robOCD: Robotic Order Cups Demo —
An Interactive Domestic Service Robotics Demo

Stefan Schiffer, Tobias Baumgartner, Daniel Beck, Bahram Maleki-Fard,
Tim Niemiiller, Christoph Schwering, and Gerhard Lakemeyer

Knowledge-based Systems Group,
RWTH Aachen University, Aachen, Germany
(schiffer,gerhard)@kbsg.rwth-aachen.de

Abstract. This paper describes an interactive demonstration by the
ALLEMANIACS’ domestic service robot CAESAR. In a home-like environ-
ment CAESAR’s task is to help setting the table. Besides basic capabilities
of an autonomous mobile robot it uses methods for human-robot inter-
action and it also has a sophisticated high-level control that allows for
decision-theoretic planning. We use this demo to illustrate the interplay
of several modules of our robot control software in carrying out com-
plex tasks. The overall system allows to perform robust reliable service
robotics in domestic settings like in the ROBOCUP@QHOME league. Also,
we show how our high-level programming language provides a power-
ful framework for agent behavior specification that can be beneficially
deployed for service robotic applications. The system was showcased re-
peatedly, most notably at a national ROBOCUP competition and at an
international conference.

1 Introduction

In RoBoCUP, apart from making agents and robots play soccer, there are also
competitions in rescue scenarios as well as in a domestic service robotics setting.
While in the soccer leagues quick decision making, cooperation, and team-play
are crucial, the challenge in the ROBOCUP@HOME league is to build a robust
robotic system that can safely operate in a human environment and that can
interact with humans. As the complexity of the tasks to solve in domestic settings
rises, so increases the benefit a robot has from using sophisticated means for
decision-making and deliberation. The high-level control of CAESAR is based on
the language READYLOG [3], a variant of the logic-based language GOLOG [4]
which combines explicit agent programming as in imperative languages with the
possibility to reasons about actions and their effects.

In this paper, we present a demo application of READYLOG in a domestic
setting to showcase its benefits and its applicability. After we briefly introduce
our robot we sketch the domestic service robotics domain. Then we present the
robotic order cups demo before we conclude.

(a) CAESAR (b) User pointing at acup (c) Scene perception (d) Manipulation

Fig. 1. Our robot CAESAR, the robOCD scenario with a user giving instructions and
perception and motion planning in simulation for manipulation in an extended setup.

2 The AllemaniACs Domestic Service Robot Caesar

An increasingly popular application domain for autonomous mobile robots is
domestic service robotics (DSR) where robots perform assistive tasks in a home
environment. A competition that focuses on these kinds of applications is ROBO-
Cur@QHOME [9]. Apart from the demands that are commonly put on autonomous
mobile robots, a service robot in a domestic setting must meet additional require-
ments with respect to interactivity, robustness, and accessibility. What is more,
it can be more helpful in complex assistive tasks if it also features a sophisticated
high-level control.

Our robot CAESAR, shown in Figure 1(a), is designed and was built to operate
in human-populated environments in domestic scenarios. It should be helpful
around the house, assisting elderly or disabled people with their daily activities.
CAESAR meets all the basic requirements put on an autonomous mobile robot,
that is, it can navigate in its environment safely and it can localize itself reliably
with high accuracy in known environments. Further it is able to detect and
recognize people and objects and it can also manipulate objects with its robotic
arm. Of particular importance for the demo we discuss in this paper are its
robust speech recognition [2] and a component for gesture recognition [8]. Those
components are orchestrated in the Fawkes robot framework [5] to form a robust
assistive robotic system.

Above all the low-level components mentioned so far and a mid-level Lua-
based behavior engine for basic skills of the robot [6], CAESAR has a logic-
based high-level control that allows for deliberation and flexible decision-making.
We use READYLOG [3], a dialect of the robot programming and plan language
GoLoa [4]. GoLOG is based on Reiter’s version of the situation calculus [7] which
is a sorted second-order language to reason about dynamic systems with actions
and situations. READYLOG features several extensions to the original GoLoG
language, most notably it allows for decision-theoretic planning in the spirit of
DTGolog [1]. On CAESAR we use an implementation of a READYLOG interpreter
in ECEPSe-CLP,! a Prolog dialect.

! Website at http://www.eclipseclp.org/

Algorithm 1: READYLOG program for the Order Cups Demonstration
The terms p; to ps denote four positions on the table, while I; and P; are
variables that hold the color of a cup at position ¢ in the initial and the goal
situation, respectively. pos(C') returns the position of the cup with color C.

1 proc main,
2 get_Initial_Order(Iy, I2, I3, Init); %% perceive initial order
3 get_Goal_Order(Pi, P2, Ps,Goal); %% inquire about goal order
4 sort_cups(Pi, P2, Ps,4); %% start planner
5 endproc
6 proc sort_cups(Py, P2, Ps, H),
7 solve(H,reward_cup(Pi, P, Ps),
8 while(—(pl = pos(P1) A p2 = pos(P2) A ps = pos(Ps))) do
9 pickBest(cup, {red, green, blue},
10 pickBest(to, {p1, p2, 3, pa}, move_cup(cup, pos(cup), to)))
11 endwhile

12 endsolve
13 endproc

3 Robotic Order Cups Demo

We now discuss a special helping task that CAESAR is able to perform: the
Robotic Order Cups Demo (robOCD).? The robot’s task in this demo is to help
decorating a table. In the scenario there are three differently colored cups (red,
green, and blue) on a table. To complete the re-arranging they have to be put in
a specific order. A human user is instructing the robot on the desired order by
pointing to positions on the table and by simultaneously specifying which cup
should be placed at that very position using speech. Figure 1(b) shows a user
specifying the desired order of the cups by pointing.

Alg. 1 shows the READYLOG procedures used in the demo. The procedure
main is a sequential program calling sub-procedures for specific tasks. The first
step is a call to get_Initial_Order to perceive the initial order of the cups on the
desk. That is, the robot uses its vision system to detect and recognize three cups,
namely one cup for each of the colors red, green, and blue. It stores the initial
order of the cups in variables I;. The call to get_Goal Order then initiates an
interactive procedure where the robot asks the user to specify the desired goal
positions for the three cups. To do so, the user is requested to point at a position
on the table and to say which cup should be placed at that position.

For this to work CAESAR’s modules for speech and gesture recognition are
constantly running. They post the results of their recognition along with a times-
tamp to a central blackboard. All other modules and the high-level control can
access the information there. In the robOCD scenario, the system uses the si-
multaneous occurrence of position keywords like there in the speech recognition

2 A video of the demonstration is available at http://goo.gl/7rEEY.

Algorithm 2: The simplified READYLOG policy for an example run. The
initial order was “green, blue, red”, the desired order is “red, green, blue”.

1 exogf _Update, if —~done then

2 move_cup(blue, cup_position(blue), pa),

3 exogf _Update, if —done then

4 move_cup(green, cup_position(green), p2),
5 exogf -Update, if —done then

6 move_cup(red, cup_position(red), p1),

7 exogf _Update, if —done then

8 move_cup(blue, cup_position(blue), ps3)
9

data and a pointing gesture in the gesture recognition output to determine the
desired goal position of a specific cup.

Apart from constructs known from imperative programming languages, e.g.,
if-then-else, loops, and procedures, READYLOG also offers less common con-
structs like solve and pickBest. The former initiates decision-theoretic plan-
ning, the latter is the non-deterministic choice of argument. During planning,
the logical specification of the dynamics in the world can be used to reason
about the state of the world after executing a program. The non-determinism
is resolved by opting for those choices that maximize a reward function. For
details we refer the interested reader to [3]. Once CAESAR has collected all the
necessary information as described above, it determines an execution strategy
for the non-deterministic procedure sort_cups such that the desired arrangement
of the cups is achieved eventually. This is done by means of the decision-theoretic
planning just mentioned. In our scenario, the reward function only considers the
number of actions needed to reach the desired goal situation. Therefore, CAESAR
computes the re-ordering with a minimum number of movements.

The outcome of the decision-theoretic planning is a so-called policy, i.e.
a conditional READYLOG program that contains the optimal course of action
to achieve the goal. Alg. 2 shows the simplified policy for an example run of
robOCD. In the policy, positions p;—ps are the initial positions of the three cups
while position p4 is used as a temporary spot in re-ordering the cups. The method
exogf-Update is used to update the robot’s world model to account for changes
which were not due to the robot’s actions. The current position of the cup with a
specific color is retrieved again every time with the helper function cup_position.
The initial order of the cups in the example was “green, blue, red”. The desired
final order is “red, green, blue”. The optimal re-ordering, i.e. the re-ordering with
the minimum number of actions consists of four move_cup actions. To achieve
the goal, the robot needs to first move the blue cup to the spare position, then
move the green cup to the second spot. After this, the red cup is moved to the
first spot and finally the blue cup can be put at the third position. This yields
the final order.

The application described above shows the potential benefit of deliberation
and that it can be integrated in the behavior specification of a robot very easily.

The high-level control with its decision-theoretic optimization capabilities could
be used for path-planning or for more complicated tasks such as planning the
course of actions in daily activities of an elderly person. In an extended version
of the demonstration the robot drives around looking for different tables with
cups on them, picks up cups from those tables and moves them from one table to
another. Then, the robot also uses its localization and navigation capabilities to
get around and remember table positions. The different versions of the system
were successfully showcased repeatedly, most notably at a national RoBoCup
competition and later at an international conference.

4 Conclusions

In this paper, we presented an interactive demonstration where our domestic
service robot CAESAR orders cups on a table. The demo integrates methods for
robust human-robot interaction like speech and gesture recognition with a logic-
based high-level control. The robot can perform a complex task in a domestic
setting where it benefits from its deliberation capabilities by using decision-
theoretic planning to determine an optimal course of action. Although the demo
application of sorting cups seems simplistic at first glance, the system is extend-
able to more sophisticated tasks with only little effort.

References

1. Boutilier, C., Reiter, R., Soutchanski, M., Thrun, S.: Decision-theoretic, high-level
agent programming in the situation calculus. In: Proc. of the 17th Nat’l Conf. on
Artificial Intelligence (AAAT00). pp. 355-362. Menlo Park, CA (July 2000)

2. Doostdar, M., Schiffer, S., Lakemeyer, G.: Robust speech recognition for service
robotics applications. In: Proc. of the Int’l RoboCup Symposium 2008 (RoboCup
2008). LNCS, vol. 5399, pp. 1-12. Springer (2008)

3. Ferrein, A., Lakemeyer, G.: Logic-based robot control in highly dynamic domains.
Robotics and Autonomous Systems 56(11), 980-991 (2008)

4. Levesque, H.J., Reiter, R., Lespérance, Y., Lin, F., Scherl, R.B.: Golog: A logic
programming language for dynamic domains. J Logic Program 31(1-3), 59-84 (April-
June 1997)

5. Niemueller, T., Ferrein, A., Beck, D., Lakemeyer, G.: Design Principles of the
Component-Based Robot Software Framework Fawkes. In: Proc. Int’l Conf. on Sim-
ulation, Modeling, and Programming for Autonomous Robots. Springer (2010)

6. Niemueller, T., Ferrein, A., Lakemeyer, G.: A Lua-based Behavior Engine for
Controlling the Humanoid Robot Nao. In: Proc. Int’l RoboCup Symposium 2009
(RoboCup 2009). LNCS, vol. 5949. Springer (2009)

7. Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Imple-
menting Dynamical Systems. The MIT Press (2001)

8. Schiffer, S., Baumgartner, T., Lakemeyer, G.: A modular approach to gesture recog-
nition for interaction with a domestic service robot. In: Proc. Int’l Conf. on Intelli-
gent Robotics and Applications. pp. 348-357. LNCS, Springer (2011)

9. Wisspeintner, T., van der Zant, T., locchi, L., Schiffer, S.: Robocup@home: Scientific
Competition and Benchmarking for Domestic Service Robots. Interaction Studies.
Special Issue on Robots in the Wild 10(3), 392-426 (2009)

