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Robot sensors are usually subject to error. Since in many practical scenarios a probabilistic
error model is not available, sensor readings are often dealt with in a hard-coded, heuristic
fashion. In this paper, we propose a logic to address the problem from a KR perspective.
In this logic the epistemic effect of sensing actions is deferred to so-called fusion actions,
which may resolve discrepancies and inconsistencies of recent sensing results. Moreover, a
local closed-world assumption can be applied dynamically. When needed, this assumption
can be revoked and fusions can be undone using a form of forgetting.
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1. Introduction

Even for supposedly straightforward tasks a robot needs to perform complex perception
to gather sufficient knowledge about the environment and the relevant objects. Imagine a
table with several items on it, like a coffee pot, a pack of sugar, and a mug, as depicted in
Figure 1. Depending on her viewpoint, even a human observer may obtain only a partial
or perhaps even mistaken view of this scene. Likewise, a robot equipped with an RGB-D
camera, which provides color and distance of each pixel, can only perceive those parts
of objects which face the camera. For example, in Figure 1 the sugar pack is not visible
to the robot because it is occluded by the coffee pot. Similarly, the robot cannot see
the mug’s handle because it is at the back side. To obtain complete information about
the objects on the table, the robot, just like a human, needs to observe the scene from
different viewpoints and as the circumstances require even needs to inspect some objects
more closely. This is called active perception because the robot needs to physically act –
for example, move around the table – to obtain new information (Bajcsy, 1988). Active
perception goes beyond passive sensing such as robot localization where new information
about the robot’s position is made available continuously by the navigation subsystem
without active intervention by the high-level control of the robot.

To perform active perception reasonably, a robot needs to reason about what it knows
and what it can do to obtain additional knowledge. Incomplete and incorrect sensing
results need to be combined consistently and find their way into the robot’s knowledge. In
this paper, we address the outlined problem in the situation calculus. We present a variant
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Figure 1. A PR2 robot looking at a table. From the current perspective, the sugar pack is occluded by the
coffee pot and the handle of the mug is not visible, causing the robot to confuse it with a cup. From a different

perspective, however, the robot would see the sugar pack and recognize the mug correctly. Hence, sensings from

different perspectives are inconsistent.

of the modal epistemic situation calculus (Lakemeyer & Levesque, 2004), which supports
reasoning about incomplete and incorrect sensings. In fact, in our new logic sensing
actions have no immediate effect on knowledge to avoid inconsistencies; instead, sensing
results are memorized and then merged by dedicated sensor fusion actions. Furthermore,
actions may enforce a local closed-world assumption to solidify the agent’s opinion on
certain things. For example, after looking at the table from various viewpoints, the robot
could fuse these sensings. It then believes1 that some objects are on the table, but it does
not rule out that there may be more. After further sensings and fusion actions from yet
more viewpoints, the robot will eventually conclude that it has seen all the objects on
the table. In order to reflect this in its knowledge base, the robot will issue an explicit
close action, after which it believes that only those objects are on the table which it
has seen so far. To undo the epistemic effects of actions, we also incorporate a notion
of forgetting. This is useful, for example, after completing a task involving the kitchen
table and when it is no longer required to remember which objects were on the table.
Likewise, it may be necessary to undo the epistemic effect of a close action in case more
objects are found on the table after all.

The rest of the paper is organized as follows. In the next section we present the new
logic ESF and show some of its properties. In Section 3 we model two different scenarios
with ESF . While the first example is meant to familiarize the reader with ESF , the second
one discusses our motivating tabletop scenario. After discussing related work in Section 4,
we conclude.

2. The Logic ESF

ESF is a first-order modal logic for reasoning about actions and knowledge. It is based on
the modal epistemic situation calculus ES proposed by Lakemeyer and Levesque (2004).
While they later proposed an extended version in (Lakemeyer & Levesque, 2011), we
refer to the original logic to simplify the presentation.

1In this paper we use the terms knowledge and belief interchangeably.
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2.1. The Language

The language ESF consists of formulas over predicates and terms. To ease the presen-
tation, we only allow rigid terms and fluent predicates. That is, actions have no effect
on the interpretation of a term, but they may affect the truth value of predicates. We
assume a countably infinite supply of function and predicate symbols of every arity.

Then the set of terms is the least set such that

• every first-order variable is a term;
• if f is a k-ary function symbol and t1, . . . , tk are terms, f(t1, . . . , tk) is a term.

A ground term is a term that does not mention variables. We denote the set of all
ground terms as R and the set of all finite sequences of ground terms including the empty
sequence 〈〉 as R∗. We often use r and z to denote elements of R and R∗, respectively.

The set of formulas is the least set such that

• if P is a k-ary predicate symbol and t1, . . . , tk are terms, then P (t1, . . . , tk) is an
(atomic) formula;
• if t1, t2 are terms, then (t1 = t2) is a formula;
• if α and β are formulas and x is a variable, then (α ∧ β), ¬α, ∀x.α are formulas;
• if α is a formula and t is a term, [t]α and �α are formulas;
• if α is a formula, n a natural number, and t a term, then Snt α, Kα, Oα are formulas.

We read [t]α as “α holds after action t” and �α as “α holds after any sequence of
actions.” Snt α is read as “the nth from last occurrence of action t sensed α,” Kα as “α
is known,” and Oα as “α is all that is known.” The purpose of Snt α is to reason about
one specific sensing result, whereas Kα refers to knowledge that is the result of fusing
previous sensings. Oα is typically used to express that a knowledge base is all the agent
knows initially (H. J. Levesque & Lakemeyer, 2001).

We will use ∨, ∃, ⊃, ≡, false, true as the usual abbreviations. We let Kifα stand
for (Kα ∨K¬α), which is read as “it is known whether or not α.”

To ease notation, we consider free variables as being implicitly universally quantified
with maximal scope unless noted otherwise. Instead of having different sorts of objects
and actions, we lump both sorts together and allow ourselves to use any term as an
action or as an object. When we omit brackets, the operator precedence in increasing
order is: �, ∀, ∃, ≡, ⊃, ∨, ∧, Kif , K, O, Snt , [t], ¬. For example, �[a]F (x) ≡ γF stands
for ∀a.∀x.�(([a]F (x)) ≡ γF ). We use sans-serif font for function symbols, like sugar.

There are three special predicates:

• Poss(a) expresses that action a is executable;
• SR(a, x) holds if x is a sensing result of a;
• CW (a, x) represents the closed-world assumption made by action a.

The precise meaning of these predicates is application-dependent, and therefore is not
fixed in the logic but part of the knowledge base (cf. Section 2.4). For example, a back-
ground theory might stipulate that Poss(move) is true only if the agent would not bump
into a wall when it moves. When a robot looks at a table, SR(sense, cup) could represent
that it perceives a cup. After looking at the table for a while, the robot might come to
believe it has seen everything there is to see: for all x, unless it believes On(x), it then
believes ¬On(x). This is called a local closed-world assumption on On(x). This effect is
achieved in ESF by an action r if CW (r, x) is defined as On(x).

A formula without free variables is a sentence. αxt denotes the result of substituting t
for all free occurrences of x in α. A formula with no modal operators ([t], �, Snt , K, O)
and no special predicates (Poss or SR) is called a fluent formula. A fusion formula has
a single free variable a and mentions no [t], �, K, or O. We denote fusion formulas by φ.
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2.2. The Semantics

In the possible-worlds style semantics of ESF , truth of a sentence is defined wrt

• a world w defining the extension of predicates after any number of actions;
• an epistemic state e representing what is known initially;
• a sensing history h, which memorizes the sensing results of all actions;
• a fusion formula φ, which defines how sensing results turn into knowledge;2

• a sequence of executed actions z.

We write φ, e, w, h, z |= α to denote that φ, e, w, h, and z satisfy sentence α. Before
turning to the semantic rules for the various language constructs, let us briefly discuss
our choice of domain of discourse and go over the components of the left-hand side of
the satisfaction relation.

As in (Lakemeyer & Levesque, 2004), we choose R as the fixed domain of discourse for
all worlds. In essence, this is like using the Herbrand universe as domain of discourse,
which also has the effect of making the unique names assumption for all ground terms.
Alternatively, we can think of R as a set of standard names, which are isomorphic to
a fixed, countably infinite domain. As we will see, this choice greatly simplifies the se-
mantics, as we can interpret quantifiers substitutionally and leads to a simple treatment
of quantifying-in. While we acknowledge that there are philosophical arguments against
substitutional quantification (see, for example, (Kripke, 1976)), we believe its simplicity
outweighs its possible disadvantages for our purposes.

The parameter z ∈ R∗ is the sequence of actions executed so far. Intuitively, we begin
with the empty sequence 〈〉 and then deterministically advance with each executed action
r to z · r. The action sequence z can be considered the world history since the initial
situation 〈〉.3 A world w maps each ground atomic sentence P (r1, . . . , rk) (for ri ∈ R)
and ground sequence of actions z ∈ R∗ to a truth value w[P (r1, . . . , rk), z] ∈ {0, 1}. An
epistemic state e is a set of possible worlds, which determine the agent’s knowledge. A
sensing history h maps each action sequence z · r (for z ∈ R∗ and r ∈ R) to a set of
worlds h(z, r), which intuitively contains all those worlds which agree with the sensing
result of r after z. Lastly, the fusion formula φar holds iff the given world satisfies the
sensor fusion performed by action r ∈ R.

When writing φ, e, w, h, z |= α, we often omit z and h when z = 〈〉. We allow ourselves
to omit further parameters when they are irrelevant to the truth of α. For example, when
α is a fluent sentence, we may omit φ, e, and h.

2.2.1. Semantics of the Classical Part of the Language

Defining the semantics of the classical, non-modal part of the language is straightforward
and works as expected. In particular, note the interpretation of quantifiers by substituting
ground terms for the quantified variable.

(1) φ, e, w, h, z |= P (r1, . . . , rm) iff w[P (r1, . . . , rm), z] = 1 for ground terms ri;
(2) φ, e, w, h, z |= (r = r′) iff r and r′ are identical ground terms;
(3) φ, e, w, h, z |= (α ∧ β) iff φ, e, w, h, z |= α and φ, e, w, h, z |= β;
(4) φ, e, w, h, z |= ¬α iff φ, e, w, h, z 6|= α;
(5) φ, e, w, h, z |= ∀x.α iff φ, e, w, h, z |= αxr for all r ∈ R.

2The fusion formula φ is part of the model for technical reasons. Unlike ES (Lakemeyer & Levesque, 2011) and
the Scherl–Levesque (Scherl & Levesque, 2003) framework, we cannot use a single predicate and thus keep φ in

the theory, because truth of φ usually does not depend on a single world but also on the sensing history, which is
subject to change over the course of action and in introspective contexts.
3z is the semantic counterpart of the situation terms in the classical situation calculus (Reiter, 2001).
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Recall that the connectives ∨, ∃, ⊃, and ≡ are just abbreviations.

2.2.2. Actions and Sensing

We now turn to the semantics of actions and their sensing results. Each action r may in
principle yield countably infinitely many sensing results, namely those terms r′ for which
SR(r, r′) comes out true. For example, each of these sensing results may represent an
object seen on the table. Semantically, this corresponds to the set of all worlds w′ which
agree on the sensing result purported by the real world of w, that is, w′[SR(r, r′), z] =
w[SR(r, r′), z] where z is the current situation. These sets are memorized in the sensing
history h. We write hw,zr for the sensing history h updated by the sensing results of r
after z, which is defined as follows:

hw,zr (z, r)
.
= {w′ | w′[SR(r, r′′), z] = w[SR(r, r′′), z] for all r′′ ∈ R};

hw,zr (z′, r′)
.
= h(z′, r′) for all z′ · r′ 6= z · r.

We use hw,zz′ as a shorthand for h updated with the sensing results throughout z′ ∈ R∗.
The semantics of action execution can then be defined in the following way:

(6) φ, e, w, h, z |= [r]α iff φ, e, w, hw,zr , z · r |= α;
(7) φ, e, w, h, z |= �α iff φ, e, w, hw,zz′ , z · z′ |= α for all z′ ∈ R∗.

The memorized sensing results can be accessed through the Snt modality. We write |z|
for the length of a sequence z, and |z|r for the number of occurrences of r in z. We define
z|nr to be the longest prefix of z which does not contain the most recent n occurrences of
action r. For example, 〈f, g, f, h, f〉|2f = 〈f, g〉. Then we obtain the following rule:

(8) φ, e, w, h, z |= Snrα iff |z|r ≥ n and φ, e, w′, h, z |= α for all w′ ∈ e ∩ h(z|nr , r).

Observe that the sensing history is intersected with e and α is evaluated wrt z. As we
will see in Section 3.1, this ensures that sensing results are adequately projected into the
current situation. Intuitively, this is because e represents the agent’s knowledge about
the domain’s dynamics. Also notice that if there is no nth last occurrence of r yet, Snrα
is vacuously false.

2.2.3. Knowledge

So far, we have not established any connection between knowledge and sensing. Instead,
sensing results are just memorized one by one in the sensing history. We now define
how knowledge is produced from sensings. The idea is that some later action may fuse
(possibly contradicting) earlier sensing results.

Semantically, producing new knowledge means that fewer possible worlds need to be
considered, that is, the epistemic state e needs to be filtered. To characterize this filtering,
we define an operator e ↓φ,h,z that retains only those worlds from e that agree with the
fusion specified by φ of the sensing results h throughout z:4

• w ∈ e ↓φ,h,〈〉 iff w ∈ e;
• w ∈ e ↓φ,h,z·r iff

(1) w ∈ e ↓φ,h,z;
(2) e, w, h, z |= φar ;
(3) for all r′ ∈ R, for all w1, w2 ∈ e ↓φ,h,z,

if w1[CW (r, r′), z] 6= w2[CW (r, r′), z], then w[CW (r, r′), z] = 0.

4ES uses a relation 'z for a similar purpose.
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Condition (2) requires that w satisfies the fusion formula φar . Recall that a fusion for-
mula has a single free variable a, which represents the latest action, and usually a few
subformulas involving Snt occur as well. For example, suppose a fluent predicate D(x)
expresses that a robot’s distance to a wall currently is x. The robot senses the distance
through the action sense and the action fuse shall fuse the latest two sensings by taking
their average. The corresponding fusion formula is a = fuse ⊃ ∃x1.∃x2.S

1
senseD(x1) ∧

S2
senseD(x2)∧D(x1+x2

2 ). Then only those worlds are kept in e ↓φ,h,z·fuse where the robot’s
distance is the average of the latest sensed distances.

Condition (3) makes a closed-world assumption for CW (r, x) for given r and variable
x. For example, suppose a robot looks at a table for objects and On(x) holds iff object x
is on the table. After inspecting the table from several perspectives, the robot may want
to assume it has seen every object on it. This is reflected by an action close which has
no physical effect but makes a closed-world assumption for On(x) through the axiom
CW (close, x) ≡ On(x). We examine this example in Section 3.2.

With that definition in hand, the subjective semantics is rather straightforward:

(9) φ, e, w, h, z |= Kα iff φ, e, w′, h, z |= α for all w′ ∈ e ↓φ,h,z;
(10) φ, e, w, h, z |= Oα iff φ, e, w′, h, z |= α iff w′ ∈ e ↓φ,h,z.

The only difference between K and O the “only-if” direction, which intuitively maximizes
the epistemic state e. That way, only-knowing can be used to concisely specify the agent’s
knowledge and implicitly also what she does not know.

This completes the semantics of ESF for now; we defer the definition of forgetting to
Section 2.6.

We remark that the closed-world assumption as defined in e ↓φ,h,z is about complete
knowledge. Suppose the agent believes P (r) ∨ P (r′) in situation z, that is, e ↓φ,h,z con-
tains at least one world which satisfies only P (r) and another which satisfies only P (r′).
When we make a closed-world assumption for P (x) (through some action close with
CW (close, x) ≡ P (x)), then there is no world left in e ↓φ,h,z·close and the agent’s knowl-
edge is hence inconsistent. This problem could be addressed through the generalized
closed-world assumption (Minker, 1982).

We conclude this subsection with the definition of entailment: A set of sentences Σ
entails α wrt a fusion formula φ (written Σ |=φ α) iff for all e, w, and h, if φ, e, w, h, 〈〉 |= σ
for all σ ∈ Σ, then φ, e, w, h, 〈〉 |= α. A set of sentences Σ entails a sentence α (written
Σ |= α) iff for all fusion formulas φ, Σ |=φ α. A sentence α is valid wrt φ (written |=φ α)
iff {} |=φ α. A sentence is valid (written |= α) iff {} |= α.

2.3. Some Properties

In this subsection, we investigate introspection and the local closed-world assumption in
ESF . To begin with, ESF is fully introspective:

Theorem 2.1: |= �Kα ⊃ KKα and |= �¬Kα ⊃ K¬Kα.

Proof. For positive introspection, suppose φ, e, w, h, z |= Kα. By rule 9, φ, e, w′, h, z |= α
for all w′ ∈ e ↓φ,h,z. Then, obviously, φ, e, w′′, h, z |= α for all w′ ∈ e ↓φ,h,z and for all
w′′ ∈ e ↓φ,h,z. Applying rule 9 twice yields φ, e, w, h, z |= KKα.

For negative introspection, suppose φ, e, w, h, z |= ¬Kα. By rule 9, φ, e, w′, h, z |= ¬α
for some w′ ∈ e ↓φ,h,z. Then, obviously, φ, e, w′′, h, z |= ¬α for some w′′ ∈ e ↓φ,h,z for all
w′ ∈ e ↓φ,h,z. Applying rule 9 twice yields φ, e, w, h, z |= K¬Kα.

The following theorem expresses that a given action a performs a local closed-world
assumption for CW (a, x), that is, afterwards either CW (a, x) is known or ¬CW (a, x) is

6
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known for all x. In the above example this means that after action close, we know for
each object r′ whether or not On(r′) is true, that is, if r′ is on the table or not. Proviso
for the theorem is that the performed action does not affect the truth value of CW :

Theorem 2.2: |= �K([a]CW (a, x) ≡ CW (a, x)) ⊃ [a]KifCW (a, x).

Proof. Let φ, e, w, hwz , z |= K([r]CW (r, r′) ≡ CW (r, r′)) for arbitrary r, r′ ∈ R.
If φ, e, w, hwz , z |= KCW (r, r′), condition (3) in e ↓φ,hw

z·r,z·r has no effect. Since
e ↓φ,hw

z·r,z·r ⊆ e ↓φ,hw
z ,z and r does not change the truth of CW (r, r′), it follows

φ, e, w, hwz·r, z · r |= KCW (r, r′).
Now suppose φ, e, w, hwz , z |= ¬KCW (r, r′). Then condition (3) requires

w′[CW (r, r′), z] = 0 for all w′ ∈ e ↓φ,hw
z·r,z·r. As r does not change the truth of CW (r, r′),

it follows φ, e, w, hwz·r, z · r |= K¬CW (r, r′).

2.4. Basic Action Theories

We are mostly interested in evaluating queries after a sequence of actions with respect
to a knowledge base, the so called projection problem. Formally, this problem can be
expressed by5

Σ ∧OΣ′ |=φ [r1] . . . [rk]Kα,

where Σ and Σ′ are knowledge bases that represent what is actually true (Σ) or what
is believed to be true (Σ′), φ is a fusion formula, r1, . . . , rk are actions, and α is a query
which may or may not be believed. The knowledge bases we consider here are a variant
of Reiter’s basic action theories (Reiter, 2001). A basic action theory not only determines
what is true or believed to be true initially, but also stipulates how these beliefs change
when actions are being executed. More precisely, a basic action theory over a finite set
of fluents F contains sentences which describe the initial situation, action preconditions,
and both the actions’ physical and epistemic effects. In ESF we distinguish between the
objective theory Σ and the theory Σ′ subjectively known to the agent:

Σ = Σ0 ∪ Σpre ∪ Σpost ∪ Σsense and

Σ′ = Σ′0 ∪ Σpre ∪ Σpost ∪ Σ′sense ∪ Σ′close

The components of Σ and Σ′ are as follows:

• Σ0 is a set of fluent sentences which hold initially;
• Σ′0 is a set of fluent sentences the agent believes to be true;
• Σpre is a singleton sentence of the form �Poss(a) ≡ α;
• Σpost contains for every F ∈ F a sentence �[a]F (~x) ≡ α;
• Σsense is a singleton sentence of the form �SR(a, x) ⊃ α;
• Σ′sense is a singleton sentence of the form �SR(a, x) ≡ α;
• Σ′close is a singleton sentence of the form �CW (a, x) ≡ α;

where all α’s are fluent formulas. The sentences in Σpost are called successor state axioms.
Successor state axioms are of the form

�[a]F (~x) ≡ γ+
F (a, ~x) ∨ F (~x) ∧ ¬γ−F (a, ~x)

5We abuse notation and do not distinguish finite sets of sentences from conjunctions.
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where γ±F (a, ~x) capture the positive and negative effects, respectively, of a on F (~x). This
pattern is key to Reiter’s solution to the frame problem (Reiter, 2001). Observe that
Σ and Σ′ not only may differ in Σ0 and Σ′0 (as is common in ES), but also in Σsense

and Σ′sense . The idea is that Σsense , which is just an implication, merely constrains the
possible sensing results to rule out implausible values. An actual sensing thus may yield
any set of results that satisfies that constraint.

Intuitively, the fusion formula φ should be part of the basic action theory, too, as it
is intended to fuse sensing results. For technical reasons, φ must be a parameter of the
semantics, though.

For example basic action theories and queries we refer to Section 3.

2.5. Relationship to the Logic ES

We now relate ESF to its ancestor ES (Lakemeyer & Levesque, 2004). In ES, actions may
yield a binary sensing result, and the agent immediately knows that outcome. In this
section we show that the projection problem in ES is reducible to the projection problem
ESF .

The language ES is similar to ESF , except that K and O are termed Know and OKnow ,
respectively, and there is no counterpart for Snt . Instead of our SR predicate, ES features
a special unary predicate SF to represent an action’s binary sensing result. The semantics
of the objective part of the language matches rules 1–7 with φ and h being no longer
required. To characterize what is known after a sequence of actions, Lakemeyer and
Levesque use a relation w 'z w′ to express that w and w′ agree on the sensing results
throughout z. It is defined inductively on z:

• w '〈〉 w′ for all w′;
• w 'z·r w′ iff w 'z w′ and w[SF (r), z] = w′[SF (r), z].

Then the subjective semantics in ES is as follows:

• e, w, z |=ES Know(α) iff for all w′ 'z w, if w′ ∈ e then e, w′, z |=ES α;
• e, w, z |=ES OKnow(α) iff for all w′ 'z w, w′ ∈ e iff e, w′, z |=ES α.

We translate ES formulas α to ESF . We map any formula α of ES into a formula α∗

of ESF , where α∗ is α with all occurrences of Know and OKnow replaced by K and O,
respectively. We further align the sensing models of ES and ESF as follows. First, we
assert in the knowledge base ∀a.SR(a, true) ≡ SF (a) where true ∈ R, that is, ESF ’s SR
predicate is restricted to represent binary sensing result. Second, we use as fusion formula
S0
aSR(a, true) ≡ SR(a, true), so that the sensing history will contain just those worlds that

agree with the real world’s SF truth value. Finally we also assert ∀a.CW (a) ≡ true, so
that no action performs any closure. Then the following theorem says how the projection
problem in ES can be reduced to the projection problem in ESF :

Theorem 2.3: Let Γ and Γ′ be ES knowledge bases without Know and OKnow. Let α
be an ES formula without OKnow and that does not mention [forget(a)]. Let

φ
.
= S0

aSR(a, true) ≡ SR(a, true);

ψ
.
= (∀a.SR(a, true) ≡ SF (a)) ∧ (∀a.CW (a) ≡ true).

Then OKnow(Γ ′ ∧ ψ) ∧ Γ ∧ ψ |=ES α iff O(Γ ′∗ ∧ ψ) ∧ Γ ∗ ∧ ψ |=φ α
∗.

Proof. Due to the equivalent semantic rules 1–7, for any formula β without Know ,
OKnow , |=ES β iff |= β∗. Therefore, w, 〈〉 |=ES Γ ∧ ψ iff w, 〈〉 |=φ Γ′∗ ∧ ψ, and by the
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semantics of OKnow and O, also e, w, 〈〉 |= OKnow(Γ ′ ∧ ψ) ∧ Γ ∧ ψ iff φ, e, w, h, 〈〉 |=
O(Γ′∗ ∧ ψ) ∧ Γ∗ ∧ ψ.

Let e, w, 〈〉 |=ES OKnow(Γ ′ ∧ ψ) ∧ Γ ∧ ψ. We need to show that e, w, 〈〉 |=ES α iff
φ, e, w, h, 〈〉 |= α∗.

We need one more observation: w′ ∈ e and w′ 'z w iff w′ ∈ e ↓φ,h,z where h was built
up through z (**). We prove this by induction on z. The base case z = 〈〉 follows from
the definitions. Consider z · r for the induction step. Then w′ ∈ e and w′ 'z·r w iff w′ ∈ e
and w′[SF (r), z] = w[SF (r), z] and w′ 'z w iff (by induction hypothesis) w′[SF (r), z] =
w[SF (r), z] and w′ ∈ e ↓φ,h,z ⊆ e iff (by axiom ψ) w′[SR(r, true), z] = w[SR(r, true), z]
and w′ ∈ e ↓φ,h,z iff (since h was built up through z) w′[SR(r, true), z] = w′′[SR(r, true), z]
for all w′′ ∈ e ∩ h(z, r) and w′ ∈ e ↓φ,h,z iff (by axiom φ) e, h, w′, z |= φar and w′ ∈ e ↓φ,h,z
iff w′ ∈ e ↓φ,h,(z·r).

We now prove e, w, z |=ES α iff φ, e, w, h, z |= α∗ where h was built up through z. For
the first base case, consider a ground atom P (~r). Then e, w, z |=ES F (~r) iff w[F (~r), z] = 1
iff φ, e, w, h, z |= (F (~r))∗. We skip the base case (r = r′) and the induction steps for
∧, ¬, and ∀ as they follow immediately from the common semantics. For [r]α, we have
e, w, z |=ES [r]α iff e, w, z · r |=ES α iff (by induction hypothesis) φ, e, w, hw,zr , z · r |= α∗

iff φ, e, w, h, z |= ([r]α)∗. The induction step for �α is analogous. For Know(α), we
have e, w, z |=ES Know(α) iff for all w′ ∈ e with w′ 'z w, e, w′, z |=ES α iff (by induction
hypothesis) for all w′ ∈ e with w′ 'z w, φ, e, w′, h, z |= α∗ iff (by (**)) for all w′ ∈ e ↓φ,h,z,
φ, e, w′, h, z |= α∗ iff φ, e, w, h, z |= (Kα)∗.

We remark that a more general version of the theorem, such as |=ES α iff |= α∗,
does not hold, due to the different sensing models of ES and ESF . For example, let
Γ = {[sense]On(x) ≡ On(x),SF (sense) ≡ On(cup)}. In ES, this means that the action
sense does not affect the truth of On(x), but it produces knowledge if On(cup) is true.
Therefore, |=ES OKnow(Γ ) ∧ Γ ∧ On(cup) ⊃ [sense]Know(On(cup)): Suppose e, w |=ES
OKnow(Γ ) ∧ Γ ∧ On(cup). Initially the worlds in e do not agree on the truth value of
On(cup). But after sense, only the worlds w′ ∈ e with w′ 'sense w are considered, that is,
w′[On(cup), 〈〉] = w[On(cup), 〈〉] = 1, and therefore On(cup) is known. In ESF , this does
not hold for several reasons. Firstly, sensing is not turned into knowledge immediately
in ESF , so an appropriate fusion formula is necessary. Secondly, the epistemic effects of
action sense depends on SR(sense, x) and CW (sense, x), which need to be axiomatized
in Γ to achieve reasonable results. Hence, if φ, e, w, h, z |= OΓ∧Γ∧On(cup), then e ↓φ,h,z
may be any subset of e, and therefore no knowledge is gained after sense.

2.6. Forgetting

In many settings it may be desirable to forget some information, for example, to revoke a
sensor fusion or a local closed-world assumption. Rajaratnam, Levesque, Pagnucco, and
Thielscher (2014) proposed an extension of the Scherl and Levesque’s (2003) approach
to knowledge in the situation calculus. We adopt their ideas for our logic ESF in this
subsection.

We introduce a special action term forget(r) where r denotes another action term. The
idea is that forget(r) undoes the epistemic effect of the last occurrence of action r. To
this end, we replace condition (1) of e ↓φ,h,z·r with

(1’) w′ ∈ e ↓φ,h,z′ where z′ is z with the last occurrence of r′ removed if r = forget(r′)
for some r′, otherwise z′ is just z.

The trick is simply to skip r in the filtering of e ↓φ,w,z·forget(r). Thus the worlds rendered
impossible by r survive the filtering step and the epistemic effect of r is thus undone.

9
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The following theorem shows that the effect of an action a is undone by forget(a)
with the proviso that a and forget(a) have no physical effect and forget(a) has no other
epistemic effect:

Theorem 2.4: Let α be a sentence and let φ be a fusion formula. Let β abbreviate
the formula ([a][forget(a)]α ≡ α) ∧ [a]φaforget(a) ∧ [a]∀x.CW (forget(a), x) where a is a free

variable. Then the epistemic effect of action a can be revoked by forget(a):

|=φ �Kβ ∧ ¬Kα ∧ [a]Kα ⊃ [a][forget(a)]¬Kα

Proof. Suppose φ, e, w, hwz , z |= Kβar . Then φ, e, w′, hwz , z |= [r][forget(r)]α ≡ α for all

w′ ∈ e ↓φ,hw
z ,z. Thus we only need to show that e ↓φ,h

w
z·r·forget(r),z·r·forget(r) = e ↓φ,hw

z ,z. This
holds because condition (1’) skips action conditions (2) and (3) for r, and conditions (2)
and (3) are satisfied for forget(r) trivially for all w′ ∈ e ↓φ,hw

z ,z.

This is a simplified version of a theorem from (Rajaratnam et al., 2014). It is straight-
forward to generalize to more actions between r and forget(r).

We remark that our definition and proof is much simpler than their counterparts in
(Rajaratnam et al., 2014). This is because Rajaratnam et al. need to carefully manage
several accessibility relations after each action to keep track of the reachable situations
at different points in time.

3. Examples

In this section we model two scenarios as basic action theories and show a few properties.
The first example is meant to familiarize with ESF . We model a variant of the running ex-
ample from (Lakemeyer & Levesque, 2011) and show how sensings can be fused by taking
their disjunction, which is not possible in Scherl–Levesque style approaches (Lakemeyer
& Levesque, 2011; Scherl & Levesque, 2003). In the second example we return to our
motivating scenario of a robot investigating objects on a table. We show how to deal with
an unknown number of objects and exemplify use of the local closed-world assumption
and of forgetting.

3.1. Distance to the Wall

Imagine a robot moving towards a wall. The robot’s initial distance to the wall is 5 units
(written as D(5)), but it does not know this fact. By Γ we denote an axiomatization of
the rational numbers, which we need to work with distances. Thus we have for the initial
situation:

Σ0
.
= {D(x) ≡ x = 5} ∪ Γ

Σ′0
.
= {∃x.D(x), D(x) ∧D(x′) ⊃ x = x′} ∪ Γ

The robot may move one unit towards the wall (through action move). The appropriate
precondition axiom and successor state axiom are:

Σpre
.
= {�Poss(a) ≡ (a = move ⊃ ¬D(0))}

Σpost
.
= {�D(x) ≡ ∃x′.a = move ∧D(x′) ∧ x = x′ − 1 ∨D(x) ∧ a 6= move}

10



September 8, 2015 Journal of Experimental & Theoretical Artificial Intelligence jetai

The robot is equipped with a sonar sensor (action sense), which yields intervals of possible
distances. In Σsense we express the constraint that each sensing result is indeed an interval
[x1, x2]. Σ′sense captures that a possible world agrees on a sensing result [x1, x2] iff the
distance x in that world is in [x1, x2]. In our basic action theory we hence have the
following definitions:

Σsense
.
= {�SR(a, y) ⊃ (a = sense ⊃ ∃x1.∃x2.y = [x1, x2])}

Σ′sense
.
= {�SR(a, y) ≡ (a = sense ⊃ ∃x1.∃x2.y = [x1, x2] ∧ ∃x.D(x) ∧ x1 ≤ x ≤ x2)}

Notice that a sensing result [x1, x2] represents disjunctive information. Disjunctive infor-
mation must be encoded within such a single sensing result, as opposed to a set of sensing
results like SR(sense, x) for all x1 ≤ x ≤ x2. This is because the set of sensing results
is interpreted conjunctively: a world is compatible with a sensing only if it agrees with
all sensing results. In our example, constraining SR(sense, x) for all x1 ≤ x ≤ x2 would
hence require each possible world to have all distances in [x1, x2], which is unreasonable
and in fact inconsistent with Σ′0, which asserts that there is precisely one distance in
each possible world.

Since our robot mistrusts its own sensor, we take the fusion (action fuse) of two sensings
to be the union of the reported intervals. That is, a possible world’s distance must be
considered possible in one of the last sensings. Thus we use as fusion formula

φ
.
= a = fuse ⊃ ∃x.D(x) ∧ (¬S1

sense¬D(x) ∨ ¬S2
sense¬D(x))

Notice that ¬S1
sense¬D(x) expresses that x was not ruled out by the last sensing of sense,

as it means that there is at least one possible world which satisfies D(x).
We do not use the local closed-world assumption here, so we define:

Σ′close
.
= {�CW (a, x) ≡ true}

Now we can reason about what is entailed by this basic action theory. To this end, let
e, w be such that

φ, e, w |= Σ ∧OΣ′ ∧ SR(sense, [4, 7]) ∧ [sense]SR(sense, [3, 6]),

that is, the first sense reports the interval [4, 7] and a subsequent sense reports [3, 6]. We
show the following properties:

The robot believes the distance is in [3, 7] after sensing twice and fusing both sensings:

φ, e, w, h |= [sense][sense][fuse]K(D(x) ≡ 3 ≤ x ≤ 7)

For the proof let z stand for 〈sense, sense, fuse〉 and let w′ ∈ e ↓φ,hw
z ,z.

Then e, w′, hwz , 〈sense, sense〉 |= φafuse due to condition (2) for e ↓φ,hw
z ,z, that

is, e, w′, hwz , 〈sense, sense〉 |= ∃x.D(x) ∧ (¬S1
sense¬D(x) ∨ ¬S2

sense¬D(x)). We have
e, hwz , 〈sense, sense〉 |= ¬S2

sense¬D(x) iff w′[D(x), 〈sense, sense〉] = 1 for some w′ ∈
e ∩ {w′ | w′[SR(sense, r), 〈〉] = w[SR(sense, r), 〈〉] for all r ∈ R} iff 4 ≤ x ≤ 7. Analo-
gously e, hwz , 〈sense, sense〉 |= ¬S1

sense¬D(x) iff 3 ≤ x ≤ 6. Thus the property follows.

When the robot moves before fusion, its effect is projected onto the sensing results:

φ, e, w, h |= [sense][sense][move][fuse]K(D(x) ≡ 2 ≤ x ≤ 6)

11
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The proof is analogous to the previous one except that 〈sense, sense〉 is replaced with
〈sense, sense,move〉, which leads to intervals [2, 5] and [3, 6] instead of [3, 6] and [4, 7].

3.2. Tabletop Object Search

In our previous work (Niemueller et al., 2013), we presented a system for active perception
where a robot navigates around a table in order to detect specific objects on it. Our
approach highlighted the importance of merging sensor data from multiple perspectives
to overcome problems like occlusions. In the current system, the robot perceives point
clouds of the table scene with its Kinect camera. From this it extracts object clusters
which are each assigned a unique object ID. These IDs remain stable among different
perspectives. Additionally, it matches features extracted from available 3D object models
to those computed from the depth image of the scene. Both kinds of observations are
then combined, yielding a – possibly empty – type distribution for each object. The type
detection, however, highly depends on the perspective of the camera. For example, the
robot cannot necessarily distinguish a mug (with a handle) from a cup (without a handle)
if the handle is not visible from the current perspective. This ambiguity must be resolved
by observing the scene from multiple perspectives.

We now model this scenario in ESF . The aforementioned stable object IDs allow us to
use rigid terms to refer to the same object in different situations. We use the predicate
On(x) to express that object x is on the table and Is(x, y) to say that x is of type y.
For example, an object might have the type mug (with handle) or cup (without handle).
To simplify matters, we only consider two perspectives: The robot either stands at the
long (L) or the short side of the table (¬L) and it can move from either position to
the other (through action move). The robot may look on the table (action sense) to see
some objects and possibly recognize their type. Note that we do not deal with confidence
values for type hypotheses in this work. Lastly there is an action to solidify the robot’s
view on what is on the table by enforcing a local closed-world assumption (action close).

We proceed to define the objective and the subjective basic action theories Σ and Σ′.
Initially the robot is located at the long side and is aware of this fact. For the sake of
simplicity in this example we further axiomatize that any object has exactly one type:

Σ0
.
= Σ′0

.
= {L, ∃y.Is(x, y), Is(x, y) ∧ Is(x, y′) ⊃ y = y′}

There are no specific preconditions in this scenario:

Σpre
.
= {�Poss(a) ≡ true}

The predicates Is and On shall be rigid, that is, the types of objects remain the same
and they remain on or off the table (for the lack of a pickup action in our example). Only
the robot’s position, represented by the truth of the predicate L, can change. We hence
obtain the following successor state axioms:

Σpost
.
= {�[a]L ≡ (a = move ∧ ¬L) ∨ (L ∧ a 6= move),

�[a]Is(x, y) ≡ Is(x, y),

�[a]On(x) ≡ On(x)}

Now we turn to Σsense and Σ′sense . We know that the sensor only reports objects and
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Figure 2. Tabletop with a mug om, a sugar box os, and a coffee pot oc from two different perspectives. Light gray
cones denote horizontal viewing angle, dark gray regions represent sensor shadows. From the first perspective, os
is partly occluded by oc. om’s handle is only visible from the second perspective.

their types, so we constrain the reported sensor values accordingly:

Σsense
.
= {�SR(a, x) ⊃ (a = sense ⊃ ∃x′.x = obj(x′) ∨

∃x′.∃y.x = type(x′, y))}

The subjective SR axioms shall express when a possible world agrees with sensing results:

Σ′sense
.
= {�SR(a, x) ≡ (a = sense ⊃ ∃x′.x = obj(x′) ∧On(x′) ∨

∃x′.∃y.x = type(x′, y) ∧ Is(x′, y))}

We use the following fusion scheme:

• If an object was seen on the table in either of the last two sensings, then the robot
believes that it is on the table. That is, all worlds where that object is not on the
table are considered impossible.
• If an object was recognized as a y in either sensing, we believe it is a y, modulo one

constraint: if y is cup, then it must not be recognized as mug in the other sensing.
The idea behind this constraint is that often a mug is mistaken for a cup because
its handle is not visible. In other words, sensing results mug overrule sensing results
cup.

We translate this scheme to ESF formulas:

α
.
= ∀x.S1

senseOn(x) ∨ S2
senseOn(x) ⊃ On(x)

β
.
= ∀x.∀y.(S1

senseIs(x, y) ∧ (x = cup ⊃ ¬S2
senseIs(x,mug))) ∨

(S2
senseIs(x, y) ∧ (x = cup ⊃ ¬S1

senseIs(x,mug))) ⊃ Is(x, y)

Then we define our fusion formula as

φ
.
= a = fuse ⊃ α ∧ β

The action close shall have the effect that the robot believes it has seen everything on
the table, therefore we define:

Σ′close
.
= {�CW (a, x) ≡ (a = close ⊃ On(x))}
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Figure 3. The point cloud as seen by the robot in Figure 1 and in the first perspective in Figure 2. The dark edge

is the long edge of the table faced by the robot. Black color indicates shadow areas. Note that the sugar pack and

mug handle are not visible.

For the remainder of this subsection we let

φ, e, w, h |= Σ ∧OΣ′.

Imagine that the real world w is as depicted in Figure 2 with three objects om, oc, os on
the table, where om is a mug (with a handle), oc is a large coffee pot, and os is a sugar
box:

w |= On(om) ∧On(oc) ∧On(os) ∧ Is(om,mug) ∧ Is(oc, coffee) ∧ Is(os, sugar)

However, the robot correctly identifies the mug only when positioned at the table’s
short side, otherwise it does not see the mug’s handle and thus mistakes it for a cup.
Furthermore the sugar box is hidden by the coffee pot when the robot is standing on the
long edge. In logic:

w |= �SR(sense, x) ≡ x = obj(om) ∨ x = obj(oc) ∨ x = type(oc, coffee) ∨

(L ∧ x = type(om, cup)) ∨

(¬L ∧ (x = obj(os) ∨ x = type(om,mug) ∨ x = type(os, sugar)))

We conclude the example by showing the following properties:

After sensing only from the long side, the robot erroneously thinks om is a cup:

φ, e, w, h |= [sense][fuse]KIs(om, cup)

For the proof let z stand for 〈sense〉. We have e, hwz , z |= S1
senseIs(om, cup) and e, hwz , z 6|=

S2
senseIs(om,mug) since there is just one sensing so far. This and the definition of φafuse

give that we have w′[Is(om, cup), z · fuse] = 1 for all w′ ∈ e ↓φ,hw
z·fuse,z·fuse.

After sensing from both sides and forgetting the first fusion, the robot correctly believes
om is a mug:

φ, e, w, h |= [sense][fuse][move][sense][forget(fuse)][fuse]KIs(om,mug)

Let z abbreviate 〈sense, fuse,move, sense, forget(fuse), fuse〉 and let z′ stand for
〈sense,move, sense, fuse〉, which is just z without forget(fuse) and the corresponding
occurrence of fuse. Observe that e ↓φ,hw

z ,z = e ↓φ,hw
z′ ,z
′

because condition (1’) means
that forget(fuse) undoes the epistemic effects of the first fuse. Furthermore we have
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e, hwz , 〈sense,move, sense〉 |= S1
senseIs(om,mug). Thus w′[Is(om,mug), z] = 1 for all w′ ∈

e ↓φ,hw
z ,z.

After one sensing and fusion, the robot does not believe that om and oc are the only
objects on the table:

φ, e, w, h |= [sense][fuse]¬K(x = om ∨ x = oc ≡ On(x))

There is some w′ ∈ e in which some r /∈ {om, oc} is believed to be on the table as well,
that is, w′ |= (x = om ∨ x = oc ∨ x = r ⊃ On(x)) ∧ Is(om, cup) ∧ Is(oc, coffee). Since w′

satisfies the fusion formula, w′ ∈ e ↓φ,h
w
〈sense,fuse〉,〈sense,fuse〉. Hence (x = om∨x = oc ≡ On(x))

is not known.

After additionally closing the domain, the robot believes there are no objects on the table
other than om and oc:

φ, e, w, h |= [sense][fuse][close]K(x = om ∨ x = oc ≡ On(x))

Let z stand for 〈sense, fuse, close〉 and w′ ∈ e ↓φ,hw
z ,z. Notice that w′, z |= On(om) ∧

On(oc) holds because otherwise condition (2) for e ↓φ,hw
z ,〈sense,fuse〉 would be violated. To

see that w′[On(r), z] = 0 for all r /∈ {om, oc}, suppose w1, w2 ∈ e ↓φ,hw
z ,〈sense,fuse〉 and

w1[On(r), 〈sense, fuse〉] 6= w2[On(r), 〈sense, fuse〉]. Such w1 and w2 exist as argued in the
previous property. Then due to condition (3) of e ↓φ,hw

z ,z, w′[CW (close, r), 〈sense, fuse〉] =
0, which implies that w′[On(r), z] = 0.

After inspecting the table from both sides and fusing these sensings, the robot believes
that om, oc, os are on the table:

φ, e, w, h |= [sense][move][sense][fuse]K(x = om ∨ x = oc ∨ x = os ⊃ On(x))

Let z stand for 〈sense,move, sense〉. For each r ∈ {om, oc, os} we have e, hwz , z |=
S1
senseOn(r) and thus by condition (2), w′[On(r), z · fuse] = 1 for each w′ ∈ e ↓φ,hw

z·fuse,z·fuse.

4. Related Work

Reiter’s situation calculus in its original form (Reiter, 2001) does not account for sens-
ing actions and the agent’s knowledge or belief. An epistemic extension by Scherl and
Levesque (2003) added a possible worlds semantics within classical first-order logic. Lake-
meyer and Levesque (2011) gave a semantic account of that in the modal first-order logic
ES, which itself is the basis of ESF . In both, the original Scherl–Levesque framework
and ES, actions have binary sensing results and after such a sensing action, the agent
knows the sensing result immediately. This behaviour can be simulated in ESF , as we
have shown in Theorem 2.3. In that sense, ESF subsumes ES and, hence, also the Scherl–
Levesque approach. A prominent feature of the Scherl–Levesque framework and ES is
the extension of regression (Reiter, 2001) to the case of knowledge. The idea behind
regression is to rewrite a query involving actions to an equivalent query over the ini-
tial situation only. That way, the projection problem is reduced to ordinary first-order
reasoning without actions. Unfortunately, these results do not carry over to ESF in the
general case due to our use of sensing histories. Alternatively, the projection problem can
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be solved through progression (Lin & Reiter, 1997), which modifies the knowledge base
to account for action effects. How to compute progression in ESF is an open problem (cf.
Section 5).

Other action formalisms like SADL (Golden & Weld, 1996), the event calculus (Forth &
Shanahan, 2004), and the fluent calculus (Thielscher, 2000) have been or can be extended
to have a notion of knowledge, too, but they do not address the problem of contradictory
sensing results and their fusion.

An extension of the epistemic situation calculus by Bacchus, Halpern, and Levesque
(1999) incorporates Bayesian belief update. This requires an error model in the form of an
action likelihood function that formalizes the gap between reality and the robot’s mind.
For example, it may express that the actual result of a sonar sensor is normally distributed
around the real distance. Action likelihoods give rise to a probability distribution of the
possible worlds. While this distribution is discrete in (Bacchus et al., 1999), a variant by
Belle and Levesque (2013) allows for continuous ones. In scenarios we have in mind for
ESF , however, such a precise error model is not known.

Our sensing histories are somewhat related to IndiGolog’s (De Giacomo & Levesque,
1999) concept of histories. It differs, however, in that we interpret sensings as epistemic
states and have a notion of sensor fusion, whereas IndiGolog assumes correct sensors and
adds the their binary results to the theory during on-line execution.

Shapiro, Pagnucco, Lespérance, and Levesque (2011) presented a theory for belief
change in the situation calculus. They use counterfactuals to specify an agent’s pref-
erential belief structure, and sensing results then trigger belief change. Counterfactuals
like this could be applied to the cup versus mug problem: we believe that, if the object
had a handle, it would be a mug. While Shapiro et al. (2011) assume sensing results to
be correct, their work has recently been extended to also handle contradictory sensing
results (Schwering, Lakemeyer, & Pagnucco, 2015), where strongest belief is always given
to the most recent sensing. A combination of this framework and our approach of fusion
actions might be interesting in order to achieve passive sensor fusion.

The closed-world assumption was introduced by Reiter (1978). Etzioni, Golden, and
Weld (1994) applied a local closed-world assumption in a dynamic environment. They
also account for loss of closed-world information, which we in a way allow by forgetting.
Whether the closed-world assumption is actually true – in which case Etzioni et al.
refer to it as closed-world information – or not, is not explicit in our language. Several
variants of the closed-world assumption have been proposed to overcome its limitations
with disjunctive information, for example, (Minker, 1982).

The forgetting mechanism of ESF is essentially the same as the one proposed by Ra-
jaratnam et al. (2014): it undoes the knowledge-effect of a previous action. This notion
of forgetting is fundamentally different from Lin and Reiter’s logical forgetting (Lin &
Reiter, 1994). In particular, it is not possible to forget arbitrary facts or relations –
unless just this fact or relation was learned through an epistemic action. We refer to
(Rajaratnam et al., 2014) for the details.

KnowRob (Tenorth & Beetz, 2013) is a recent example for a robotic knowledge pro-
cessing system. It acts as a database providing virtual knowledge bases which can be
queried from the task reasoner. It gathers information from various sources like onto-
logical databases or sensors. Each sensor detection is stored as a new instance. Queries
then aim at retrieving the latest information, rather than fusing information and dealing
with inconsistencies explicitly. Active perception is not performed by the system itself,
but relies on an executive to orchestrate the proper action sequence.
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5. Conclusion and Future Work

The logic we presented in this paper aims at high-level sensor fusion, particularly to guide
an active perception system, where an agent needs to think about how she could acquire
new knowledge. This is a common problem in robotics, and our approach represents a
possible solution from the KR perspective. In particular, our logic differs in the following
ways from previous approaches:

• Actions may sense an unbounded number of objects, and the purported sensing
results of an action may vary over the course of action. In particular, subsequent
sensings may complement or contradict each other. We remark that this does not
necessitate second-order logic. Which (perhaps incorrect) sensing results are re-
turned is stipulated by the real world in our model.

• Sensing actions do not affect knowledge immediately. Instead, this effect is deferred
to a fusion action, which produces new knowledge.

• Actions can apply a local closed-world assumption to solidify the agent’s episteme.
• A forgetting mechanism allows to mitigate the epistemic effects of preceding actions.

The prominent role of active fusion, closed-world assumption, and forgetting may be
considered as merely postponing a problem instead of solving it: whereas formalisms
like the Scherl–Levesque framework require accurate modeling of sensing, ESF pushes
that responsibility to the decision when to fuse, close, or forget. An interesting open
problem is therefore to come up with a reasonable passive scheme that performs these
epistemic operations when appropriate. One way to address this issue might be through
ideas similar to iterated belief revision approaches, as they cope with inconsistent beliefs
and sensings.

Another open problem is how to integrate numeric uncertainties reported by the sensors
into the logic. Since we lack a probabilistic error model for the domains we have in mind
(cf. Section 3.2), we are looking into possibilistic logic (Dubois & Prade, 2004) to address
this issue.

Furthermore we are interested in an automated solution to the projection problem,
such as regression. While regression appears to be infeasible in ESF , the approach by
Lakemeyer and Levesque (2014) may provide a solution, which is similar to progression.
Based on this, we plan to deploy a decidable fragment of ESF in the spirit of (Lakemeyer
& Levesque, 2014) on our robots. When dealing with infinite domains like the sonar
distance in Section 3.1, it may be efficient to represent incomplete knowledge through
intervals (Funge, 1999). The resulting system is intended as a reasoning back-end for
high-level robot control programs written in Golog (H. Levesque, Reiter, Lésperance,
Lin, & Scherl, 1997) in the context of our project on hybrid reasoning.6
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