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Abstract.

In highly-dynamic domains such as robotic soccer it is ingoar
for agents to take action rapidly, often in the order of atfoacof
a second. This requires, a possible longer-term planningpooaent
notwithstanding, some form of reactive action selectiocmagism.
In this paper we report on results employing decision-teeerling to
provide a ball-possessing soccer agent in theUSATION LEAGUE
with such a mechanism. The approach has payed off in at bwast t
ways. For one, the resulting decision tree applies to a marget set
of game situations than those previously reported and pesfovell
in practice. For another, the learning method yielded a squali-
tative features to classify game situations, which areuidmfyond
reactive decision making.

1 Introduction

In highly-dynamic domains like robotic soccer it is impartdor
agents to take action rapidly, often in the order of a fractid a
second. This is especially true in the application domaimsiiered
in this paper, the BBOCUP SIMULATION LEAGUEwith 11 players
per team on a 2D playing field. Such tight time constraintsiireg
a possible longer-term planning component notwithstapdsome
form of reactive action selection mechanism. Bgctivewe mean,
roughly, that decisions are made solely on the basis of aigésa
of the current situation or world model. In particular, thigcludes
any evaluation of different possible courses of actionsgdanning.
When presented with a game situation in thevi @& ATION

robotic soccer can be thought of as a classification probvemere
a game situation is classified according to the best nexbracti
Machine-learning techniques suitable for classificati@decision-
tree learning such 893 [9] or C4.5 [10]), neural networks [14, 21]
and reinforcement learning [17, 21, 19].

For our work we have chosen decision-tree learning, in Qat,
C4.5, as it is capable to deal well with both issues raised abowe. F
one, given a sufficiently large set of training examplesstrstem au-
tomatically builds a decision tree, which encodes the rideaction
selection. Compared to other techniques like neural nétsyateci-
sion trees also have the well-known benefit that they candpeirted
and understood by humans. For another, it is not necessdsctde
beforehand what the relevant features are for classifitafith that
is needed is that the system is given a sufficiently largeTéet.rel-
evant features are produced as a side-effect of buildingl¢kesion
tree in the sense that only those features or attributegtestually
appear as nodes in the decision tree are thought of as relevan

We remark that we applied learning to all types of players (ex
cept the goalie) anywhere on the field, but we restrictededves to
players in ball possession.

We believe that our results are noteworthy for at least the fo
lowing reasons. For one, the resulting decision tree cozeraich
wider range of game situations and actions than in previoork w
such as [7, 20]. For another, as we will see in the discusdi@x-o
perimental results, a team using this decision tree, buthwisi oth-
erwise not optimized at all, performs surprisingly welln&ily, as
already noted above, while decision-tree learning byfiteds not

LEAGUE, humans are usually quite capable of choosing a reasoneome up with qualitative world descriptions, it is nevetéiss useful

able action for, say, the ball-possessing agent. Howelvis,niot at
all easy to encode this “expert” knowledge in a way suitableain
artificial soccer agent for at least two reasons:

1. It is not clear what the salient features of a game sitnatie,
which determine the action to be chosen. Presumably, tlesse f
tures would include qualitative descriptions such as tramte

in pruning irrelevant attributes from a given set.

This rest of the paper is organized as follows. In Section 2 we
briefly discuss existing learning methods applied to rabsticcer.
In Section 3, we describe our approach to decision-thedesining
of action selection for a soccer agent in th@1SLATION LEAGUE,
followed by a discussion of experimental results in SectloiThe
paper ends with a brief summary and concluding remarks.

member or opponent closest to the ball. But what the relevant

ones?
2. Even if we were given those features, it is not clear howans-

late them into rules for decision making. We could try to hand

code them, but this approach is likely error-prone, not totioa
the difficulty of eliciting the rules from the human expert.

2 Redated Work

In this section we present some of the work on applying machin
learning techniques to robotic soccer and action seledfoe focus
is learning of basic agent skills suchdribbling, passingandinter-

Perhaps the best way to overcome these problems is to usepting.[13], for example, use reinforcement learning for this pur-

machine-learning techniques. Deciding what action to take in
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pose. In [15, 20] a form of so-callddhayered Learnings proposed.
It provides a bottom-up hierarchical approach to learniggna be-
haviors. In this framework, the learning at each level iecliy used
in the learning at the next higher level. The bottom layersiers
low-level individual agent skills such asall interceptionor drib-



bling. In contrast to [13], the behaviors are learned using a neetal

work. At higher levels, action selection of the ball-posseg agent ‘ Meta - Level Skills ‘
is learned using multi-agent reinforcement learning. Weaxk that T ] . :
the authors consider only eight kicking actions, which ichmmore ‘ High Level Skills ‘
limited than in our case. (A comparison of multi-agent reioe- 1 i | ;
ment learning methods in the soccer domain can be found i) [18 ‘ Intermediate Skills ‘
In earlier work, Matsubara et al. [7] considered action c&e us- 1 1 1 ;
ing neural networks. There the scope was even more limitethey ‘ Low- Level Skills ‘
restrict themselves to the decision of whether to shoottliréo the I | J I
goal or to pass to a better positioned player. Decisionigaming : :

‘ Soccer Server Commands ‘

has been applied in robotic soccer as well. For example gWessd
Weland [22] recently applie@4.5 to learning aspects of the strategy
of the opposing team in the!BULATION LEAGUE.

Outside of the soccer domain, action selection for robotdten
addressed using reinforcement learning. For example,diddoses
hierarchical Q-learning for action selection, where thetod task of
a robot is divided into a set of simpler problems each leasggsh-  The meta-level actions calculate necessary argumentsebeditiing
rately. Another reinforcement learning approach to theacielec-  the corresponding high-level actions. In our current impatation,
tion problem was proposed by Humphrys [8]. Each behavioruteod we have defined 15 meta-level actions (see below). An exafaple
proposes an action with a certain weight of which the actidgh the such an action is the dribble action depicted in Fig. 2. Soetéstbns
highest weight is executed. The weights of the actions ardified like with which angle and speed the agent should dribble aéen
based on the difference between the weight of the actiorgb®in  For the supervision process it is very important that theestipor
ecuted and the action a behavior module proposed using adbrm has the semantics of the respective meta-level action inl inimr-
reinforcement learning. The application domain presemté¢8]] isa  der to give the right advice. The high-level dribble actiarturn is
simulated environment of a house keeping robot. responsible for correctly determining when to kick andricépt the
ball in order to move player and the ball to the demanded iposiin
the field.

dribble()
if ball is not in kickable marginhen
return intercept()

Figurel1. Skill hierarchy

3 Learningthe Decision Tree

In this section we present how we appli€d.5 to our SMULATION
LEAGUE agent. We start with an overview of the categories which
should be learned, i.e. the action which the agent shoufdiper In
Section 3.2, we present the attributes which turned out &ppeopri-

ate for the SMULATION LEAGUEbefore we show how we instructed
the agent in Section 3.3. The consulting procedure in oagiames

is represented in Section 3.4.

if path toward opponent goal is fréleen
ang <+ direction to opponent goal
type < DRIBBLE_FAST

elseif path toward goal is fairly freehen
ang <+ direction to opponent goal

3.1 Skill Hierarchy and Meta-L evel Actions o type < DRIBBLE_SLOW

As C4.5 cannot deal with parameterized categories to be learned Sjng + getDirectionOf WidestAngle ()
[10], we implemented special behaviors which are to be tadelny if ang = wide then

the decision tree. Figure 1 gives an overview of the skiltdniehy type < DRIBBLE_FAST

we use in our reactive soccer agent. The low-level actioerlapm- dse

prises basic actions likeashing to a positionaccelerating the ball type < DRIBBLE_SLOW

to a certain velocityor freezing the ballThose commands are trans- end if

lated into the ® CCERSERVERCcOomMmands, such afash kick, turn, end if

etc. The intermediate action layer defines actions fil@ving to a end if

position or kicking the ball to a certain pointwhich are based on return dribble(ang, type)
the low-level action layer. High-level actions use the iintediate
actions for the desired behavialribbling andpassing the ball to a
teammatare two examples of high-level actions taken from [1].
C4.5 requires that output values (categories) of decision treest
be discrete and specified in advance. This means actionocesg
which we use in the learning process should not take any agtim
order to satisfy th€4.5 requirements. Therefore, we cannot directly
use the high-level actions in the learning process sincg ribguire
some arguments in order to be executed. For that reason, @t nee Qutplay OpponentThe ball is played into the opponent's back

Figure2. The dribble action which is executed by the decision tree

In the following, we give an overview of the categories (rletzel
actions) which were used.

new actions which should have the form of a argument-freerelis followed by an intercept action.

category. In order to accomplish this purpose we have inred o Dribble calculates the angle relative to the agent where it should
the meta-level actions which use the high-level actionsetoegate dribble to. A second argument is the speed with which the tagen
the desired behavior. These skills are parameterless sueipns should dribble. Two different speeds are distinguishealvsind

of skills from the other layers suitable to deal as a catefmr{’4.5. fast.



e Direct Passcomprises several actions. It is distinguished between
direct passes of an attacker and between a defensive plagier a

a midfielder. Moreover, there exists a pass action for baskem
and passes in front of the player. We have to split the dirassp
action because the different aspects (playing a pass toarpha
front or to the back) does not fit in one pass action moddls
is not able to determine the differences in the semanticg loyl
looking at the attributes. Each different instance of adipass
share the calculation of the “least congested team-mateirist
tically, this team-mate is chosen. The heuristics is basethe
number of opponents in a certain distance around the pltnere
exists a free pass-way to that respective player, and som& mo

e A Through Pasds a pass which is played behind the opponent
defense. A free space behind the defensive line is foundenter o

team-mate is able to receive.

e A Leading Passgs a pass in the run-way of the respective team- o

mate. It is calculated if a team-mate can intercept the i@t the
pass in a certain amount of time.

e The Shoot at Goahction calculates a point on the opponent goal ¢

line with maximum distance to the opponent goal keeper.

e With Clear Ball the player simply kicks the ball as far away as e

possible. For instance, if a defender is not able to dribbleass
the ball to a team-mate it seem reasonable to bring the bédras
away from the own goal as possible.

e Turn to Opponent GoadlVhen the agent is in ball possession and e
cannot see the opponent goal in order to perceive the opgenen

goal keeper position, this action enables the agent to tuvards
the goal without leaving the ball.

3.2 Constructing the Attribute Set

In order to generate a good classification by thé&5 algorithm
choosing an appropriate attribute set is a crucial taskirtgaivrel-
evant attributes in the attribute set is the main reasomverfitting
[9, 10]. Another difficulty for finding an appropriate setdian the
nature of the soccer domain. As there are different playsegyand
situations during a game where each player has to reactferefit
ways according to its type and location on the field, we havacto
count for this by dividing the field into different regionsn® such
possible division is depicted in Figure 3 which was propasegd].
One approach to the problem could have been to learn diffeneas
for different player types, such astacker midfielder defendey by
constructing the test sets with only the relevant infororatiHow-
ever, this approach raises several problems: (1) it is ivaltto rec-
ognize all relevant regions; statically dividing the fiefdd defense,
midfield and attack is not sufficient because also a defendgintm
sometimes be located in a midfield region, (2) a separatdrcmtion
of the training set for each region and player type is a tesltagk
and available data from thedGPLAYER® consists of whole game
information, (3) different decision trees for each playgret accord-
ing to the game situations demand a selection mechanisnteflsat
which tree should be consulted; this would take the samdegmoto
a higher level.

Therefore, we decided to use only one decision tree contgini
the distinguishing features like player types and playiegion as
attributes. We also restrict the consulting of the decisiea to game
situations where players are in ball possession.
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Figure3. Possible regions a player can be in.

Type of playeris a discrete attribute and distinguishes between

defender, midfielder, and attacker.

Playing regionis a discrete attribute representing in which region

the player is located. The different regions are depictdeigure

3.

Closest teammate to bai a boolean attribute denoting if the

player is the closest player to the ball.

Distance and angle to ball, goals and opponent goal kegper

continuous attributes determining the agent’s distandeagle to

the ball, the own as well as the opponent goal, and to the agyion
goal keeper.

Distances and angles to the visible teammates and oppoasants

a number of attributes denoting the visible teammates apd-op

nents of an agent.

o Closest team to the bak a boolean attribute which is true if one
player of our team is the closest player to the ball and fatlsere
wise.

e Ball possessing teatakes three values corresponding to whether
the ball is in kickable range for our team, for the opponeatrte
or for none.

e Ball distances and angles to both goae continuous attributes
representing the distances and angles of the ball to botheof t
goals.

e Opponent goalie’s distances and angles to its goal pgsnum-

ber of attributes representing the the distance and angreafp-

ponent goalie to the opponent goal posts.

The reader should note that it was the decision-tree legualo-
rithm that ultimately decided that these are the relevaribates of a
game situation for a player in ball possession, as only thttsbutes
were used in the decision tree. For example, it turns outdhbt
the five nearest players to the ball are ever considered relevamt. On
possible explanation for this are the restrictions due to dimen-
sions of the current IULATION LEAGUE, where passes across the
opponent defense are impossible. Other attributes whick wsed
during tests were not contained in the resulting tree ancefbiee
deemed irrelevant.

We also remark that the choice of attributes may likely bfedgit
for players other than the one in ball possession. For ex@naple
would not expect the goalie to care much about the distantieeto
opponent’s goal.

The reader should note that many of the above attributes &ave
continuous domain. We make use®{.5’s ability to discretize con-

From the considerations above and from many experiments Wgn s attributes given the training set. This discreiimasome-

arrived at 35 attributes, which can be summarized as follows

3 The LOGPLAYERIs a tool coming with the B1ULATION LEAGUE simula-
tion server to replay recorded games.

times results in wrong classifications during the consgliimase,
as hard bounds on the attributes are drawn. Nevertheless ¢neors
seem acceptable in practice.



MyPl ayer Type :
Bal | Di st anceToOpponent Goal <= 18. 2609 :
MyCurrent Pl ayi ngRegion = 4: 9 (6.0/1.2)
MyCur r ent Pl ayi ngRegi on = b5:

Bal

MyDi st anceToQpponent Goal <= 12.4953 :

MyDi st anceToQur Goal <= 92.6233 : 1 (3.0/2.1)
MyDi st anceToQur Goal > 92. 6233 :
| M/Di st anceToQpponent Goalie > 18.5529 : 9 (3.0/2.1)
MyDi st anceToOpponent Goal i e <= 18. 5529 :
| Opponent Goal i eGoal Ri ght Cor ner Angl e <= 47.7002 : 11 (40.0/2.6)
| Opponent Goal i eGoal Ri ght Cor ner Angl e > 47. 7002 :
[ | MyAngl eToBal | <= 26.746 : 11 (4.0/1.2)

I
I
|
| | | MAngleToBall > 26.746 : 10 (2.0/1.0)

MyDi st anceToQpponent Goal > 12. 4953 :

MyDi st anceToQpponent Goal i e <= 6. 47349 :

| Opponent Goal i eGoal Ri ght Corner Di stance > 16.9349 : 9 (5.0/2.3)
| Opponent Goal i eGoal Ri ght Cor ner Di st ance <= 16. 9349 :

| | MyDi st anceToSecondVi si bl eCpponent <= 5.27978 : 4 (3.0/1.1)

| | MyDi st anceToSecondVi si bl eCpponent > 5.27978 : 11 (11.0/2.5)
MyDi st anceToQpponent Goal i e > 6.47349 :

| MyAngl eToOpponent Goal <= -103.167 : 10 (3.0/1.1)

| M/Angl eToOpponent Goal > -103. 167 :

| MyDi st anceToThi r dVi si bl eOpponent <= 8. 71111 :

| | MyDi st anceToQpponent Goal <= 14.6303 : 9 (2.0/1.0)

| | MyDi st anceToOpponent Goal > 14. 6303 :

| | | MyAngl eToFi r st Vi si bl eTeanmate > 53.8028 : 8 (5.0/2.3)
| | | MyAngl eToFi r st Vi si bl eTeanmmat e <= 53. 8028 : [ S7]

| MyDi st anceToThi rdVi si bl eCpponent > 8. 71111 :

I

I

I

I

I

|

|

Cl osest TeaniroBal | 0: 1 (0.0)

I
| Cl osest TeaniroBal | 2: 11 (2.0/1.0)

| Cl osest TeanifoBal | = 1:

| MyDi st anceToQur Goal > 95.9754 : 9 (5.0/2.3)

| M/Di st anceToQur Goal <= 95.9754 :

|1 M/Di st anceToThi rdVi si bl eTeammate <= 14. 797 : [ S8]

I
|
|
|
|
|
I
I
I
I
I
| MyDi st anceToThi rdVi si bl eTeanmate > 14. 797 : [ S9]

Di st anceToOpponent Goal > 18. 2609 :

Angl eToOpponent Goal <= 98. 1456 :

MyAngl eToOpponent Goal <= -89.512 :
MyDi st anceToFi r st Vi si bl eCpponent <= 1.87341 : 8 (21.0/2.5)
MyDi st anceToFi r st Vi si bl eOpponent > 1.87341 :

MyAngl eToOpponent Goal <= -118. 357 :
Opponent Goal i eGoal Ri ght Cor ner Angl e <= 12. 9107 : 10 (53.0/3.8)
Opponent Goal i eGoal Ri ght Corner Angl e > 12.9107 : 8 (3.0/1.1)
MyAngl eToOpponent Goal > -118. 357 :
MyAngl eToFi rst Vi si bl eTeammate <= -113.017 : 4 (7.0/2.4)
MyAngl eToFi r st Vi si bl eTeammate > -113. 017 :
| M/Di st anceToThi rdVi si bl eTeamat e <= 13. 8264 :
| ] MyDi st anceToThi r dVi si bl eOpponent <= 14,2218 : 8 (9.0/2.4)
| ] MyDi st anceToThi r dVi si bl eOpponent > 14.2218 : 1 (4.0/2.2)
| MyDi st anceToThi rdVi si bl eTeammate > 13. 8264 :
| MyDi st anceToQur Goal <= 74.9802 : 10 (15.0/4.7)
MyDi st anceToQur Goal > 74.9802 : 4 (2.0/1.8)

MyAngl eToOpponent Goal > -89.512 :
Bal | Angl eToOpponent Goal <= 32. 6327 :

Cl osest TeanifoBall = 0: 1 (0.0)

Figure4. Excerpt from the resulting decision tree.



3.3 Gathering the Training Data

For the supervision process we extended tbebLAYERtO be able
to associate the actions described in Section 3.1 to plajéis

3.4 Consulting the Decision Tree

In the previous sections, we considered how the attributedata
sets are gathered through the supervision process t(#iing
phas@. After the training phase thmodel generation phastarts in

supervisor monitorgenerates the training examples by storing thewhich these input files are passed through@He5 system, and the

output category (actions) together with the input catego(ivorld
model information).

Itis important to note that while calculating the attributdues we
cannot use the global information from the&rPLAYERdirectly. In-
stead, we must calculate the supervised agent’s relativiel wmdel
from the global information and derive the attribute valdesm
it. This is important because while the agent consults tresibm
tree in on-line games, the world model information comesftbe
SOCCERSERVER, Which supplies the agent with relative information
about the world model. Therefore, in the supervision pretsscal-
culating the relative information from global view, it is gnanteed
that our training and test data are almost from the samehmigtn.

Another important point to be noted is that the supervisough
have a good idea of how soccer is played in order to give adwite
agent. For humans it is easier to classify a given situatictuding
gualitative measures and give advices of what to do tharriodiize
a good action selection scheme. In the supervision protiesiiea
to specify the action classification of a play situation wees & player
should select the most suitable action which provides hith e
best advantage among alternatives actions. In this caseawsay
that each action has a priority which depends on the player and
the region the agent plays in. Below is some part of the schibate
we used in the supervision process while advising the agents

if scoring prob. is very high then
goalshot
else if agentin defensive region close to our goal then
if no opponent close and agent faces our goal then
turn to opponent goal
else if there is a very free teammate ahead then
pass ball directly to this teammate
else if trajectory to opponent goal is fairly free then
dribble forward
else
clear ball
endif

else if agent in wings close to opponent goalie then

decision tree model is produced by executing@e5 program. That
is, at the end of these phases we have acquired a model winidteca
used by an agent to classify unseen cases. In ttedRUP context,
classification means offering a convenient action to theeage it is
playing an on-line game in thed® CERSERVER. This task is done
in a different process which we call thownsult phasen which an
agent consults the resulting decision tree to select aaraitia play
situation. An agent consults the decision tree model wherbétl is
kickable for him. In this case, a new process is started irckvtiie
attribute values are calculated according to the worlchsitn. Based
on these values the decision tree offers an action categaichwvill
be performed by the agent in this particular world situgtemd the
consult process halts for this time instance. Wheneverdkatas in
the ball-kickable margin, this process is started agairis process
repeats until the game finishes. The hierarchical relatiprizetween
these phases is shown in Figure 5.

Model Generation
Phase

Training Phase

H

Data
collection | o

C4.5 o’/ \

Processing
raw data

Atiribute
set oreation |

Figure5. Overview of processing theeactive Componeifidr our soccer
agents

Figure 4 shows parts of the resulting decision tree for a elidifi
player. Attributes are the nodes in this tree, élyPlayerTypeor
BallDistanceToOpponent Gaalhe leaves of the tree can be identi-
fied by numbers which correspond to a respective meta-letieira
e.g. action 1 stands faribble, 4 represents through passand 11
meansshoot to goal The pair which follows an action shows the
number of training instances and the number of misclastiits
The numbers in square brackets represent another subtiek ish

One might ask why we simply did not implement the above Not shown here for readability.

scheme instead of using a learned decision tree. As maiivate
the introduction human beings are good in classifying thddniato
qualitative categories but encoding this as agent contfblvare is
much harder. As one can see from the scheme it uses qualissite-
ments like “very” or “fairly”. When supervising “fairly” ievaluated
by the supervisor in the complex situation the agent is in.ti@n
other hand, by having a qualitative world model it would beein
esting to compare an agent using the supervision schemdias ac
selection with the decision tree learned®y.5.

Naturally, the supervisor makes mistakes in the classificatr
decides on the border line, giving contradictory advices.&C4.5
is very robust against such mistakes they do not matter tbahras
they would in a hand-coded variant of the scheme.

4 Empirical Results

For assessing the quality of the learned decision tree wdumbad
several experiments.

The first question of interest was the accuracy of our trginiata.
In total, we collected 3000 training examples and groupeantin
training sets in steps of 500 examples up to the largest setaice
ing the whole number of training examples (see Table 1). &dnset
size we built several instances choosing randomly from thelevset
of training data. Table 2 shows the classification errorstafbe col-

umn Tree sizeeflects the number of nodes the tree contains. Based

on this table we can make the following observations:



First, the results show a (slightly) decreasing error rait &an
increasing number of examples. The fact that we are left aitler-
ror rate of almost 9 % even before pruning has at least twonsas
One reason is that the supervisor makes mistakes givingazhot
tory examples. The other is that we use a large number ofreonti
uous attributes. For a continuous attributel.5 finds a split value
which maximizes information gain for the respective attté This
discretization leads to misclassifications.

Second, in each category, we see the error rate of the prreeeibt
higher than that of the original tree. Actually, this resalexpected
since in the pruning process some branches of the tree dezeep
by a leaf node, yielding misclassification of some of the eplas
which were previously classified correctly.

Finally, it should be noted that the size of the trees grdguiat
creases as the size of training data gets bigger, since @dreew
branches to the decision trees in order to correctly chasisd data
instances.

Category| 1 | 2 | 3 | 4 | 5 | 6
SetSize | 500 | 1000 | 1500 | 2000 | 2500 | 3000

Table1l. Sizes of the test sets.

Cat Before Pruning After Pruning

" | Treesize| Error(%) | Tree size| Error
1 174 8.40 144 9.74
2 353 7.82 296 | 9.40
3 493 8.76 422 9.94
4 672 8.60 588 | 9.75
5 846 8.20 722 | 9.50
6 979 8.02 847 9.30

Table2. Error rates for the training set.

The next interesting question was how good the decisiorctese
sifies unseen examples. We therefore played a large numbants
against several teams with a different tree for each cagdgmm our
training set (For each category we collected 1500 test eben-or
assessing “ground truth” we classified for each logged ghm@ait-
uations according to the supervision scheme we presentekgiion
3.3. The results over the training games are presented ie 3and
Figure 6

Category | 1 | 2 | 3] 4| 5| 6
Classification Ratio (%) 35.1 | 46.3 | 59.8 | 64.1 | 66.8 | 66.5

Table3. Results of training games.

Accuracy {%)

1500 2000 2500 3000 3500

Data size

0 500 1000

Figure 6. Learning curve of the agent

restrictions into account, we can say that this value isegueason-
able. Especially our results seem to compare favorably wiitter
case studies. For example, Matsubairaal.[7] performed an exper-
iment, in which only the simple situation of two attackergatpting
to score a goal against a single opponent is examined. |rexipisr-
iment, the attackers learned when to select either ‘passhmot’
actions. The ratio of the correct classification that theltsshowed
was 68 %. Note also that the choices in this experiment arsifar
pler than in our case where we consider all skills for all &/pé
players.

AllemaniACs: Robolog
AllemaniACs: VirtualWerder
AllemaniACs : UvaTrilearn
AllemaniACs : WrigthEagle

oOOoORrN
oOwWwoo

Table4. Some test game results

We played several games againstMSLATION LEAGUE teams
from 2003 showing the performance of the learned decisi ffa-
ble 4 shows the results of some of these games. Against nredioc
teams like Robolog or Virtual Werder we are able to win. Agéain
the world champion Uva Trilearn our approach leaves rooninfiar
provement. One has to note that for these games the agenthesed
decision tree when a player was in ball possession and edksaime
standard behavior like “move to strategic position” or ‘tsaball”
otherwise. The agent was not highly tuned as we wanted tchsee t
performance of the decision tree.

5 Conclusions

In this paper we described an application of the decisiea-tearn-
ing methodC4.5 to RoboCup’s 8MULATION LEAGUE. The method
was used to learn the action selection strategy of the wealm
that is, defenders, midfielders, and attackers, when apisye ball

By looking at the table and figure we can see that there is @sharpossession. We were able to obtain decision trees whiclonpestl
increase in the correctness between the Category 1 andd@ateg surprisingly well in real game situations. Moreover, thetmod is

3. However, the performance increases only slightly betw@at-
egories 3 and 5. In the last category we even see a small reduct
in the correctness of the classification. This suggestdhieatptimal
size of the training set is reached at around 2500 examples.

The highest ratio of correct classifications we obtainedi8 66
(Category 5). If we take the RoboCup’s domain charactessind

suitable for selecting the relevant attributes from a gisenof qual-
itative world descriptors.

While this paper focusses on reactive action selection, elieve
that cooperative team-play cannot be achieved by reactivea
alone, taking only the current game situation into accoGohsider,
for example, the situation where a wing-change would be sszoy



because one side of the field is blocked by opponents. A gonideeh  [4]
would be to shift the game to the other wing of the field. It ischia
imagine how such behavior could come about without some fidrm
deliberation where different possible courses of actiecansidered
and evaluated.

For this purpose we have developed an architecture which pro
vides for reactive control as well asdeliberative componenising

the logic-based language Golog [6]. Golog is a languagecfasan-

(5]

ing about actions and change and is based on the situationlusl (7]
[16]. Recent extensions like dealing with a continuouslaraling

world [5] and the integration of a form of decision-theocgilanning

[2] to account for the uncertainty arising in the soccer domaakes (8]
it a suitable language to reason about scenarios like a eliagge

and to coordinate the agents accordingly (cf. [3] for an eenn

the soccer domain).

When using deliberation one needs a symbolic representafio (]
the environment. Therefore, we are interested in building gual- [10]
itative world model which can be used for the deliberativenpo-
nent. One of the central problems is finding the approprittidates  [11]
to describe the environment in a qualitative way. Recetijla et
al. [4] approached this problem by looking at the issue otEpi@g 12]
soccer moves based on the knowledge from a domain expedis (f [13]
[12] in their case) for different BBOCUP leagues. As soccer theory
is described in a very abstract fashion, qualitative dpsonis clearly
seem important, but the theory itself does not answer thstiguneof [14]

which qualitative descriptions are most suitable.
The present paper can perhaps be thought of as one step in thig)

direction. As we saw, one interesting outcome is that fopthger in

ball possession only the five nearest team-mates and opjsceam

to matter. Applying the presented approach also for othaeyerk H%

like the goal keeper one probably can learn more about tkeaet

information in robotic soccer. [18]
We believe that the proposed method for reactive actiorcsete [19]

is not restricted to the ®oCup domain. Highly dynamic domains
have in common that actions must be performed rapidly, effen i[20]
those actions seem to be sub-optimal. Applying decisiee-tearn-

ing yields one method for implementing a reactive actiorea@n
mechanism. In future work we will apply this approach to othe [21]
dynamic real-time domains, for instance to soft-bots in poter
games, to get comparable results. Also the suitability afsien-

tree learning for achieving good attribute sets for quiigaworld
modeling will be further investigated.
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