
BendIT – An Interactive Game with two Robots

Tim Niemueller, Stefan Schiffer, Albert Helligrath,
Safoura Rezapour Lakani, and Gerhard Lakemeyer

Knowledge-based Systems Group
RWTH Aachen University, Aachen, Germany

(niemueller,schiffer,gerhard)@kbsg.rwth-aachen.de

Abstract. In this paper we report on an interactive game with two
robots and review its components. A human user uses his torso move-
ments to steer a Robotino robot along a pre-defined course. Our domes-
tic service robot Caesar acts as a referee and autonomously follows the
Robotino and makes sure that it stays within a corridor along the path. If
the user manages to keep the Robotino within the corridor for the whole
path he wins. The game can be used, for example, to engage people in
physical training such as a rehabilitation after an injury. It was designed
and implemented as a student project in winter term 2011/2012.

1 Introduction

Humans and robots interact in various ways, often including speech or gestures.
In this paper, we present an interactive game that two robots and a human play
with each other. The human can control the movements of a simple robot by his
torso movement, virtually acting like a joystick, to steer it along a virtual path by
bending and turning his own upper body. A second more powerful robot acts as
a referee, employing methods for self-localization, navigation, and 3D perception
to overview the game and to judge on the human’s performance in the game.
The two robots involved in this demo are the Festo Robotino1 as the robot
controlled by the human, and our custom built domestic service robot Caesar as
the referee. The game setup with the involved robots is shown in Figure 1.

To realize such a task several challenges need to be addressed. First, a system
must be in place to allow the referee robot to detect the Robotino to judge on the
state of the game. Here, we employ well-known methods from the Point Cloud
Library (PCL [6]) as described in Section 2. Then, to control the movements
of the Robotino by a human bending and turning his upper body, our system
uses an RGB-D camera mounted beside the playing field. It does so employing
a custom body posture estimation approach described in Section 3. Finally, new
and existing components must be integrated with the robot base systems like self-
localization and navigation, and enriched with user interaction and the behavior
to facilitate the game as described in Section 4. We conclude in Section 5.

1
http://www.festo-didactic.com/int-en/learning-systems/education-and-research-robots-robotino/

Referee Robot
Caesar with

Follow Program

Robotino

Robotino
Cluster

Point Cloud
w/ Clusters

Kinect

BendIT
Agent

Start

Goal

Virtual
Path

Bending/
Turning

Human
User

Fig. 1. The game setup and its components

2 Robotino Detection

To detect the Robotino we use the point cloud generated from the RGB-D cam-
era mounted on a pan-tilt unit on the head of the referee robot (cf. Figure 1)
combining existing methods and implementations. The overall approach is sep-
arated into two phases. First, a model of the Robotino is learned and later
this very model is used to recognize the Robotino in a set of candidate point
clusters. For both phases point clouds are acquired. First, the point cloud is
down-sampled using a voxel grid, meaning that for each volumetric unit in a 3D
grid an averaged point is chosen. Afterwards, all planar areas in the point cloud
are determined and removed. The remaining points are segmented into clusters.

To create the model a-priori, the cluster known to represent the Robotino is
manually selected and a model is generated using Viewpoint Feature Histograms
(VFH [7]). The cluster is segmented into patches. In each patch the relative pan,
tilt, yaw angles, and the distance between the central point translated to the
central viewing direction are calculated, as well as the angle between the central
viewing point and the normal of each point. Binning these values produces the
desired feature histograms. During the on-line recognition, for each of the clus-
ters, the VFH signatures are determined and compared to the model’s feature
histograms. The closest matching cluster is chosen as the target Robotino.

The computing power requirements are moderate. Interestingly, one of the
most expensive parts is the down-sampling of the point cloud after acquisition.
It works by taking the average for a volumetric grid with a edge length of 2 cm.
The learned VFH models depend on this parameter, so adjusting and tuning
it requires re-learning of the models each time. With this limitation we can
currently operate at about 5 Hz.

3 Human Body Posture Estimation

Fast and on-line estimation of the human body posture is done by combining
well-known methods with a custom, simple but effective approach. The posture

recognition roughly works as follows. During the game, point clouds are acquired
continuously. For each cycle, the point cloud is down-sampled using a voxel grid
and the points are vertically constrained depending on the room height to cut
off ground and ceiling planes. The algorithm works with small data-sets and can
be implemented with readily available Open Source libraries as opposed to [8].

In a first step, we segment clusters in the remaining points. For every cluster
we verify if it represents a human using a VFH model of a human that we
trained with data collected from different humans. If the human bends towards
the robot, this may fail, because then head and torso are segmented as two
separate clusters. In such a situation, we look for small clusters close to a larger
one and merge them and check again if the VFH model applies now. Then, on
the human cluster we start with calibrating a neutral posture of the human by
finding the hips. The movement indicators are then computed as deviations of
the body posture, for one from the perpendicular (bending vector) and from the
angle facing the camera (turning angle). The human is tracked until it is lost for
a certain period of time, after which we start the detection on all clusters again.

The first step of the calibration is to identify the height of the hips. Therefore,
we start looking for the head in the human cluster as the smallest subset at the
vertically highest point of the cluster for which we can match a sphere using
RANSAC [2]. Then, starting from the centroid of the human cluster, we move
down in slices parallel to the ground plane, clustering the points in each of the
slices. In those slices we are looking for the cluster with the biggest width. In
each slice, the biggest cluster belongs to the torso. We assume the biggest cluster
among all slices to be the hips.

After calibration has been completed we switch to a tracking mode re-using
the estimated data to detect the human more quickly. If multiple human are
in the image, we take the cluster within a certain radius around the previous
sighting. During tracking, we take the slice at the same height as was found for
the hips during calibration. Starting from this slice, we move upwards detecting
the shoulders. We first remove the points belonging to the head from the human
cluster. Then, we move upwards from the hips centroid of the human-cluster
in slices again, looking for the topmost points of the body, the leftmost and
rightmost points being the left and the right shoulder, respectively. We compute
movement indicators from the posture of the upper body as two vectors as
follows. First, the deviation of the vector between the centroid of the hips and
the centroid of the shoulders to an upright vector is interpreted as a movement
command in the xy plane. Second, we interpret the deviation of the vector
between the two shoulders and a horizontal vector in the image plane of the
RGB-D camera for turning commands.

There are other approaches to body posture estimation such as the one pre-
sented in [1]. However, with some assumptions that follow from the design of the
game and the corresponding restrictions in the space of possible postures our
method only needs the simple steps sketched above to yield sufficiently accurate
results in very little time. We have implemented the described cylinder fitting
for arms, but did not need it for the given game.

 30

 40

 50

 60

 70

 80

 90

 0 20 40 60 80 100 120 140 160 180

S
te

p
 T

im
e
 (

m
s)

Running Time of Experiment (sec)

Tracking

Detection

Plane Removal

Downsample

Fig. 2. Processing time of steps of the approach in a game

With the described approach we are able to process about 15 point clouds
per second on an Intel E6750 at 2.66 GHz. In Figure 2 you see the performance
plotted for a game of three minutes. A considerable amount of time is used for
the down-sampling of the point cloud. The plane removal step is very quick and
helps to filter out large parts of the point clouds. The detection step takes about
10 ms. But this step can become more costly. For example, the merging steps if
torso and head are separate clusters involves running the VFH step more often.
Also, if the user is lost we need to restart the more expensive detection on all
clusters. The tracking takes about constant time.

4 An Interactive Human-Robot Game

The described perception modules are integrated using the Fawkes robot software
framework [3]. For the visualization of the game, we use ROS’ rviz [5]. The actual
game logic was implemented using our Lua-based Behavior Engine [4].

The human initiates a new game for example by instructing the referee robot
using speech. The stationary Kinect is calibrated to detect the human. After-
wards, the forward and sideward bending angles of the human’s upper body are
converted into holonomic forward and sideward motions. Twisting the torso and
hence rotating the shoulders adds a rotation to that movement. The referee robot
uses one out of a set of pre-defined paths (“levels”), which differ in length and
deviation tolerance and thus in difficulty. It waits until the Robotino has reached
the starting position, at which point the referee announces that the game starts.

The output of the human posture recognition is transformed into the exact
same data that a 3-axis joystick would produce. Using this data, the human steers
the Robotino through the environment. In the visualization, he can observe the
referee robot’s perception of the situation, including the positions of the referee
and the Robotino, and the corridor along which the Robotino is to move. The
referee robot will autonomously follow the Robotino at a certain distance to
assert that it remains visible to the referee, even for extended games. If the
Robotino stays outside of the allowed path margin for a certain amount of time
(in the order of a few seconds), the referee declares that the human lost the
game. If, however, the human manages to steer the Robotino towards the end

of the path within the allowed tolerance, he wins the game. The referee robot’s
checking of the Robotino following the path uses a global localization [9] for its
own position and the relative position at which it perceives the Robotino.

The overall performance is good enough to introduce new users to the game
within a few minutes. At the moment the game is explained by a human. A
further step would be to have the robot instruct the player on what to do.

5 Conclusion

We presented an interactive game that a human can play with two robots. The
human’s objective is to steer the smaller of the two robots along a virtual path
to a goal position using his upper body movements as a “joystick”-like control.
The second robot acts as a referee overseeing the performance of the human
player. We briefly reviewed the components needed to implement such a game
ranging from perception of the human and the robot to translating the body
movements to control commands. We built on existing methods where possible
and implemented a novel approach to human body posture recognition using the
Kinect RGB-D camera. We think that such a game could potentially be applied
in rehabilitation or, in general, as a motivation to engage in physical training.

References

1. Droeschel, D., Behnke, S.: 3D Body Pose Estimation Using an Adaptive Person
Model for Articulated ICP. In: Jeschke, S., Liu, H., Schilberg, D. (eds.) Intelligent
Robotics and Applications, LNCS, vol. 7102, pp. 157–167. Springer (2011)

2. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting
with applications to image analysis and automated cartography. Communications
of the ACM 24(6), 381–395 (Jun 1981)

3. Niemueller, T., Ferrein, A., Beck, D., Lakemeyer, G.: Design Principles of the
Component-Based Robot Software Framework Fawkes. In: Int’l Conf. on Simula-
tion, Modeling, and Programming for Autonomous Robots (SIMPAR) (2010)

4. Niemueller, T., Ferrein, A., Lakemeyer, G.: A Lua-based Behavior Engine for Con-
trolling the Humanoid Robot Nao. In: RoboCup Symposium 2009 (2009)

5. Quigley, M., Conley, K., Gerkey, B.P., Faust, J., Foote, T., Leibs, J., Wheeler, R.,
Ng, A.Y.: ROS: an open-source Robot Operating System. In: ICRA Workshop on
Open Source Software (2009)

6. Rusu, R.B., Cousins, S.: 3D is here: Point Cloud Library (PCL). In: IEEE Int’l
Conf. on Robotics and Automation (ICRA). Shanghai, China (May 9-13 2011)

7. Rusu, R., Bradski, G., Thibaux, R., Hsu, J.: Fast 3D recognition and pose using the
viewpoint feature histogram. In: IEEE/RSJ Int’l Conf. on Intelligent Robots and
Systems (IROS). pp. 2155–2162. IEEE (2010)

8. Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman,
A., Blake, A.: Real-time human pose recognition in parts from single depth images.
In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (june
2011)

9. Strack, A., Ferrein, A., Lakemeyer, G.: Laser-Based Localization with Sparse Land-
marks. In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y. (eds.) RoboCup 2005:
Robot Soccer World Cup IX. LNCS, vol. 4020, pp. 569–576. Springer (2006)

