.chfrm(x1, y1, f1,world , s) = (x′1, y

′
1) ∧

∃x′2, y′2.chfrm(x2, y2, f2,world , s) = (x′2, y
′
2) ∧

∃xo, yo, θo,mo.frmparam(world , ft, s) = (xo, yo, θo,mo) ∧

∃d′.d′ =
√

(x′1 − x′2)2 + (y′1 − y′2)2 ∧ d = d′ ·mo,

where f1 is the frame of the first coordinate, f2 is the frame of the second coordi-
nate, and ft is the target frame; and a function ori that yields the angle between
two objects:

ori(x1, y1, f1, x2, y2, f2, ft, s) = θ ≡
∃x′1, y′1.chfrm(x1, y1, f1, ft, s) = (x′1, y

′
1) ∧

∃x′2, y′2.chfrm(x2, y2, f2, ft, s) = (x′2, y
′
2) ∧

∃θ1. arctan(y′1/x
′
1) = θ1 ∧ ∃θ2. arctan(y′2/x

′
2) = θ2 ∧ θ = θ1 − θ2.

Now, we have everything in place to fetch an object in our domestic world.

5.4 Fetching a Cup: A Domestic Robot Example

Next, we want to instruct our robot for a fetch-and-carry task. An example scenario
is shown in Fig. 5. Suppose the following situation. The user is sitting on the couch
in her parlour, watching TV. The good robot servant is quietly staying aside
waiting for instructions. At some point, the instructor is commanding: “Robot, get
me my cup. It is left on the kitchentable, close to the plate.” Having a closer look
at this instruction, the following objects and frames are referred to with it:

Robot, get me my cup.︸ ︷︷ ︸
po

It is left︸︷︷︸
ori

on the kitchentable︸ ︷︷ ︸
frame

, close︸ ︷︷ ︸
dist

to the plate︸ ︷︷ ︸
ro

.
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The first part of the instruction is a deictic hint. As shown in Fig. 7(a), the position
of the primary object cup is dependent on a reference object ro and a point of view
pov . As we mentioned earlier, both the ro and the pov are given by a frame, the
kitchentable, in this case. That means that the ro is the origin of the kitchen table’s
coordinate system, the pov is along the y-axis. The second part is an example for
the intrinsic case. Here the distance relation depends on the reference object plate
and close depends on the size of the reference object ro. The correct scaling is
defined in the frame parameter of “plate”. Assume, that our natural language
processing (NLP) software is capable to extract the above marked information.2

The hints of the human instructor tell us something about the object we seek and
can be formalized as follows:

D |= ∃x1, y1.object at pos(s) = (x1, y1) ∧
∃x2, y2, θ2,m2.poskitchentable(kitchen, s) = (x2, y2, θ2,m2) ∧
is(ori(x1, y1,world , x2, y2, kitchen, kitchentable, s), left) ∧ (5)

∃x3, y3, θ3,m3.posplate(kitchentable, s) = (x3, y3, θ3,m3) ∧
is(dist(x1, y1,world , x3, y3, plate, kitchentable, s), close)

That means that we are looking for an object with the coordinates (x1, y1) that
is on the left side of the table and that is, measured in the scale of the plate, close
to the plate. The only object that meets these conditions is cupA. A plan that our
robot should therefore make up for this case should be something similar to this:

do([goto(kitchen), approach(kitchentable), pickup(cupA),

goto(parlour), approach(human), drop(cupA)], S0).

The required information is: the kitchentable is in the kitchen, the robot has to
conclude that the object left close to the plate is cup A, the position of the human
needs to be known, and cup A needs to be dropped without spilling etc. Of course,
a sophisticated robot controller is required to execute this simple-looking plan on
a real robot in the real world. In the following, we abstract from many of the
complications that arise during the execution. However, in the following, we want
to concentrate on planning the above action sequence in an abstract yet flexible
way, thereby making use of the integrated qualitative spatial representations and
reasoning facilities. Having all the ingredients such as the position of all mentioned
objects and their frames, the control program shown in Alg. 1 is doing the job.

From the NLP system we expect to get a set hori = {(ro1, f1, c1), . . . , (rok, fk, ck)}
with statements qualifying the orientation between the primary object po and a
reference object roi together with a reference frame fi and the qualitative orienta-
tion category ci describing the relation between po and roi. Similarly for distance
information, we get a set hdist = {(rok+1, fk+1, ck+1), . . . , (ron, fn, cn)}. From

2 In fact, it should not be too hard for the NLP component installed on our @Home robot,
to extract these information. See, for instance, [50] for an overview of the control software that
is running on our robots.
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Algorithm 1: A Readylog program making use of the qualitative positional
notions for the “Fetch&Carry” task. We omit some specification details to
retain reasonable clarity.

proc fetch and carry(f, xt, yt, ft)1

(π x, y, θ,m, x1, y1, x2, y2)[pos f = (x, y, θ,m)?; approach(x, y)];2

if ∃x, y.Φ(x, y) then3

(π x′, y′, θ′,m′, obj)[Φ(x′, y′) ∧ posobj = (x′, y′, θ′,m′)?;4

pickup(obj) ;5

approach(xt, yt, ft) ;6

drop(obj)]7

else8

fail9

endif10

endproc11

proc approach(x, y, frame)12

if ∃x1, y1, is(dist(x, y, frame, x1, y1, frame, frame), close) then13

(π x1, y1)[is(dist(x, y, frame, x1, y1, frame, frame), close; goto(x1, y1)];14

else15

fail16

endif17

endproc18

these sets, we construct a macro Φ(x, y) as:

Φ(x, y)
.
= object at pos(s) = (x, y)∧

∃x1, y1, θ1,m1.posro1(f1, s) = (x1, y1, θ1,m1) ∧
is(ori(x, y,world , x1, y1, f1, ft, s), c1) ∧ · · · ∧
∃xk, yk, θk,mk.posrok(fk, s) = (xk, yk, θk,mk) ∧

is(ori(x, y,world , xk, yk, fk, ft, s), ck) ∧
∃xk+1, yk+1, θk+1,mk+1.posrok+1(fk+1, s) = (xk+1, yk+1, θk+1,mk+1) ∧

is(dist(x, y,world , xk+1, yk+1, fk+1, ft), ck+1) ∧ · · · ∧
∃xn, yn, θn,mn.posron(fn, s) = (xn, yn, θn,mn) ∧

is(dist(x, y,world , xn, yn, fn, ft, s), cn)

For our example these sets would be hori = {kitchentable, kitchen, left} and
hdist = {plate, plate, close} with the target frame ft = kitchentable (abusing nota-
tion slightly). It should be obvious that D |= ∃x, y.Φ(x, y) yields Eq. 5.

Now let us showcase how the execution of the program given in Alg. 1 leads
to a successful retrieval of the cup as desired. We can assume that the robot has
initial knowledge about the positions of rooms and furniture therein. In terms of
our specification of frames it would comprise the following sentences:

– frmparam(kitchen,world , s) = (−8.0, 8.5, 0, 2.23)
– frmparam(kitchentable, kitchen, s) = (−1.5,−0.5, 0, 3.17)
– frmparam(kitchentable,world , s) = (−9.5, 8.0, 0, 7.07)
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Fig. 9 Details on coord-transform to answer the request in the domestic robot domain

Firstly, the robot retrieves the position of the frame mentioned in the user’s re-
quest, namely the kitchentable. It then moves to that very frame using the method
approach. Note that we are using Readylog’s features here to pick a position close
to the frame already deploying a first use of the qualitative notions established in
this paper.

Then, the robot picks positions3 that meet the hints given in the initial re-
quest ensuring to satisfy Φ(x, y). As laid out before, Φ contains the structured
information that our NLP could retrieve from the user utterance as given in Eq. 5.
Evaluating different objects, cupA is the only one that satisfies the given specifi-
cations as follows.

The predicate is(ori(x1, y1,world , x2, y2, kitchen, kitchentable, s), left) can only
be satisfied for cupA with poscupA

(world) = (−10.5, 7.5) and poskitchentable(kitchen) =

(−9.5, 8.0) 4 since ori(−10.5, 7.5,world ,−9.5, 8.0, kitchen, kitchentable, s) is then
computed as atan2(−0.5,−1.0) = −2.68 and F(left,−2.68, 0.65) ∧ 0.65 > 0 in-
dicates that this angle does in fact belong to the category left.5 Analogously,
to satisfy the predicate is(dist(x1, y1,world , x3, y3, plate, kitchentable, s), close) ex-
tracted from the distance hint the robot computes the distance for cupA with
poscupA

(world) = (−10.5, 7.5) and posplate(plate) = (0.0, 0.0) as dist(−1, 1,
kitchentable,−1,−0.5, kitchentable, plate, s) resulting in 1.5 which, after being nor-
malised with the scaling factor for the plate results in F(close, 0.23, 0.75)∧0.75 > 0
which in turn indicates that the distance between the cup and the plate does belong
to the category close (w.r.t. the plate’s size).

We give an illustration of applying the qualitative categories while respecting
the corresponding frames both for the orientation and the distance hint in Fig. 9.

Since cupA is the only object satisfying both the conditions extracted as hints
from the user utterance the robot continues executing the program with cupA as
the object to grab and to deliver to the target position. Hence, by following the

3 Recall that π stands for a nondeterministic choice of arguments.
4 For sake of readability, we leave out the angle and the scaling factor in the positional

fluents.
5 Note that we have formally defined the entries of the membership function only for integer

values. However, we assume here that real values are possible also.
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program from Alg. 1 the robot eventually comes up with the action sequence

do([goto(−9.5, 5.0), pickup(cupA), goto(−2.0,−8.0), drop(cupA)], S0).

as claimed initially. It is able to do so satisfying the qualitative spatial description
given as hints by the user. This is due to the use of the underlying mechanics that
we defined and formally introduced to the situation calculus.

6 Discussion and Future Work

In this paper, we showed how qualitative spatial reasoning about positional infor-
mation in a domestic environment can be conducted. The basic idea is to combine
the situation calculus and qualitative representations based on fuzzy sets. We rep-
resent the different qualitative categories we want to reason about as fuzzy sets.
This is appealing as it is possible that an object falls into several categories at the
same time. Fuzzy set theory gives us a formal account for that. For our reasoning
engine, we use the situation calculus as a powerful calculus to reason about action
and change. We embed fuzzy sets into the situation calculus. To this end, we in-
troduce linguistic categories and fuzzy fluents, which are special functional fluents
that can take qualitative, linguistic terms as function values. These linguistic terms
are evaluated based on fuzzy sets and related to quantitative representations with
a special defuzzifier function, the centre-of-gravity defuzzifier in our case.

For the domestic environment, we extended our notions to account for differ-
ent contexts of qualitative fluents in indoor environments. Our notion allows for
coping, for example, with the fact that different objects have different sizes and
that “far” w.r.t. a large room has a different quantitative scale than “far” on the
kitchen table. Therefore, we introduced the concept of frames and defined it for-
mally. The frame concept needed to be extended to the positional information of
domain objects. Otherwise it would be impossible to evaluate spatial relations in
the right context. This lead to the notions of fuzzy positional fluents that always
carry their contextual frame with them. Finally, we presented a high-level con-
troller in the robot programming and plan language Readylog for the domestic
fetch-and-carry task. The controller shows that it is easy to integrate the formal
notions presented in this paper for real-world applications. While it was shown
that high-level controllers programmed in Readylog can be deployed beneficially
also in domestic environments (e.g. [17, 48, 49]), the presented work here lays the
theoretical foundations for controllers dealing with qualitative positional informa-
tion that frequently appear in real world domestic settings. It is due to future work
to apply the work presented in this paper on a real robot.

The assumption for the domestic environments we make in this paper is that
it is sufficient to have one fixed unit distance and orientation relation for all the
different contexts. Of course, we adopt our distance relation according to the size of
the room, but still the number of categories remains fixed. It would be interesting,
though, for future work to drop this assumption and learn which categories are
required in what context by interacting with the human instructor, along the
lines of e.g. [46], where fuzzy distances between cities are learnt in a GIS context.
Looking at the table scenario, the instruction that is actually meant by the human
instructor is more like “cup A is closer to the plate than cup B” or “cup A is closer
to the plate than any other object”. Fuzzy logic also offers this kind of reasoning
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facilities. For example, as we pointed out in Sect. 3.3, the compositional rule is
able to reason that X is much larger ◦ large if X is much larger than Y and Y is
large. Together with so-called hedges (a kind of intensifier of a fuzzy category), we
could draw the required conclusions. We proposed a situation calculus semantics
for hedges in [19]. This needs to be integrated into Readylog for future work
to be able to reason about such kind of human instruction, as well. Our example
also reveals another interesting problem that we want to address in our future
work. When approaching the table, we were assuming that we could pick up the
target object from the front side of the table. This is, in general, not true. In
some situations the robot might need to approach the table from a different angle.
Then, the qualitative positions and orientations of primary and reference objects
to each other are changing. Our framework, however, is able to keep track of the
positions. Together with Readylog’s capabilities to perform decision-theoretic
planning making use of a optimization theory, we could plan the optimal approach
angle to grab the object in question. It would be also interesting to integrate
human-machine interaction into our robot controller. If, for example, the robot
is not able to detect the object in question based on the hints that the human
instructor is giving, it could start a dialogue with the human to get more evidence
about the object. In our controller representation in Alg. 1, the dialogue system
in lines 9 and 16 of the robot controller could be used in the failure cases.
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