
Belief Revision and Progression of Knowledge Bases
in the Epistemic Situation Calculus

Christoph Schwering
RWTH Aachen University

Aachen, Germany
schwering@kbsg.rwth-aachen.de

Gerhard Lakemeyer
RWTH Aachen University

Aachen, Germany
gerhard@kbsg.rwth-aachen.de

Maurice Pagnucco
University of New South Wales

Sydney, Australia
morri@cse.unsw.edu.au

Abstract
Fundamental to reasoning about actions and be-
liefs is the projection problem: to decide what is
believed after a sequence of actions is performed.
Progression is one widely applied technique to
solve this problem. In this paper we propose
a novel framework for computing progression in
the epistemic situation calculus. In particular, we
model an agent’s preferential belief structure us-
ing conditional statements and provide a technique
for updating these conditional statements as actions
are performed and sensing information is received.
Moreover, we show, by using the concepts of nat-
ural revision and only-believing, that the progres-
sion of a conditional knowledge base can be repre-
sented by only-believing the revised set of condi-
tional statements. These results lay the foundations
for feasible belief progression due to the unique-
model property of only-believing.

1 Introduction
Fundamental to reasoning about actions and beliefs is the pro-
jection problem: to decide what is believed after a sequence
of actions is performed. There are two popular ways to solve
this problem: regression rewrites a query about the future to
a query about the initial situation only; progression changes
the knowledge base to reflect the effects of the actions. Re-
gression usually becomes infeasible when dealing with very
long action sequences. A long-lived system — for instance,
a domestic service robot — hence must progress its mental
state once in a while. In particular, such a robot may contin-
ually acquire new information about its environment, which
may or may not be consistent with what the robot believed
or had learned before. When progressing its knowledge base,
the robot needs to carefully revise its beliefs to handle these
potentially conflicting pieces of information.

The following running example will illustrate our ap-
proach. Suppose our robot is carrying an object which it be-
lieves to be quite robust but not made of metal. Hence, when
the robot drops the item, it believes the object is still intact.
When a clinking noise occurs afterwards, perhaps indicating
that the object is broken or is made of metal, this may change;
as the robot considers fragility more plausible than the object

being metallic, it now believes that the object is broken. If
then the robot inspects the object and it turns out to be fine
after all, the previous belief is given up again and the robot
assumes the object neither broken nor metallic (implicitly as-
suming the clink was due to something else).

Progression is a very intuitive way to implement projec-
tion. It has attracted a lot of attention in the reasoning about
action community, perhaps most notably in the seminal work
by Lin and Reiter [Lin and Reiter, 1997] in the situation
calculus [McCarthy, 1963; Reiter, 2001]. While Lin–Reiter
progression has been transferred to one of the epistemic ex-
tensions of the situation calculus [Lakemeyer and Levesque,
2009], it has not yet been studied in any of the situation cal-
culus dialects that deal with belief change. In fact, most vari-
ants of the situation calculus take the Scherl–Levesque view
of sensing [Scherl and Levesque, 2003], where sensing is as-
sumed to be correct and thus cannot be revised at all.

In this paper, we propose a logical framework where the
robot’s preferential belief structure is modelled using coun-
terfactual conditionals. Sensing tells the agent new infor-
mation, which may turn out wrong later and then becomes
subject to belief revision. We propose a solution to the pro-
jection problem in this setting by belief progression. More
precisely, we show that, by using the concepts of natural re-
vision [Boutilier, 1993] and only-believing [Schwering and
Lakemeyer, 2014], the progression of a conditional knowl-
edge base can be represented by only-believing the revised set
of conditional statements. The connection to only-believing
is particularly attractive due to its unique-model property,
which lays the foundations for feasible belief progression.

The next section discusses approaches related to our pro-
posal here. In Section 3 we introduce our new logic, before
we define Reiter’s concept of basic action theories in this
framework and examine our running example in Section 4.
Section 5 presents the main result of this paper: how to revise
and progress a conditional knowledge base. In Section 6 we
compare our work with standard belief revision frameworks
before concluding.

2 Related Work
The situation calculus is perhaps the most thoroughly stud-
ied action formalism, although there are other significant ap-
proaches such as the event calculus [Kowalski and Sergot,



1989], the fluent calculus [Thielscher, 1999], and the fam-
ily of action languages A [Gelfond and Lifschitz, 1993]. A
number of belief revision extensions of the situation calcu-
lus have been proposed [Shapiro et al., 2011; Demolombe
and Pozos Parra, 2006; Delgrande and Levesque, 2012;
Fang and Liu, 2013; Schwering and Lakemeyer, 2014]. Most
of these do not address the issue of faulty sensors with the
exception of [Delgrande and Levesque, 2012; Fang and Liu,
2013], who both achieve this through plausibility updating
schemes. However, these formalisms are quite heavyweight
and leave open the projection problem which we claim is the
key to implementation. The only available solution to the be-
lief projection problem is by regression [Schwering and Lake-
meyer, 2015], but it assumes correct sensors. Another frame-
work to deal with faulty sensors is the Bayesian approach by
[Bacchus et al., 1999].

Belief revision has also been addressed in dynamic epis-
temic logic [van Benthem, 2007], where revised beliefs are
reduced to initial beliefs in a regression-like fashion.

We use Boutilier’s natural revision [Boutilier, 1993].
While several plausibility updating schemes have been pro-
posed, for example [Spohn, 1988; Nayak et al., 2003], and
despite legitimate criticism [Booth and Meyer, 2006], we
choose natural revision because, as we shall see later, it agrees
well with only-believing. Only-believing [Schwering and
Lakemeyer, 2014] determines a unique epistemic model for
a conditional knowledge base. It is related to only-knowing
[Levesque and Lakemeyer, 2001] and System Z [Pearl, 1990].

Progression was first studied by Lin and Reiter in the sit-
uation calculus [Lin and Reiter, 1997]. Roughly speaking,
their idea is to progress a knowledge base by replacing all
relevant predicates with existentially quantified second-order
variables. Their purpose is to “memorize” what was true
before the progression. The original predicates are then re-
introduced and equated with a formula about the second-
order variables only. We will re-visit this idea in Section 5.

3 The Logic
In this section we introduce a novel logic that combines
reasoning about action and belief revision. This first-order
modal language is a variant of ES [Lakemeyer and Levesque,
2011]. Actions may lead to a revision of the agent’s beliefs,
which follows the rules of natural revision [Boutilier, 1993].
It also integrates an operator, called only-believing [Schw-
ering and Lakemeyer, 2014], which uniquely determines the
agent’s beliefs for a given conditional knowledge base.

3.1 The Language
The language consists of formulas over fluent or rigid predi-
cates and rigid terms. The truth value of fluents may vary as
the result of actions, but rigids do not.

The set of terms is the least set which contains infinitely
many first-order variables and is closed under the application
of infinitely many function symbols of any arity.

The set of well-formed formulas is the least set that con-
tains H(t1, . . . , tk), (t1 = t2), ¬α, (α ∧ β), ∀x.α, [t]α, �α,
Bα, and O(α, {φ1 ⇒ ψ1, . . . , φm ⇒ ψm}), where H is a
k-ary predicate symbol, ti and t are terms, x is a variable, and

α, β, φi, ψi are formulas. TRUE, FALSE, (α ∨ β), (α ⊃ β),
(α ≡ β), and ∃x.α are the usual abbrevations.

We read [t]α as “α holds after action t” and �α as “α
holds after any sequence of actions.” Bα is read as “α is be-
lieved.” Conditionals φ⇒ ψ are understood counterfactually
[Lewis, 1973]: “if φ was true, then ψ would be true.” The
only-believing operator O(α, {φ1 ⇒ ψ1, . . . , φm ⇒ ψm})
means that α is known, the conditionals φi ⇒ ψi are be-
lieved, and this is all that is known or believed. The purpose
of only-believing is to uniquely determine a belief structure.

There are two special fluent predicates: Poss(t) represents
the precondition of action t; IF (t) represents the new infor-
mation learned by the agent through action t.

By αx
t we mean the formula αwith t substituted for all free

occurrences of x. We sometimes write ~t for t1, . . . , tk.
A formula with no [t] or � is called static. A formula with

no B or O is called objective. A formula with no free variable
is called a sentence.

3.2 The Semantics
We now give a possible-worlds semantics for this language.
An interpretation of a sentence α consists of an epistemic
state f , a world w, and a sequence of executed actions z.
We write f, w, z |= α to say that the interpretation satisfies
the sentence. We take as fixed in the domain of discourse
the set of all ground terms denoted by R. Since R is count-
able, we can handle quantification by substitution. By R∗

we denote the set of all sequences of ground terms, includ-
ing the empty sequence 〈〉. The action sequence z initially
starts with 〈〉 and then grows deterministically with each ex-
ecuted action r to z · r. A world w maps all atomic sen-
tences H(r1, . . . , rk) and action sequences z ∈ R∗ to truth
values {0, 1}, and satisfies the rigidity constraint: if H is
rigid, then w[H(r1, . . . , rk), z] = w[H(r1, . . . , rk), z′] for
all z, z′ ∈ R∗. An epistemic state f maps each plausibility
(taken from N) to a set of worlds considered possible at this
plausibility level. A value of 0 indicates the highest possible
plausibility. A world may occur at multiple plausibility lev-
els; usually we will indeed have f(0) ⊆ f(1) ⊆ . . ., that is,
f(p) contains all worlds at least as plausible as p.

We begin with the objective semantics:

1. f, w, z |= H(r1, . . . , rk) iff w[H(r1, . . . , rk), z] = 1;
2. f, w, z |= (r1 = r2) iff r1 and r2 are identical;
3. f, w, z |= ¬α iff f, w, z 6|= α;
4. f, w, z |= (α ∧ β) iff f, w, z |= α and f, w, z |= β;
5. f, w, z |= ∀x.α iff f, w, z |= αx

r for all r ∈ R;
6. f, w, z |= [r]α iff f, w, z · r |= α;
7. f, w, z |= �α iff f, w, z · z′ |= α for all z′ ∈ R∗.
Before we proceed with the semantics of beliefs, we need

to formalize the revision of an epistemic state. When the
agent is informed that α holds, we promote the most plausi-
bleα-worlds to the highest plausibility level and shift all other
worlds down by one level. This revision scheme is known as
natural revision [Boutilier, 1993]. Intuitively, it is the min-
imal change required of the plausibility ordering to ensure
belief in α. We denote the result of this revision by f ∗ α:



Definition 1 Given an epistemic state f and a sentence α,
let p∗ = min{p | f, w, 〈〉 |= α for some w ∈ f(p)} ∪ {∞}
be the first plausibility level1 consistent with α and let W =
{w | w ∈ f(p∗) and f, w, 〈〉 |= α} be the α-worlds from that
level. For convenience, we let f(−1) stand for {}. Then the
revision of f by α is denoted by f ∗ α and is defined as:
• if p∗ =∞ then (f ∗ α)(p) = {} for all p ∈ N;
• if W 6= f(p∗) \ f(p∗ − 1) then

– (f ∗ α)(p) = f(p− 1) ∪W for all 0 ≤ p ≤ p∗;
– (f ∗ α)(p) = f(p− 1) for all p > p∗;

• otherwise
– (f ∗ α)(p) = f(p− 1) ∪W for all 0 ≤ p ≤ p∗;
– (f ∗ α)(p) = f(p) for all p > p∗.

The plausibility of a world w is the minimal p such that
w ∈ f(p). In f ∗ α, the most plausible α-worlds from f
are shifted to the first plausibility level. All other worlds are
made less plausible by one level. The second and third case
only differ in that the latter skips f(p∗) to avoid (f ∗α)(p∗) =
(f ∗ α)(p∗ + 1) when f(p∗ − 1) ∪W = f(p∗).

Any action r provides the agent with the (perhaps vacu-
ously true) information that IF (r) holds. We therefore ac-
count for r in the epistemic state by revising by IF (r) and
then applying the effects of r to all worlds in f :
Definition 2 The progression of a world w by z is a world
wz such that wz[ρ, z′] = w[ρ, z · z′] for all atomic sentences
ρ and action sequences z′. The progression of an epistemic
state f is denoted by fz and is defined inductively by
• f〈〉 = f ;

• fz·r(p) = {wr | w ∈ (fz ∗ IF (r))(p)} for all p ∈ N.
With these definitions in hand, we are ready to proceed

with the epistemic semantics:
8. f, w, z |= Bα iff fz, w′, 〈〉 |= α for all w′ ∈ fz(0);
9. f, w, z |= O(α, {φ1 ⇒ ψ1, . . . , φm ⇒ ψm}) iff

for some p1, . . . , pm ∈ N ∪ {∞},1 for all p ∈ N,
(a) fz, w′, 〈〉 |= (α ∧

∧
i:pi≥p(φi ⊃ ψi)) iff w′ ∈ fz(p);

(b) for all pi > p, for all w′ ∈ fz(p), fz, w′, 〈〉 6|= φi;
(c) for all pi = p, for some w′ ∈ fz(p), fz, w′, 〈〉 |= φi.

In the following, we sometimes omit f or w in f, w, z |= α
when it is irrelevant to the truth of α. We also may omit z
when z = 〈〉. A set of sentences Σ entails a sentence α iff for
all f and w, if f, w |= β for all β ∈ Σ, then f, w |= α. We
write Σ |= α, and abbreviate |= α when Σ = {}.

3.3 Some Properties
Since f〈〉 = f , our definition of only-believing is identical
with the one in [Schwering and Lakemeyer, 2014] when z =
〈〉. Therefore the following theorem carries over to our logic:
Theorem 3 ([Schwering and Lakemeyer, 2014]) Let Γ =
{φ1 ⇒ ψ1, . . . , φm ⇒ ψm} and let α, φi, ψi be objective.
Then there is a unique f such that f |= O(α,Γ).

1In Definition 1, p∗ = ∞ means that all plausibility levels are
inconsistent with α. In Rule 9, pi = ∞ analogously indicates that
all plausibility levels are inconsistent with the antecedent φi.

In fact, the following straightforward procedure generates
the epistemic state that satisfies O(α,Γ) [Schwering and
Lakemeyer, 2014]. Initially let p1 := 0, . . . , pm := 0. Then
let p run from 0 to m and repeat the following two steps:

• Let f(p) := {w | w |= (α ∧
∧

i:pi≥p(φi ⊃ ψi))}.

• For all i, if there is no w ∈ f(p) such that w |= φi, let
pi := p+ 1.

Then let f(p) := f(m) for all p > m. Finally let pi := ∞
for all pi > m. Then f |= O(α,Γ) for the plausibilities
p1, . . . , pm. Observe that then f(0) ⊆ f(1) ⊆ . . . holds.

Since our objective semantics is the same as the one for ES
[Lakemeyer and Levesque, 2004], its theorems carry over to
our logic:

Theorem 4 Let |=ES denote the entailment relation of ES.
For any objective sentence α, |= α iff |=ES α.

This correspondence does not hold for knowledge or belief
because our notion of informing differs from the sensing con-
cept predominant in the situation calculus: ES and its descen-
dents, including the belief revision variant [Schwering and
Lakemeyer, 2014], follow Scherl and Levesque [Scherl and
Levesque, 2003] and define sensing to be always correct — a
strong assumption we do not make here. We hence resort to
the weaker concept of informing where new information may
contradict older information.

4 Basic Action Theories
To axiomatize a dynamic domain we use the modal variant of
Reiter’s basic action theories [Reiter, 2001; Lakemeyer and
Levesque, 2011]. A basic action theory over a finite set of
fluent predicates F consists of a static and a dynamic part. In
the context of a basic action theory a formula is called fluent
when it is objective, static, and all predicates are either from
F or rigid.

The dynamic axioms express when an action is executable
(Σpre), how actions change the truth values of fluents (Σpost),
and which belief actions produce (Σinfo):2

• Σpre contains a single sentence �Poss(a) ≡ π where π
is a fluent formula;

• Σpost contains a sentence �[a]F (~x) ≡ γF for all F ∈ F
where γF is a fluent formula;

• Σinfo contains a single sentence �IF (a) ≡ ϕ where ϕ is
a fluent formula.

The sentences in Σpost are called successor state axioms be-
cause they relate the state after an action a to the one before
a. They incorporate Reiter’s solution to the frame problem
[Reiter, 2001]. The informed fluent axiom Σinfo is to axioma-
tize the information an action tells the agent. We refer to the
dynamic axioms as Σdyn.

The static part of a basic action theory expresses what the
agent believes to be true: Σbel contains finitely many belief
conditionals φ⇒ ψ where φ and ψ are fluent sentences.

2We assume � has lower and [t] has higher precedence than log-
ical connectives and that all first-order variables are quantified from
outside. So �[a]F (~x) ≡ γF stands for ∀a.∀~x.�(([a]F (~x)) ≡ γF ).



The projection problem in this setting is to decide if
O(Σdyn,Σbel) |= α holds,3 where α may involve actions
and/or beliefs. In the next section we present a solution to
the projection problem by progression, which modifies the
initial beliefs to take into account the actions’ effects.

Example
The example from Section 1 can be modelled as a basic action
theory as follows. There are two rigid predicates, F and M ,
for the object being fragile or metallic, respectively. There is
one fluent predicate, B , which indicates whether or not the
object is broken. The action drop4 causes the object to break
if it is fragile. The clinking noise is represented by the ac-
tion clink, which informs that the object is broken or metallic
(B ∨ M ). Lastly, the inspect action tells us that the object
is not broken (¬B ). We do not model any preconditions for
simplicity. This translates to the following dynamic axioms:

Σpre = {�Poss(a) ≡ TRUE};
Σpost = {�B ≡ a = drop ∧ F ∨ B};
Σinfo = {�IF (a) ≡ (a = clink ⊃ B ∨M ) ∧

(a = inspect ⊃ ¬B)}.
The robot believes that the object is neither fragile nor metal,
and it generally considers it more likely that the object is frag-
ile than being metal. Furthermore we are absolutely certain
that the object is not broken in the beginning. Thus we have:

Σbel = {TRUE ⇒ ¬F ∧ ¬M ,

F ∨M ⇒ F ∧ ¬M ,

B ⇒ FALSE}.
By the construction of Theorem 3, f |= O(Σdyn,Σbel) iff

f(0) = {w | w |= Σdyn ∧ ¬B ∧ ¬F ∧ ¬M };
f(1) = {w | w |= Σdyn ∧ ¬B ∧ ((¬F∧¬M ) ∨ (F∧¬M ))}

= {w | w |= Σdyn ∧ ¬B ∧ ¬M };
f(p) = {w | w |= Σdyn ∧ ¬B} for all p ≥ 2.
Notice that the effect of B ⇒ FALSE is to assert ¬B at all
plausibility levels. We will now examine how belief changes
after dropping the object, hearing a clink, and inspecting the
object.

After dropping the object, we believe it to be still intact,
that is, O(Σdyn,Σbel) |= [drop]B(¬B ∧ ¬F ∧ ¬M ). This is
because drop triggers no revision and hence:
fdrop(0) = {w | w |= Σdyn ∧ ¬B ∧ ¬F ∧ ¬M };
fdrop(1) = {w | w |= Σdyn ∧ (B ≡ F ) ∧ ¬M };
fdrop(p) = {w | w |= Σdyn ∧ (B ≡ F )} for all p ≥ 2.
When we hear a clink after dropping the object, the re-

vision by IF (clink) promotes the most plausible (B ∨ M )-
worlds to the first plaubility level. The first (B ∨M )-worlds
come from fdrop(1), namely those w ∈ fdrop(1) with w |= F .
Hence we have:
fdrop·clink(0) = {w | w |= Σdyn ∧ B ∧ F ∧ ¬M };
fdrop·clink(1) = {w | w |= Σdyn ∧ (B ≡ F ) ∧ ¬M };
fdrop·clink(p) = {w | w |= Σdyn ∧ (B ≡ F )} for all p ≥ 2.

3We identify a finite set of sentences with their conjunction.
4We use sans-serif font for ground terms.

Since for all w ∈ fdrop·clink(0), w |= B ∧ F ∧ ¬M , we have
O(Σdyn,Σbel) |= [drop][clink]B(B ∧ F ∧ ¬M ).

When we now inspect the object, we revise by IF (inspect),
which promotes the first ¬B -worlds from fdrop·clink to the
first plausibility level. The first ¬B -worlds come from
fdrop·clink(1), namely those w ∈ fdrop·clink(1) with w |= ¬F .
For z = drop · clink · inspect we hence have:

fz(0) = {w | w |= Σdyn ∧ ¬B ∧ ¬F ∧ ¬M )};
fz(1) = {w | w |= Σdyn ∧ (B ≡ F ) ∧ ¬M };
fz(p) = {w | w |= Σdyn ∧ (B ≡ F )} for all p ≥ 2.

Observe that the revision by IF (inspect) undoes the previ-
ous revision by IF (clink), that is, fz = fdrop, and thus:
O(Σdyn,Σbel) |= [drop][clink][inspect]B(¬B ∧ ¬F ∧ ¬M ).
In particular, we believe the object is not metallic, due to nat-
ural revision. In approaches where sensing is assumed to
be correct, like [Shapiro et al., 2011; Schwering and Lake-
meyer, 2014], such a conclusion would not have been possi-
ble because they would have ruled out all worlds contradict-
ing (B ∨M ) and ¬B , so only M -worlds would be left.

5 Progression
In this section we present a form of progression which cap-
tures the beliefs after an action using only-believing. We need
to take into account both the epistemic revision effect of the
action and its physical effects. To this end, we first define
revision of only-believing and show its correctness with re-
spect to the semantics (Definition 5 and Theorem 6). Then
we integrate the physical effects of actions to obtain a form
of progression of basic action theories (Definition 7 and The-
orem 8).
Definition 5 Let Γ = {φ1 ⇒ ψ1, . . . , φm ⇒ ψm} and let α,
β, φi, ψi be objective. Let f be the epistemic state such that
f |= O(α,Γ) for plausibilities p1, . . . , pm. Let

p∗ = min{p | w |= β for some w ∈ f(p)} ∪ {∞};

γp =

{
FALSE if p = −1;∧

i:pi≥p(φi ⊃ ψi) otherwise;

δ =


γp∗−1∨ (γp∗ ∧β) if α∧γp∗∧¬γp∗−1 6|= β;
γp∗−2∨ (γp∗ ∧β) if α∧γp∗∧¬γp∗−1 |= β and p∗> 0;
FALSE if α∧γp∗∧¬γp∗−1 |= β and p∗= 0.

Then the revision of O(α,Γ) by β is denoted by O(α,Γ) ∗ β
and defined as O(α,Γ′) where

Γ′ = {TRUE ⇒ β} ∪
{φi ∧ ¬β ⇒ ψi | pi < p∗} ∪
{φi ⇒ ψi | pi ≥ p∗} ∪
{¬δ ⇒ γp∗}.

O(α,Γ)∗β thus means to believe β, but if β turns out to be
wrong, we return to the old beliefs φi∧¬β ⇒ ψi. The condi-
tional ¬δ ⇒ γp∗ ensures that when also all φi∧¬β ⇒ ψi turn
out to be wrong, we return to the same beliefs as before the
revision. Intuitively, a world satisfies δ if before the revision
its plausibility was at least p∗ − 1 or if its plausibility was



p∗ and it satisfies β. (The different definitions for δ handle
cases where plausibility levels concur.) Therefore, ¬δ ⇒ γp∗

means that if β and everything we considered at least as plau-
sible as p∗ − 1 before the revision turn out to be wrong, then
after the revision we believe the same as before the revision
if β and all beliefs at least as plausible as p∗ − 1 had turned
out to be wrong. Notice that O(α,Γ) ∗ β can be generated
using first-order reasoning.

We now prove that this revision matches natural revision
that is used in the semantics:

Theorem 6 Let f |= O(α,Γ). Then f ∗ β |= O(α,Γ) ∗ β.

Proof Sketch. The proof is lengthy, so we sketch the main
idea. The idea is to show that f ∗ β satisfies the right-hand
side of Rule 9 for the following plausibilities. For TRUE ⇒ β,
the plausibility is 0. For each φi ∧ ¬β ⇒ ψi, the plausibility
is pi + 1. For each φi ⇒ ψi, the plausibility is 0 if pi = p∗

and w |= φi∧β for some w ∈ f(p∗); it is pi +1 if w 6|= β for
somew ∈ f(p∗)\f(p∗−1); and pi otherwise. For¬δ ⇒ γp∗ ,
the plausibility is p∗ + 1 if γp∗ ∧ ¬γp∗−1 6|= β; p∗ otherwise.
It is then tedious but straightforward to show that Rule 9 is
satisfied. Crucial for this is that |= (¬δ ⊃ γp∗) ≡ γp∗ , which
allows to rearrange the conditionals from level p∗ because
¬δ ⇒ γp∗ takes their place.

We are now ready to define the progression of a basic ac-
tion theory with conditional beliefs O(Σdyn,Σbel). Given an
action r, we first revise the theory by IF (r) and then han-
dle the effects of r on the fluents. The revision is captured
by O(Σdyn,Σbel) ∗ ϕa

r where ϕ is the informed fluent axiom
(�IF (a) ≡ ϕ ∈ Σdyn). (The reason for taking ϕa

r instead of
IF (r) is to keep the belief conditionals fluent.) In the follow-
ing we show how to handle the physical effect of r. Let the set
of fluents be F = {F1, . . . , Fn} and let P = {P1, . . . , Pn}
be rigid predicates of corresponding arity which do not oth-
erwise occur in O(Σdyn,Σbel). We denote by α~F

~P
the formula

obtained from replacing each Fi with Pi. The progression of
a basic action theory is then defined as follows:

Definition 7 Let Σ′bel be the revised belief conditionals, that
is, O(Σdyn,Σbel) ∗ ϕa

r = O(Σdyn,Σ
′
bel). The progression of

O(Σdyn,Σbel) by r is then denoted by O(Σdyn,Σbel)r and is
defined as O(Σdyn,Σ

′′
bel) where

Σ′′bel = Σ′bel
~F
~P
∪ {¬(∀~x.F (~x) ≡ γF a

r
~F
~P
)⇒ FALSE | F ∈ F}.

The intuition behind the definition is as follows. Each new
predicate Pi captures the pre-r truth value of Fi. Now, when
an action r is executed, we first revise by the information ϕa

r
produced by r which gives us the new beliefs Σ′bel. The be-
liefs Σ′bel

~F
~P

represent the same belief structure as Σ′bel, ex-
cept that each Fi is renamed to Pi. Adding a conditional
¬(∀~x.F (~x) ≡ γF

a
r
~F
~P
) ⇒ FALSE finally has the effect of re-

quiring ∀x.F (~x) ≡ γF
a
r
~F
~P

at every plausibility level, which
leads to F taking the correct post-r value. Note that the revi-
sion of a basic action theory again is a basic action theory.

We say α is P-free if no predicate in α is from P . The
following theorem establishes the correctness of progression:

Theorem 8 Let α be P-free and without O.
Then O(Σdyn,Σbel) |= [r]Bα iff O(Σdyn,Σbel)r |= Bα.

Proof Sketch. The proof proceeds in two steps. Firstly, it is
shown that O(Σdyn,Σ

′
bel) and O(Σdyn,Σ

′′
bel) (as defined in

Definition 7) lead to the same belief structure. Intuitively,
this is because in O(Σdyn,Σ

′′
bel) each Fi is renamed by Pi, so

the additional conditionals in Σ′′bel do not affect the plausibil-
ities. Secondly, if f |= O(Σdyn,Σ

′
bel) and g |= O(Σdyn,Σ

′′
bel),

then f and g are bisimilar in the sense that for all p, for each
w ∈ f(p), there is some w′ ∈ g(p) such that wr and w′ agree
on all truth values except for the predicates from P , and vice-
versa. Then one can show by induction that any two states
bisimilar in this sense satisfy the same P-free sentences.

Our definition of progression is closely related to Lin and
Reiter’s progression [Lin and Reiter, 1997]. While they use
existentially quantified second-order variables to memorize
the pre-r truth value of each Fi, we use new rigid Skolem-
predicates Pi. This is weaker than Lin–Reiter progression in
the sense that O(Σdyn,Σbel) 6|= [r]O(Σbel,Σdyn)r. However,
second-order logic would have led to a considerably more
complex definition of the O operator.

Example
We now examine the progression of O(Σdyn,Σbel) by drop
and then by clink. The epistemic states we obtain match the
ones from Section 4 except for the newly added predicate PB

to memorize the old value of B .
We first consider the progression by drop. As the revision

by ϕa
drop just adds another conditional to O(Σdyn,Σbel)∗ϕa

drop

whose antecedent and consequent both are equivalent to
TRUE, we proceed with the progression of the physical ef-
fects. By Definition 7, the resulting conditionals are:

Σ′bel = {TRUE ⇒ ¬F ∧ ¬M ,

F ∨M ⇒ F ∧ ¬M ,

PB ⇒ FALSE,

¬(B ≡ drop = drop ∧ F ∨ PB )⇒ FALSE}.
Then g |= O(Σdyn,Σ

′
bel) iff g(p) = {w | w |= κp} where

κ0 = Σdyn ∧ ¬PB ∧ (B ≡ F ∨ PB ) ∧ ¬F ∧ ¬M
= Σdyn ∧ ¬PB ∧ ¬B ∧ ¬F ∧ ¬M ;

κ1 = Σdyn ∧ ¬PB ∧ (B ≡ F ) ∧ ¬M ;
κp = Σdyn ∧ ¬PB ∧ (B ≡ F ) for all p ≥ 2.

Observe that the only difference between fdrop from Section 4
and g is the additional restrictions on PB , and hence both
epistemic states satisfy the same formulas without PB .

Let us now consider O(Σdyn,Σ
′
bel)clink, which leads to a

revision by (B ∨M ). Since clink has no physical effect, we
only examine this revision and omit the progression. The first
plausibility level from g consistent with (B ∨M ) is p∗ = 1.
Since there is no w ∈ g(1) \ g(0) such that w 6|= (B ∨M ),
the additional constraint ¬δ ⇒ γp∗ is such that:

δ = ¬γp∗−2 ∨ (γp∗ ∧ β)

= FALSE ∨ (¬PB ∧ (B ≡ F ) ∧ ¬M ∧ (B ∨M ))

= ¬PB ∧ B ∧ F ∧ ¬M and
γp∗ = ¬PB ∧ (B ≡ F ) ∧ ¬M .



Hence we obtain as the revised set of beliefs:

Σ′bel = {TRUE ⇒ B ∨M ,

¬(B ∨M )⇒ ¬F ∧ ¬M ,

F ∨M ⇒ F ∧ ¬M ,

¬δ ⇒ γp∗ ,

PB ⇒ FALSE,

¬(B ≡ drop = drop ∧ F ∨ PB )⇒ FALSE}.

This syntactic revision satisfies the same PB -free formulas
as fdrop·clink from Section 4: we have g′ |= O(Σdyn,Σ

′
bel) iff

g′(p) = {w | w |= λp} where:

λ0 = Σdyn ∧ (B ∨M ) ∧ (¬(B ∨M ) ⊃ ¬F ∧ ¬M ) ∧
(F ∨M ⊃ F ∧ ¬M ) ∧ (¬δ ⊃ γp∗) ∧
¬PB ∧ (B ≡ F ∨ PB )

= Σdyn ∧ ¬PB ∧ B ∧ F ∧ ¬M ;
λ1 = Σdyn ∧ (¬(B ∨M ) ⊃ ¬F ∧ ¬M ) ∧ (¬δ ⊃ γp∗) ∧

¬PB ∧ (B ≡ F ∨ PB )

= Σdyn ∧ ¬PB ∧ (B ≡ F ) ∧ ¬M ;
λp = Σdyn ∧ ¬PB ∧ (B ≡ F ∨ PB )

= Σdyn ∧ ¬PB ∧ (B ≡ F ) for all p ≥ 2.

Note that λ0 is inconsistent with ¬δ but λ1 is not, so ¬δ ⇒
γp∗ is satisfied at g′(1) and has the effect of asserting ¬M .

6 AGM, DP, and NPP Postulates
In this section we relate our framework to the most well
known accounts of belief change: AGM [Alchourron et al.,
1985; Gärdenfors, 1988], DP [Darwiche and Pearl, 1997],
and NPP [Nayak et al., 2003]. We will see that all the AGM
postulates and a slight modification of the DP postulates hold,
whereas the NPP postulates are not satisfied.

An action r is called a revision action when it has no phys-
ical effect, that is, Σdyn |= �[r]F (~x) ≡ F (~x) for all F ∈ F .
The only effect of such a revision action r is the belief revi-
sion by IF (r). Since it is equivalent, and to ease the presen-
tation, we consider in the following just the revision instead
of progression of O by a revision action r.

For the rest of this section, let Σ = O(Σdyn,Σbel) and let
β, γ, δ be P-free fluent sentences. In the following results,
we have translated the relevant postulates into our formalism
(similarly as in [Shapiro et al., 2011]).
Theorem 9 The AGM postulates hold:

1. Σ ∗ β is deductively closed.

2. Σ ∗ β |= Bβ.

3. If Σ ∗ β |= Bδ, then Σ |= B(β ⊃ δ).

4. If Σ 6|= B¬δ and Σ |= B(β ⊃ δ), then Σ ∗ β |= Bδ.

5. If Σ 6|= BFALSE and 6|= ¬β, then Σ ∗ β 6|= BFALSE.

6. If |= β ≡ γ, then |= Σ ∗ β ≡ Σ ∗ γ.

7. If Σ ∗ (β ∧ γ) |= Bδ, then Σ ∗ β |= B(γ ⊃ δ).

8. If Σ ∗ β 6|= B¬γ and Σ ∗ β |= B(γ ⊃ δ),
then Σ ∗ (β ∧ γ) |= Bδ.

Proof. The proofs are straightforward. Here we only show
Postulate 8: suppose f |= Σ and the antecedent holds. Then
for some w ∈ (f ∗ β)(0), w |= γ, and for all w ∈ (f ∗ β)(0),
w |= γ ⊃ δ. Therefore (f ∗β∧γ)(0) ⊆ (f ∗β)(0). Since for
all w ∈ (f ∗ β ∧ γ)(0), w |= γ, by assumption w |= δ.

While our main interest here is not in physical actions, it
can be noted that the KM update postulates [Katsuno and
Mendelzon, 1991] hold with the exception of Postulates 3,
6, and 7 for the reasons noted by [Shapiro et al., 2011].

As for the DP postulates for iterated revision, we need to
add the requirement β 6|= γ to the antecedent of DP2 because
we cannot recover from revision by an unsatisfiable formula.
Theorem 10 The DP postulates hold with a restricted ver-
sion of the second postulate:

1. If γ |= β, then (Σ ∗ β) ∗ γ |= Bδ iff Σ ∗ γ |= Bδ.
2. If β |= ¬γ and β 6|= γ,

then (Σ ∗ β) ∗ γ |= Bδ iff Σ ∗ γ |= Bδ.
3. If Σ ∗ γ |= Bβ, then (Σ ∗ β) ∗ γ |= Bβ.
4. If Σ ∗ γ 6|= B¬β, then (Σ ∗ β) ∗ γ 6|= B¬β.

Proof. Again the proofs are reasonably straightforward, so
we only show Postulate 3 here: suppose f |= Σ and the an-
tecedent holds. If for some w ∈ (f ∗ β)(0), w |= γ, then
{} 6= ((f ∗ β) ∗ γ)(0) ⊆ (f ∗ β)(0) and therefore for all
w ∈ ((f ∗ β) ∗ γ)(0), w |= β. Otherwise, for all w with
w |= γ, w ∈ f(p) ∪ (f ∗ β)(0) iff w ∈ f(p). Therefore
(f ∗ γ)(0) = ((f ∗ β) ∗ γ)(0).

The NPP postulates, however, are not satisfied. This is be-
cause natural revision is inconsistent with the third postulate:

3. If 6|= ¬(β∧γ) then (Σ∗β)∗γ |= Bδ iff Σ∗(β∧γ) |= Bδ.
Consider our running example: after revising by (B∨M ) and
then by ¬B , we believe that ¬M , whereas after revising by
(B ∨M ) ∧ ¬B we would believe M .

7 Conclusion
We have developed a logic for reasoning about actions and
belief revision. In particular, our approach is able to re-
vise inconsistent sensing information by natural revision. We
showed that this formalism is in line with the AGM and DP
postulates, but not with the NPP postulates. Most impor-
tantly, however, we addressed the belief projection problem
by progression: we showed that, if the agent only-believes a
conditional knowledge base before an action, then they only-
believe another conditional knowledge base after the action.

The next step is to employ this notion of progression in
feasible subclasses of the situation calculus such as [Liu and
Lakemeyer, 2009]. We then aim to integrate our work with an
existing implementation of a limited reasoner about actions
and knowledge based on [Lakemeyer and Levesque, 2014].
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