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Abstract. Recently Shapiro et al. explored the notion of iterated be-
lief revision within Reiter’s version of the situation calculus. In par-
ticular, they consider a notion of belief defined as truth in the most
plausible situations. To specify what an agent is willing to believe at
different levels of plausibility they make use of so-called belief con-
ditionals, which themselves neither refer to situations or plausibili-
ties explicitly. Reasoning about such belief conditionals turns out to
be complex because there may be too many models satisfying them
and negative belief conditionals are also needed to obtain the desired
conclusions. In this paper we show that, by adopting a notion of only-
believing, these problems can be overcome. The work is carried out
within a modal variant of the situation calculus with a possible-world
semantics which features levels of plausibility. Among other things,
we show that only-believing a knowledge base together with belief
conditionals always leads to a unique model, which allows character-
izing the beliefs of an agent, after any number of revisions, in terms
of entailments within the logic.

1 INTRODUCTION

Recently Shapiro, Pagnucco, Lespérance, and Levesque [16] (hence-
forth SPLL) explored the notion of iterated belief revision within
Reiter’s version of the situation calculus [13, 14]. SPLL’s starting
point is Scherl and Levesque’s epistemic extension of the situation
calculus [15], which formalizes knowledge/belief in terms of truth in
all accessible situations. A drawback of this work is that it does not
account for belief revision in the sense that new information which
conflicts with the current beliefs (for example, through the use of sen-
sors) would invariably lead to an epistemic state where everything is
believed, as no accessible situations would be left. In order to rem-
edy this deficiency, SPLL assign plausibilities (taken from the nat-
ural numbers) to situations and define a new notion of belief which
only considers the most plausible accessible situations. In this frame-
work, new information which conflicts with the current beliefs does
not necessarily lead to inconsistency as there may well be other, less
plausible situations left which are consistent with the new informa-
tion. SPLL show that their approach has various desirable properties
and they compare their work to the more classical approaches to be-
lief revision and update [1, 7, 2].

In terms of knowledge representation, it seems impractical to hav-
ing to specify accessible situations and plausibility levels explicitly.
For one thing, in the propositional case the number of accessible
situations may grow exponentially in the number of fluents, which
are propositions whose truth value can be changed by actions. For
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another, an actual plausibility level of, say, 33 vs. 37 carries little
meaning. For that reason, SPLL introduced a new operator ⇒, in-
spired by conditional logic [12], where φ⇒ ψ intuitively means that
in all most plausible situations where φ holds, ψ holds as well. We
will call such formulas belief conditionals from now on. Such state-
ments can be viewed as constraints on the possible plausibility order-
ings and ideally they allow an agent to derive the right conclusions
about how to revise its beliefs based on these constraints and new
information acquired by sensing. In the case of SPLL, deriving con-
sequences from such belief conditionals is complicated by the fact
that there may be (infinitely) many models with different plausibility
orderings satisfying these constraints. Moreover, as we will discuss
in detail later, the desired consequences only obtain if negated belief
conditionals are considered as well.

Problems such as these can be attributed to the fact that SPLL
are not able to state that a knowledge base (KB), possibly including
belief conditionals, is all the agent believes or that the agent only-
believes such a KB.2 In this paper, we propose such an approach
to only-believing based on the logic ES [8, 10], a modal variant of
the situation calculus. The approach is semantic in the sense that the
language does not refer to either situations or plausibilities. Instead
these are only part of the possible-world style semantics of the lan-
guage. An advantage of our notion of only-believing is that it always
leads to a unique model, that is, a set of facts (sentences in first-order
logic) together with any number of belief conditionals always leads
to a unique epistemic state. As a result of this property, the beliefs
of an agent, after any number of revisions, can always be character-
ized in terms of entailment within the logic. We also show by way
of an example taken from SPLL that we are able to obtain the same
conclusions without resorting to negated belief conditionals.

The paper is organized as follows. In the next section we intro-
duce the logic ESB, which extends SPLL’s ideas to the case of only-
believing, and discuss some of its properties. In Section 3 we investi-
gate how ESB handles belief revision, including a detailed example.
Then we discuss related work and conclude.

2 THE LOGIC ESB
ESB is a first-order modal logic which features, among others, two
modal operators K and B for knowledge and belief. The K oper-
ator allows to express firm belief, which we simply call knowledge
for the sake of distinction. The B operator allows to express beliefs,
which can be be revised when contradicting information is obtained.
In contrast to belief, knowledge can only be expanded, but cannot
be revised. ESB is an extension of the variant of ES presented in [8].

2 We remark that SPLL themselves mention only-believing as an interesting
open topic of future work.



While an extended version of ES was proposed recently in [10], we
refer to the original logic because it simplifies the presentation.

2.1 The Language
The language ESB consists of formulas over fluent predicates and
rigid terms. The set of terms is the least set which contains infinitely
many variables and constant symbols and is closed under application
of infinitely many function symbols. The set of well-formed formulas
is the least set such that

• ifP is a predicate symbol of arity k ∈ N3 and t1, . . . , tk are terms,
then P (t1, . . . , tk) is an (atomic) formula;

• if t1, t2 are terms, then (t1 = t2) is a formula;
• if α and α′ are formulas and x is a variable, then (α ∧ α′), ¬α,
∀x.α are formulas;

• if t is a term and α is a formula, [t]α, �α, and Pα are formulas;
• if α is a formula, then Kα and Bα are formulas;
• if φ and ψ are formulas, then B(φ⇒ ψ) is a formula;
• if α, φi, and ψi for 1 ≤ i ≤ m, m ∈ N are formulas, then

O(α, {φ1 ⇒ ψ1, . . . , φm ⇒ ψm}) is a formula.

We read [t]α as “α holds after action t,” and �α as “α holds after any
sequence of actions,” and Pα as “α was true before the last action.”
Kα (Bα) is read as “the agent knows (believes) α.” Knowledge, as
opposed to belief, can only be expanded, but cannot be revised. The
belief conditional B(φ ⇒ ψ) is intended to express that in the most
plausible scenarios where φ holds,ψ holds as well. For the remainder
of this paper, we let Γ stand for {φ1 ⇒ ψ1, . . . , φm ⇒ ψm}. BΓ
abbreviates

∧m
i=1 B(φi ⇒ ψi). O(α,Γ) captures that all the agent

knows about the world is α and possibly other sentences due to the
belief conditionals from Γ.

We will use ∨, ∃,⊃,≡, False, and True as the usual abbreviations.∧
i:χ αi abbreviatesαi1∧. . .∧αik if i1, . . . , ik are all the indices that

satisfy χ. Instead of having different sorts for objects and actions, we
lump both sorts together and allow ourselves to use any term as an
action or as an object. There are two special predicates, Poss for the
precondition and SF for the binary sensing result of an action.

We call a formula without free variables a sentence. A formula
with no �, [t], or P is called static. A formula with no K, B, or O is
called objective. A formula with no fluent, �, or [t] outside the scope
of all K, B, and O is called subjective. An objective, static formula
without Poss and SF is called a fluent formula.

To simplify the technical treatment and for the purposes of this
paper, we assume that theα, φ,ψ, φi, andψi occurring in B(φ⇒ ψ)
and O(α,Γ) are all objective.

2.2 The Semantics
The truth of an ESB sentence α after an action sequence z is defined
with respect to two things: a world w and an epistemic state f . We
write f, w, z |= α. A world determines the truth values of all ground
atoms after any sequence of actions. An epistemic state contains the
possible worlds at each plausibility level.

More precisely, a world is a function from the set of ground atoms
and the set of action sequences to {0, 1}. An epistemic state f is a
function from N to the power set of the set of worlds, that is, for each
plausibility level p ∈ N, for any world w, w ∈ f(p) means that w
is considered possible at plausibility level p. A smaller plausibility
value p indicates that the world is more plausible.

3 As usual, N denotes the natural numbers including 0.

Let R denote the set of ground terms and R∗ the set of sequences
of ground terms, including the empty sequence 〈〉. R can be thought
of as domain of discourse. This allows for quantification by substitu-
tion and equality can be simply defined to be the identity relation.

We begin with the objective part of the semantics:

1. f, w, z |= P (r1, . . . , rm) iff w[P (r1, . . . , rm), z] = 1
2. f, w, z |= (r1 = r2) iff r1 and r2 are identical
3. f, w, z |= (α1 ∧ α2) iff f, w, z |= α1 and f, w, z |= α2

4. f, w, z |= ¬α iff f, w, z 6|= α
5. f, w, z |= ∀x.α iff f, w, z |= αxr for all r ∈ R
6. f, w, z |= [r]α iff f, w, z · r |= α
7. f, w, z |= �α iff f, w, z · z′ |= α for all z′ ∈ R∗
8. f, w, z |= Pα iff

f, w, z′ |= α where z = z′ · r for some z′ ∈ R∗, r ∈ R

To characterize what is known after an action sequence z, we de-
fine the relation w′ 'z w for any given w (read: w′ agrees with w
on the sensing for z) as follows:

• w′ '〈〉 w for all w′;
• w′ 'z·r w iff w′ 'z w and w′[SF(r), z] = w[SF(r), z].

'z corresponds to the accessibility relations in [15] and SPLL.

9. f, w, z |= Kα iff for all p ∈ N, for all w′ 'z w,
if w′ ∈ f(p), then f, w′, z |= α

Rule 9 defines knowledge in a way similar to ES: Kα holds if α
holds in all worlds of the epistemic state (as defined by f ).

To ease the presentation of the following semantic rules, it is con-
venient to write f, w, z |= Kpα as shorthand for “for all w′ 'z w,
if w′ ∈ f(p), then f, w′, z |= α” for any p ∈ N. In other words,
the macro expresses knowledge at plausibility level p. Notice that
KpFalse holds if no world is considered possible at plausibility level
p, and ¬Kp¬α means that there is at least one world which satisfies
α at plausibility level p.
Then we have:

10. f, w, z |= Bα iff for all p ∈ N,
if f, w, z |= KqFalse for all q < p, then f, w, z |= Kpα

11. f, w, z |= B(φ⇒ ψ) iff for all p ∈ N,
if f, w, z |= Kq¬φ for all q < p, then f, w, z |= Kp(φ ⊃ ψ)

Bα and B(φ ⇒ ψ) both emulate the behavior of their respective
counterparts in SPLL: belief as truth in the most plausible worlds
and belief conditionals, respectively. Recall that a smaller plausibility
value p indicates that the world is more plausible. Bα holds if α
holds in all of the most plausible worlds in f , that is, if α is believed.
To understand rule 11 for B(φ⇒ ψ), first assume that there is some
world in f which satisfies φ. Then B(φ ⇒ ψ) holds iff all of the
most plausible worlds which satisfy φ also satisfy ψ. Otherwise, if
there is no world in f that satisfies φ, rule 11 requires ¬φ to be true
in all worlds in f .

The semantics of only-believing follows:

12. f, w, z |= O(α,Γ) iff for some p1, . . . , pm ∈ N ∪ {∞},
(a) for all p ∈ N, for all w′ 'z w,

w′ ∈ f(p) iff f, w′, z |= α ∧
∧
i:pi≥p(φi ⊃ ψi),

(b) f, w, z |= Kp¬φi for all i and for all p with p < pi, and
(c) f, w, z |= ¬Kpi¬φi for all i with pi 6=∞

Rule 12 captures the idea that α and the belief conditionals Γ are
all that is known and believed, respectively. To this end, each belief



conditional φi ⇒ ψi is assigned a plausibility pi ∈ N∪{∞}. While
f(p) is only defined for p ∈ N, p = ∞ handles the case that the
antecedent φi holds in no world at all. The effect of rule 12a is that
it assigns a unique set of worlds to f(p), namely those which are
compatible with w in terms of 'z and which satisfy α as well as
all φi ⊃ ψi where pi ≥ p. Example 12 at the end of Section 3.1
below illustrates why pi = p is not sufficient. Rule 12b requires
that the conditional should not be effective at an earlier plausibility
level already, and rule 12c asserts that it should indeed be effective
at level pi, that is, at plausibility level pi, at least one world must
satisfy φi (rule 12c), and in all more plausible worlds, φi must be
false (rule 12b).

We write f, w |= α for f, w, 〈〉 |= α. We sometimes leave out the
f (or w) in f, w |= α for objective (or subjective, respectively) α. A
set of sentences Σ entails α (written as Σ |= α) iff for every f , for
every w, if f, w |= α′ for every α′ ∈ Σ, then f, w |= α. A sentence
is valid (written as |= α) iff {} |= α.

2.3 Some Properties of ESB
We start by showing that the logic ES of [8] is in fact part of ESB.
Note that ES only has two epistemic modalities Know for knowledge
and OKnow for only-knowing.

For any formula α of ES let α∗ be the translation of α to ESB,
which can be easily defined inductively on the structure of α as fol-
lows: In all cases except for Know and OKnow , α∗ is the iden-
tity function, otherwise Know(α)∗ = Kα∗, and OKnow(α)∗ =
O(α∗, {}).

The truth of an ES sentence after an action sequence z is defined
wrt a worldw and a set of possible worlds e, where a world is exactly
the same as in ESB. We write e, w, z |=ES α to denote the satisfaction
relation in ES. For space reasons and as the semantic rules of ES have
almost identical counterparts in ESB, we will not define them here.

Theorem 1 Let α be a sentence of ES. Then α is satisfiable in ES iff
α∗ is satisfiable in ESB.

Proof sketch. For the if direction, let ρ be a ground atom not men-
tioned in α and let wρi be such that wρi [ρ, z] = i and wρi [σ, z] =
w[σ, z] for all atoms σ 6= ρ and for all z ∈ R∗. Let e1 =

⋂
p∈N f(p),

e2 =
⋃
p∈N f(p) and e = e1 ∪ {wρ0 | w ∈ e2, w

ρ
1 /∈ e1}. This con-

struction guarantees that e only-knows a sentence only if all f(p)
do. Thus e, w |=ES α if f, w |= α∗. For the only-if direction,
e, w |=ES α implies f, w |= α∗ for f(p) = e for all p ∈ N.

Thus all properties of ES such as positive and negative introspec-
tion of knowledge immediately transfer to ESB. Moreover, it is easy
to see that full introspection holds for both K and B in all of ESB:

Theorem 2 Let L stand for either K or B.
Then |= �Lα ⊃ LLα and |= �¬Lα ⊃ L¬Lα.

Proof. Both statements follow immediately from the fact that for all
models f, w, action sequences z, and plausibility levels p, for all
w1, w2 ∈ {w′ | w′ ∈ f(p), w′ 'z w}, w1 'z w2.

We now proceed with the major results of the paper: Only-
believing a set of beliefs is always satisfiable, and its model is unique.

Lemma 3 |= �O(α,Γ) ⊃ Kα ∧BΓ.

Proof. Follows immediately from the definition of rule 12.

Lemma 4 If f |= O(α,Γ) for plausibility levels p1, . . . , pm, then
{p1, . . . , pm} \ {∞} = {0, . . . , n} for some n < m.

Proof. Suppose f |= O(α,Γ) and for some i and p, p+1 = pi 6=∞
and there is no j with pj = p, that is, p is a “hole” in the plausibility
ranking. By rule 12c, there is some w′ ∈ f(pi) such that w′ |= φi.
By rule 12a, for all w′, w′ ∈ f(p) iff w′ |= α ∧

∧
j:pj>p

(φj ⊃ ψj)

iff w′ |= α∧
∧
k:pk≥pi

(φk ⊃ ψk) iff w′ ∈ f(pi). Therefore f(p) =

f(pi) and thus there is some w′ ∈ f(p) such that w′ |= φi, which
contradicts rule 12b.

Lemma 5 Suppose f |= O(α,Γ) and g |= O(α,Γ). Let p1, . . . , pm
be plausibility levels which satisfy rule 12 wrt f . Then for all p 6=∞,
there are plausibility levels p′1, . . . , p

′
m which satisfy rule 12 wrt g

such that, if for all q < p, {i | pi = q} = {i | p′i = q}, then
{i | pi = p} = {i | p′i = p}.

Proof. We prove by contradiction. Suppose p′1, . . . , p
′
m satisfy

rule 12 wrt g and for all q < p, {i | pi = q} = {i | p′i = q},
but {i | pi = p} 6= {i | p′i = p}.

Let p 6= ∞ be arbitrary and define I = {i | pi = p}, I ′ = {i |
p′i = p}, J = {j | pj > p} and J ′ = {j | p′j > p}. Note that for
all i ∈ I ′ \ I , pi > p, and for all i ∈ I \ I ′, p′i > p. Also note that
J ′ \ J = I \ I ′ and J \ J ′ = I ′ \ I .

Wlog assume I ′ \ I 6= {}. By rule 12a wrt g, all w′ ∈ g(p) satisfy

α ∧
∧

i∈I∩I′
(φi ⊃ ψi) ∧

∧
i∈I′\I

(φi ⊃ ψi) ∧
∧

j∈J∩J′

(φj ⊃ ψj) ∧
∧

j∈J′\J

(φj ⊃ ψj).

By the above equalities, we can substitute I ′ \ I in the second con-
junction with J \J ′, and similarly we can replace J ′ \J in the fourth
conjunction with I \ I ′. Therefore, w′ also satisfies the formula of
rule 12a wrt f . Hence, w′ ∈ f(p). Therefore by rule 12b wrt f , for
each j ∈ J \ J ′, w′ |= ¬φj . Thus by the above equalities, for each
i ∈ I ′ \ I , for all w′ ∈ g(p), w′ |= ¬φi. However, since p 6=∞, by
rule 12c, for each i ∈ I ′ \ I there is some w′ ∈ g(p) with w′ |= φi.
Contradiction.

Theorem 6 If f |= O(α,Γ) and g |= O(α,Γ), then f = g.

Proof. Let p1, . . . , pm be plausibilities which satisfy rule 12 wrt f .
Thus by rule 12a, for all p, for all w′, w′ ∈ f(p) iff w′ |= α ∧∧
i:pi≥p(φi ⊃ ψi). From Lemma 5 inductively follows that the same

plausibilities satisfy rule 12 wrt g. Thus by rule 12a, for all p, for all
w′, w′ ∈ g(p) iff w′ |= α ∧

∧
i:pi≥p(φi ⊃ ψi). Therefore for all p,

for all w′, w′ ∈ f(p) iff w′ ∈ g(p).

We will see in an example in the next section that this unique-
model property greatly simplifies proofs of belief revision. In fact,
there is even a straightforward way to generate the model:

Theorem 7 For any α and Γ, O(α,Γ) is satisfiable.

Proof. We construct an epistemic state f such that f |= O(α,Γ).
Initially, set p1 := 0, . . . , pm := 0 and p := 0. Then set f(p) :=
{w′ | w′ |= α∧

∧
i:pi≥p(φi ⊃ ψi)}. Set pi := p+ 1 for all i which

violate rule 12c, that is, there is no w′ ∈ f(p) with w′ |= φi. Then
let p := p + 1. Repeat the loop until p > m, as for all i either 0 ≤
pi < m or pi = ∞ due to Lemma 4. Finally set f(q) := f(m) for
all q > m. By construction, rules 12a, 12b, and 12c are satisfied.

We remark this does not constitute an effective computation of the
plausibility ranking as the method appeals to first-order entailment,
an undecidable problem.



As a consequence of this theorem and Lemma 3 we obtain that
Kα ∧BΓ is also satisfiable:

Corollary 8 For any α and Γ, Kα ∧BΓ is satisfiable.

2.4 Basic Action Theories
Lakemeyer and Levesque have shown that ES is able to express
Reiter-style Basic Action Theories [10, 8]. These are intended to de-
scribe action preconditions (Σpre), action effects (Σpost), sensing re-
sults (Σsense), and what holds initially (Σ0). In ESB we add another
component Σbelief, which represents the initial beliefs of the agent in
terms of belief conditionals.
More precisely, we have for a given set of predicate symbols F :4

• Σpre is a singleton sentence of the form �Poss(a) ≡ π for a fluent
formula π;

• Σpost contains for every F ∈ F a sentence �[a]F (~x) ≡ γF where
γF is a fluent formula;

• Σsense is a singleton sentence of the form �SF(a) ≡ ϕ for a fluent
formula ϕ;

• Σ0 is a set of fluent sentences;
• Σbelief is a set of belief conditionals φ ⇒ ψ where φ and ψ are

fluent sentences.

The sentences in Σpost are called successor state axioms. SSAs define
how fluent truth values evolve throughout actions and incorporate
Reiter’s solution to the frame problem [14]. Σsense is intended to say
that action a returns true as a sensing result if ϕ holds and false
otherwise.

Let σ denote the union of Σpre, Σpost, and Σsense, that is, all the
non-static parts of the above sentences. A basic action theory Σ is
then defined as Σ0 ∪ {σ,O(σ,Σbelief)}.5 In other words, we assume
that the agent has correct knowledge about how actions work (σ), but
its beliefs may differ from what is actually true in the world (Σ0).

For an example basic action theory we refer to Section 3.1

3 BELIEF REVISION IN ESB
In this section we show that ESB is suitable for belief revision. After
showing some properties which also hold in SPLL, we give a few
examples. Among other things, the examples illustrate that due to
the unique-model property of only-believing (Theorem 6), proofs are
much easier in our framework than in the one of SPLL.

Following SPLL, we distinguish between update actions and revi-
sion actions. Given a basic action theory Σ, an update action r for a
formula α is a physical action that always makes true α in the real
world, regardless of what was true before. Formally it is character-
ized by Σ |= �[r]α and Σ |= �SF(r). A revision action r for a
formula α, often just called a sensing action, does not have any real
world effect but it may affect the agent’s knowledge. In formulas,
Σ |= �[r]F (~x) ≡ F (~x) for all F ∈ F and Σ |= �SF(r) ≡ α.
For example, to burn x is an update action for “x is burned,” while
checking whether x is burned is a revision action for the same for-
mula.

Similar to SPLL we obtain the following:

Theorem 9 For a revision action r for α, Σ |= �α ⊃ [r]Bα and
Σ |= �¬α ⊃ [r]B¬α. For an update action r for α, Σ |= �[r]Bα.

4 We assume � has lower and [t] has higher precedence than logical connec-
tives, so that �[a]F (~x) ≡ γF stands for ∀a∀~x�([a]F (~x). ≡ γF ).

5 We abuse notation and do not distinguish finite sets of sentences from con-
junctions.

Theorem 10 For any revision action r for α,
Σ |= �B¬α ∧ [r]Bα ⊃ [r]BP(α ∧B¬α).

In other words, if α is believed to be false and after a revision ac-
tion is believed to be true, then the agent realizes that it was mistaken
before.

Proof. Suppose f, w, z |= B¬α ∧ [r]Bα. Let p1 ∈ N (p2 ∈ N) be
maximal such that for all p < p1 (p < p2), there is no w′ ∈ f(p)
with w′ 'z w (w′ 'z·r w). If the condition holds for all p1 (p2), let
p1 (p2) be 0. We show [r]BPα and [r]BPB¬α separately.
f, w, z |= [r]BPα iff f, w′, z · r |= Pα for all w′ ∈ f(p2) with

w′ 'z·r w iff f, w′, z |= α for all w′ ∈ f(p2) with w′ 'z·r w iff
f, w′, z · r |= α for all w′ ∈ f(p2) with w′ 'z·r w (because r, as a
revision action, has no physical effect on α) iff f, w, z |= [r]Bα.
f, w, z |= [r]BPB¬α iff f, w′, z·r |= PB¬α for allw′ ∈ f(p2)

withw′ 'z·r w iff f, w′, z |= B¬α for allw′ ∈ f(p2) withw′ 'z·r
w iff f, w′′, z |= ¬α for all w′′ ∈ f(p1) with w′′ 'z w′ for all
w′ ∈ f(p2) with w′ 'z·r w iff f, w′′, z |= ¬α for all w′′ ∈ f(p1)
with w′′ 'z w (because w′ and w agree on the sensing throughout
z · r) iff f, w, z |= B¬α.

3.1 Examples
Consider the following example, which is taken from SPLL: We live
in a world with two rooms, and we are always in one of them. Each of
the rooms has a light which is independent from the respective other
room. We can go from one room to the other, and through sensing
actions we can perceive in which room we are and whether the light
is on or off in the room we are currently in. We will illustrate how
ESB handles this example, and we will particularly see why only-
believing spares us the trouble of adding negative belief conditionals,
¬B(φ⇒ ψ), which are needed in SPLL.

We use the following symbols in the example: predicates R1, L1,
L2, and actions lv, sR1, sL. The meaning is as follows. R1 indicates
that we are in the first room, ¬R1 indicates that we are in the second
room. (¬)L1 and (¬)L2 represent that the light is on (off) in the first
and second room, respectively. By the physical action lv we leave
the current and enter the other room. The sensing action sR1 tells us
whether or not we are currently in room one. By the sensing action sL
we learn whether or not the light is on in the room we are currently in.
We assume that any action is always possible. Σpre, Σpost, and Σsense

thus are as follows:

�Poss(a) ≡ True

�[a]R1 ≡ ¬R1 ∧ a = lv ∨R1 ∧ a 6= lv

�[a]L1 ≡ L1

�[a]L2 ≡ L2

�SF(a) ≡ a = sL ∧ L1 ∧R1 ∨
a = sL ∧ L2 ∧ ¬R1 ∨
a = lv ∨
a = sR1 ∧R1



= σ

In reality, the light is on in both rooms and we are initially located
in the second room. But we believe that we are in the first room and
the light is off in the first room. We continue to believe that we are
in room one when we learn that the light is on in the first room.
Furthermore we believe that, if we are in the second room, the light
there is off. Thus,

Σ0 = {L1, L2,¬R1} and

Σbelief = {True⇒ ¬L1 ∧R1, L1 ⇒ R1,¬R1 ⇒ ¬L2}.



According to our definition of a basic action theory, Σ = Σ0 ∪
{σ,O(σ,Σbelief)}.

We will show that the following properties are entailed by Σ:

1. Σ |= B¬L1

2. Σ |= [sL]B(L1 ∧R1)
3. Σ |= [sL][sR1]B¬R1

4. Σ |= [sL][sR1]BP(¬R1 ∧BR1)
5. Σ |= ¬[sL][sR1]BL1 ∧ ¬[sL][sR1]B¬L1

6. Σ |= [sL][sR1][lv]BR1

7. Σ |= [sL][sR1][lv][sL]BL1

The meaning of most properties is straightforward. Property 2 means
that after sensing that the light is on in the room we are in, we believe
that we are in room one. In Property 3 we learn that in fact we were
in room two all along. Property 4 means that we are aware of our
mistake: before sensing that we are in room two, we were in that
room already, but we did not believe that. Property 5 is an example
of becoming indifferent towards something: we have no opinion on
the light being on or off.

Each of these properties has a corresponding counterpart in SPLL.
However, SPLL need additional axioms ¬B(L2 ∧ ¬R1 ⇒ L1) and
¬B(L2 ∧ ¬R1 ⇒ ¬L1) to obtain the properties. We will first show
that only-believing the positive belief conditionals alone entails all
properties. After that we demonstrate that this is not the case for just
believing the positive conditionals.

There is another slight difference between our example and
SPLL’s: we use a third positive belief conditional, ¬R1 ⇒ ¬L2.
The intuitive purpose of the negative belief conditionals is to enforce
possible but rather implausible worlds. However, they also have some
shrouded side effects such as introducing a few new positive beliefs.
Among other things, they assert in each model that B(¬R1 ⇒ ¬L2)
holds unless there is no world satisfying ¬R1 more plausible than
those created by the negative belief conditionals. In ESB, such worlds
do exist due to only-believing. Thus we believe our additional posi-
tive belief conditional is perfectly justified.

Obviously Σ is satisfiable, and the epistemic state can be generated
as described in the proof of Theorem 7. The plausibility levels are
p1 = 0 for True ⇒ ¬L1 ∧ R1 and p2 = p3 = 1 for the other two
belief conditionals, and the epistemic state is

f(0) = {w′ | w′ |= σ ∧ ¬L1 ∧R1}
f(1) = {w′ | w′ |= σ ∧ ((¬L1 ∧ ¬L2) ∨R1)}
f(p) = {w′ | w′ |= σ} for all p ≥ 2.

We now show the above properties.

1. f, w |= B¬L1:
Follows because for all w′ ∈ f(0), w′ |= ¬L1.

2. f, w |= [sL]B(L1 ∧R1):
For the real world w, w[SF(sL), 〈〉] = 1, but w′[SF(sL), 〈〉] = 0
for all w′ ∈ f(0) and thus w′ 6'〈sL〉 w. For all w′ '〈sL〉 w either
w′ |= L1∧R1 or w′ |= L2∧¬R1. Only the former exist in f(1).

3. f, w |= [sL][sR1]B¬R1:
We have argued in Property 2 that there is no w′ ∈ f(0) with
w′ '〈sL〉 w. Since w, 〈sL〉 |= ¬R1, also w[SF(sR1), 〈sL〉] = 0.
On the other hand, as shown in Property 2, w′, 〈sL〉 |= R1 for all
w′ ∈ f(1) with w′ '〈sL〉 w, and thus w′[SF(sR1), 〈sL〉] = 1.
Therefore, w′ 6'〈sL,sR1〉 w. Thus we arrive at plausibility level 2,
and obviously there are worlds w′ ∈ f(2) with w′ '〈sL,sR1〉 w,
which are precisely those with w′, 〈sL, sR1〉 |= ¬R1.

4. f, w |= [sL][sR1]BP(¬R1 ∧BR1):
This property is an instance of Theorem 10, so its proof is just the

proof of Theorem 10 with z = 〈sL〉, r = sR1, α = ¬R1, and,
according to Properties 2 and 3, p1 = 1 and p2 = 2.

5. f, w |= ¬[sL][sR1]BL1 ∧ ¬[sL][sR1]B¬L1:
As argued in Property 3, no worlds from f(0) and f(1) agree with
w on the sensing throughout 〈sL, sR1〉. According to Property 3,
for all worlds w′ ∈ f(2) with w′ '〈sL,sR1〉 w, the sensing only
requiresw′, 〈sL, sR1〉 |= ¬R1∧L2, so there are some worlds with
w′, 〈sL, sR1〉 |= L1 left and some with w′, 〈sL, sR1〉 |= ¬L1.

6. f, w |= [sL][sR1][lv]BR1:
In Property 3 we have shown that w′, 〈sL, sR1〉 |= ¬R1 for
all w ∈ f(2) with w′ '〈sL,sR1〉 w. Since w′[R1, z · lv] =
1−w′[R1, z], we have w′, 〈sL, sR1, lv〉 |= R1. Those worlds sat-
isfy w′ '〈sL,sR1,lv〉 w because SF(lv) is trivially True.

7. f, w |= [sL][sR1][lv][sL]BL1:
Due to Property 5, for some w′ ∈ f(2) with w′ '〈sL,sR1,lv〉 w, we
have w′, 〈sL, sR1, lv〉 |= L1 and for others w′, 〈sL, sR1, lv〉 |=
¬L1. The sensing is w[SF(sL), 〈sL, sR1, lv〉] = 1. Since
we believe to be in room one, only the worlds w′ with
w′, 〈sL, sR1, lv〉 |= L1 agree on the sensing.

Note that these proofs are much simpler than proofs in SPLL. This is
mainly due to the unique-model property of O (Theorem 6).

Finally we sketch why Properties 2 and 5 are not entailed when
we just believe Σbelief instead of only-believing it. Let Σ′ denote Σ
where we replace O(σ,Σbelief) with Kσ ∧BΣbelief.

As for Property 5, we have seen that sensing has erased the worlds
from plausibility levels 0 and 1 from our epistemic state f already.
Now let g be such that g(0) = f(0), g(1) = f(1), and g(p) = {w′ |
w′ |= σ ∧ L1} for p ≥ 2. Then g |= BΣbelief and thus g, w |= Σ′,
but since g, w |= [sL][sR1]BL1, Σ′ does not entail Property 5.

For Property 2, we can exploit that BΣbelief allows “holes” in the
plausibility ordering. Let h be such that

h(0) = {w′ | w′ |= σ ∧ ¬L1 ∧ ¬L2 ∧ R1}
h(1) = {w′ | w′ |= σ ∧ ¬L1 ∧ ¬L2 ∧ ¬R1}
h(2) = {w′ | w′ |= σ ∧ ¬L1 ∧ L2 ∧ ¬R1}
h(3) = {w′ | w′ |= σ ∧ L1 ∧ L2 ∧ R1}.

h |= BΣbelief, as True⇒ ¬L1 ∧R1 takes effect at level 0, L1 ⇒ R1

takes effect at level 3, and ¬R1 ⇒ ¬L2 takes effect at level 1. Thus
we could define whatever we want at level 2, as long as it satisfies
¬L1. The sensing action sL tells us (L1 ∧R1)∨ (L2 ∧¬R1) holds.
All w′ ∈ h(0) or w′ ∈ h(1) disagree with this sensing, but some
w′ ∈ h(2) do agree. However, for all w′ ∈ h(2), w′ 6|= L1 ∧ R1.
Thus Σ′ does not entail Property 2.

The discussed issues are also present in SPLL; as mentioned ear-
lier they resort to negative belief conditionals to handle them. Our
example shows that only-believing is an alternative, perhaps cleaner
and more general way to solve this problem.

To conclude this section, we provide a few examples that illustrate
the inner workings of the semantics of only-believing.

Example 11 Consider Γ = {φ ⇒ False}. The effect of BΓ is
the same as of K¬φ because the conditional’s antecedent is unsat-
isfiable. Analogously, O(True,Γ) is equivalent to O(¬φ, {}): The
plausibility of φ⇒ False can only be∞, and therefore according to
rule 12a, for all w′ and p ∈ N, w′ ∈ f(p) iff w′ |= φ ⊃ False iff
w′ |= ¬φ.

The next example shows why rule 12a requires all worlds at plau-
sibility level p also to satisfy the implication φi ⊃ ψi for all condi-
tionals with pi > p.



Example 12 Consider Γ = {A ⇒ B,C ⇒ A ∧ ¬B}. Note that
the two conditionals cannot have their antecedents true at the same
plausibility level. Still, both conditionals can be effective at differ-
ent levels: f |= BΓ for f(0) = {w′ | w′ |= (A ⊃ B) ∧ ¬C}
and f(1) = {w′ | w′ |= C ⊃ (A ∧ ¬B)}. The clue is to fal-
sify the second conditional’s antecedent in f(0). That is precisely
what rule 12a does: Suppose g |= O(True,Γ) where A ⇒ B has
plausibility level 0 and C ⇒ A ∧ ¬B has plausibility level 1. By
rule 12a, w′ ∈ g(0) iff w′ |= (A ⊃ B) ∧ (C ⊃ A ∧ ¬B) iff w′ |=
(¬A∨B)∧(¬C∨A)∧(¬C∧¬B) iffw′ |= (¬A∧¬C)∨(B∧¬C)
iffw′ |= (A ⊃ B)∧¬C. Observe that requiringw′ |= C ⊃ A∧¬B
for w′ ∈ g(0) in rule 12a precisely keeps out those worlds from g(0)
which otherwise would by rule 12c trigger the second conditional
and thus make things inconsistent. Thus f |= O(True,Γ).

The final example demonstrates that in some cases, Kα ∧BΓ 6|=
B(φ⇒ ψ) but O(α,Γ) |= B(φ⇒ ψ).

Example 13 Consider Γ = {A ⇒ C,B ⇒ D} and A ∧ B ⇒
C∧D. A model of BΓ is f such that f(0) = {w′ | w′ |= A∧¬B∧
C ∧ ¬D}, f(1) = {w′ | w′ |= ¬A ∧B ∧ ¬C ∧D}, f(2) = {w′ |
w′ |= A ∧ B ∧ ¬C ∧ ¬D}. It is easy to see that f 6|= B(A ∧ B ⇒
C ∧ D). However, O(True,Γ) |= B(A ∧ B ⇒ C ∧ D): Suppose
g |= O(True,Γ). w′ ∈ g(0) iff w′ |= (A ⊃ C) ∧ (B ⊃ D), which
implies w′ |= A ∧B ⊃ C ∧D.

4 RELATED WORK
The closest relative of our work is of course SPLL [16]. SPLL builds
upon the epistemic extension of Reiter’s situation calculus [14] by
Scherl and Levesque [15]. ES [8] expands the latter by only-knowing,
and so is a suitable basis for our semantic characterization of SPLL
plus only-believing. Like SPLL we adapt ideas from [17, 2].

Demolombe and Pozos Parra [4] define belief in terms of modal
literals, which evolve according to axioms similar to Reiter’s suc-
cessor state axioms [14]. Unlike SPLL and us, they do not support
disjunctive beliefs. The initial (non-)beliefs must be stated explicitly.

Another proposal [5] by the same authors for multi-agent belief
revision uses an accessibility relation, but is able to avoid plausibil-
ities by distinguishing between real and imaginary situations. They
argue that SPLL’s plausibilities are infeasible. We believe our work
refutes this claim as only-believing induces unique plausibilities.

Fang and Liu’s proposal [6] also supports multi-agent belief. They
feature two plausibility relations, one for actions and one for situ-
ations. When an action occurs, the situations’ plausibilities are up-
dated based on the action’s plausibility. Plausibilities must be as-
signed by hand; they do not have a⇒ operator like SPLL.

A more distant relative by del Val and Shoham [3] uses a circum-
scription policy to minimize the effects of belief update and belief re-
vision. They also provide an operator for believing only which closes
the initial beliefs under logical consequence.

As we mentioned in the beginning, SPLL showed how they agree
and differ from the classical approaches to AGM-style belief revi-
sion [1], update [7], and iterated revision [2]. For compatibility rea-
sons, SPLL need to assume that the actual world is always considered
possible with some plausibility. In our case, this would mean that we
require that the real world is an element of f(p) for some p. With this
it is easy to show that our approach satisfies the same postulates as
SPLL. For example, they show that they satisfy all AGM postulates
exceptK ∗5, which says that revising with α leads to an inconsistent
epistemic state iff α is inconsistent. Instead, SPLL as well as we have
that revising with α never leads to an inconsistent state, provided the

real world is considered possible. This is because α is assumed to be
the result of a sensing action, which always returns the correct value
wrt the real world. We remark that SPLL can carry out their compar-
ison with AGM and others only by assuming a particular model of
a given basic action theory. In our case, since only-believing has the
unique-model property, the comparison can be carried out in terms
of logical entailment within ESB.

5 CONCLUSION
The paper semantically characterizes belief change in the situation
calculus in the spirit of Shapiro et al. [16]. Our logic allows to define
beliefs in terms of belief conditionals and reason about how belief
is updated and revised over the course of actions. In particular we
have defined a novel only-believing operator with interesting proper-
ties: while only-believing and believing a set of belief conditionals
both are always satisfiable, the former has a unique model and thus a
unique plausibility ordering of beliefs, and there is a straightforward
way to generate this model.

In future we plan to combine our results on only-believing with
ESL, a logic for limited reasoning about actions [11]. This work
promises to allow decidable reasoning about beliefs.

Only-knowing has been shown to have a close relationship with
the progression of knowledge bases after actions [9]. Thus, pro-
gression of beliefs may be another interesting application of only-
believing.
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