
On the Decidability of Verifying LTL Properties of GOLOG Programs∗

Benjamin Zarrieß
Theoretical Computer Science

TU Dresden, Germany
zarriess@tcs.inf.tu-dresden.de

Jens Claßen
Knowledge-Based Systems Group

RWTH Aachen University, Germany
classen@kbsg.rwth-aachen.de

Abstract

The high-level action programming language GOLOG
is a useful means for modeling the behavior of au-
tonomous agents such as mobile robots. It relies on a
representation given in terms of a logic-based action
theory in the Situation Calculus (SC). To guarantee that
the possibly non-terminating execution of a GOLOG
program leads to the desired behavior of the agent, it
is desirable to (automatically) verify that it satisfies cer-
tain requirements given in terms of temporal formulas.
However, due to the high (first-order) expressiveness
of the GOLOG language, the verification problem is in
general undecidable. In this paper we show that for a
fragment of the GOLOG language defined on top of the
decidable logic C2, the verification problem for linear
time temporal properties becomes decidable, which ex-
tends earlier results to a more expressive fragment of
the input formalism. Moreover, we justify the involved
restrictions on program constructs and action theory by
showing that relaxing any of these restrictions instantly
renders the verification problem undecidable again.

Introduction
The GOLOG (De Giacomo, Lespérance, and Levesque 2000;
Levesque et al. 1997) family of high-level action program-
ming languages and its underlying logic, the Situation Cal-
culus (McCarthy and Hayes 1969; Reiter 2001), have proven
to be useful means for the control of autonomous agents
such as mobile robots (Burgard et al. 1999).

Before actually deploying such a program on the robot
and executing it in the real world, it is often desirable if not
crucial to verify that it meets certain requirements such as
safety, liveness and fairness properties. Moreover, the verifi-
cation is preferably done using an automated method, since
manual, meta-theoretic proofs such as done in (De Giacomo,
Ternovska, and Reiter 1997) tend to be tedious and prone
to errors. For this purpose, Claßen and Lakemeyer (2008)
proposed a new logic ESG, an extension of the modal Situ-
ation Calculus variant ES (Lakemeyer and Levesque 2010)
by constructs that allow to express temporal properties of
GOLOG programs. They moreover provided algorithms for

∗Supported by DFG Research Unit FOR 1513, project A1
Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the verification of a subset of the logic that resembles the
branching-time temporal logic CTL. Their methods rely on
regression-based reasoning and a graph representation of
GOLOG programs to do a systematic exploration of a pro-
gram’s configuration space within a fixpoint approximation
loop. While the procedures are proven to be sound, no gen-
eral guarantee can be given for termination. This is not at all
surprising in light of the fact that in the presence of unre-
stricted first-order expressiveness, the verification problem
is highly undecidable.

For verifying properties of GOLOG programs in practice,
guaranteed termination would of course be very desirable.
The obvious course of action for achieving this is to restrict
the input formalism in an appropriate manner such that the
verification problem becomes decidable. Ideally, we could
do the verification within the very same formalism and rea-
soning methods that are used for the actual control of the
agent, while retaining as much first-order expressiveness as
possible.

Multiple approaches for addressing this problem have
been proposed. Instead of using the full first-order expres-
siveness of the Situation Calculus or ES, Baader, Liu and
ul Mehdi (2010) resort to an action language (Baader et al.
2005) based on the decidable Description Logic (DL) ALC
(Baader et al. 2003) to represent pre- and postconditions of
actions, where properties are expressed by a variant of LTL
over ALC axioms (Baader, Ghilardi, and Lutz 2008). Sec-
ond, they approximate programs by finite Büchi automata
accepting infinite sequences of DL actions. They could show
that under these restrictions, verification reduces to a decid-
able reasoning task within the underlying DL.

While this was a step in the right direction, the restric-
tions that were employed were comparably harsh. In partic-
ular, representing action effects within ALC only allows for
basic STRIPS-style addition and deletion of literals. More-
over, approximating programs through Büchi automata loses
two important features of GOLOG, namely the possibility to
include pick operators for non-deterministically chosing ar-
guments of subprograms, as well as test conditions that al-
low to constrain program execution by requiring a given for-
mula to hold, which is in particular useful for expressing im-
perative programming constructs such as while loops and if-
then-else conditionals. The latter is addressed by Baader and
Zarrieß (2013) who show that Baader, Liu and ul Mehdi’s re-

sults can indeed be lifted to a more expressive fragment of
GOLOG that includes test conditions. They obtain decidabil-
ity by proving that the potentially infinite transition system
induced by the GOLOG program can always be represented
by a finite one that admits the same execution traces.

Another approach is taken by Claßen, Liebenberg and
Lakemeyer (2013). They consider the two possible sources
of non-termination of Claßen and Lakemeyer’s original veri-
fication method: On the one hand, in each iteration one needs
to check the validity of regressed formulas. Since this prob-
lem is already undecidable in the general first-order case, the
idea is to restrict oneself to a two-variable fragment of the
Situation Calculus where this form of reasoning becomes
decidable (Gu and Soutchanski 2010). On the other hand, it
may happen that the fixpoint computation loop never con-
verges. Claßen, Liebenberg and Lakemeyer however show
that for certain classes of successor state axioms such as the
ones with only local effects (Liu and Lakemeyer 2009), ter-
mination can indeed be guaranteed for GOLOG programs
that may contain test conditions, but not the above men-
tioned pick operators.

In this paper, we aim at laying the foundations for con-
solidating these earlier approaches within a single formal
framework, while even increasing expressiveness. In partic-
ular, (1) as base logic we use C2, the two variable frag-
ment of first-order logic with counting quantifiers, which
subsumes both ALC as well as the two-variable fragment
without counting quantifiers. Furthermore, we (2) formu-
late action effects through ES-style successor state axioms,
which goes beyond the basic STRIPS-style addition and
deletion of literals. Although we again have to restrict these
axioms to be local-effect, we employ the more liberal defini-
tion of (Vassos, Lakemeyer, and Levesque 2008) that allows
for quantifiers within context formulas. We then (3) show
that the execution traces of a GOLOG program without pick
operators can be represented by a finite transition system,
and that verifying LTL properties of such programs is hence
decidable. Finally, we prove that all of the above restrictions
are indeed necessary as dropping any one of them would in-
stantly lead to undecidability.

The remainder of this paper is organized as follows. The
following section introduces the basic notions of action the-
ories in the ES variant of the Situation Calculus defined on
top of C2 as base logic, and define syntax and semantics of
(possibly) non-terminating GOLOG programs. In the subse-
quent section, we define LTL overC2 sentences to represent
desired or unwanted properties of runs of GOLOG programs
and show that the verification problem becomes decidable
for a fragment of GOLOG. In the next section we show that
several extensions of this fragment lead to undecidability.

Because of space constraints, detailed proofs of our re-
sults have to be omitted. They can be found in (Zarrieß and
Claßen 2013).

Preliminaries
The Modal Situation Calculus ES based on C2

In this subsection we recall the main definitions of the modal
Situation Calculus variant ES (Lakemeyer and Levesque

2010). But instead of using full first-order logic, we restrict
ourselves to the two variable fragment with equality and
counting of FOL named C2.

We start by fixing a set of terms. In our language we con-
sider terms of two sorts object and action. They can be built
using the following symbols: two variables x, y of sort ob-
ject, a single variable a of sort action, an infinite set NI of
rigid object constant symbols (i.e. 0-ary function symbols)
and a finite set NA of rigid action function symbols with
at most two arguments, all of sort object. A term is called
ground term if it contains no variables. We denote the set of
ground terms (also called “standard names”) of sort object
by NO, and those of sort action by NA.

To build formulas we consider fluent and rigid predicate
symbols with at most two arguments of sort object and one
unary predicate Poss with one argument of sort action later
used to define preconditions of actions. Fluents vary as the
result of actions, but rigids do not. Formulas are then built
using the usual logical connectives and in addition we have
two modal operators [·] and 2 for referring to future situa-
tions.

Let NF be a set of fluent predicate symbols and NR a set
of rigid predicate symbols. The set of formulas is defined as
the least set satisfying the following conditions: If t1, ..., tk
are terms and P ∈ NF ∪NR a k-ary predicate symbol with
0 ≤ k ≤ 2, then P (t1, ..., tk) is a formula. If t1 and t2 are
terms, then t1 = t2 is a formula. If α and β are formulas, x
a variable and t a term of sort action, then α ∧ β, ¬α, ∀x.α,
∃≤mx.α and ∃≥mx.α with m ∈ N, 2α (α always holds)
and [t]α (α holds after executing t) are formulas. We under-
stand ∨, ∃, ⊃ and ≡ as the usual abbreviations and use true
for a tautology. A formula is called bounded if it contains no
2; it is called static if its bounded and contains no [·] and it
is called fluent if it is static and does not contain the predi-
cate Poss. A formula is called sentence if it contains no free
variables.

The semantics of formulas is defined in terms of worlds.
Definition 1 (Worlds). Let PF be the set of all primitive
formulas F (n1, ..., nk), where F is k-ary predicate symbol
with 0 ≤ k ≤ 2 and the ni are standard names. Let Z :=
N ∗A. A world w is a mapping

w : PF ×Z → {0, 1}

satisfying the rigidity constraint: If R is a rigid pred-
icate symbol, then for all z, z′ ∈ Z it holds that
w[R(n1, . . . , nk), z] = w[R(n1, . . . , nk), z′]. The set of all
worlds is denoted byW .
A world thus maps primitive formulas to truth values. The
rigidity constraint ensures that rigid symbols do not take dif-
ferent values in different situations, as expected. The unique
names assumption for actions and object constants is also
part of our semantic definition.

We use the symbol 〈〉 to denote the empty sequence of
action standard names. We are now equipped to define the
truth of formulas:
Definition 2 (Satisfaction of Formulas). Given a world w ∈
W and a sentence α, we define w |= α as w, 〈〉 |= α, where
for any z ∈ Z:

1. w, z |= F (n1, . . . , nk) iff w[F (n1, . . . , nk), z] = 1;
2. w, z |= (n1 = n2) iff n1 and n2 are identical;
3. w, z |= α ∧ β iff w, z |= α and w, z |= β;
4. w, z |= ¬α iff w, z 6|= α;
5. w, z |= ∀x.α iff w, z |= αx

n for all n ∈ Nx;
6. w, z |= ∃≤mx.α iff |{n ∈ Nx | w, z |= αx

n}| ≤ m;
7. w, z |= ∃≥mx.α iff |{n ∈ Nx | w, z |= αx

n}| ≥ m;
8. w, z |= 2α iff w, z · z′ |= α for all z′ ∈ Z;
9. w, z |= [t]α iff w, z · t |= α;

Above,Nx refers to the set of all standard names of the same
sort as x. We moreover use αx

n to denote the result of simul-
taneously replacing all free occurrences of x by n.

Basic Action Theories Given a signature as described
above, we now define a theory as a set of axioms of a pre-
defined structure in order to model a dynamic application
domain.

Definition 3. A basic action theory (BAT)D = D0∪Dpre∪
Dpost describes the dynamics of a specific application do-
main, where

1. D0, the initial database, is a finite set of fluent sentences
describing the initial state of the world.

2. Dpre is a set of precondition axioms such that for any ac-
tion function A ∈ NA there is an axiom of the form
2Poss(A(~x)) ≡ ϕ, with ϕ being a fluent formula with
free variables ~x. Note that ~x can be either empty or it con-
sists of one or two variables.

3. Dpost is a finite set of successor state axioms (SSAs), one
for each fluent F ∈ NF , incorporating Reiter’s (2001)
solution to the frame problem, and encoding the effects
the actions have on the different fluents. The SSA for a
fluent F has the form 2[a]F (~x) ≡ γ+F ∨ F (~x) ∧ ¬γ−F ,
where γ+F and γ−F are fluent formulas with free variables
~x and a.

Golog Programs
Given a BAT axiomatizing preconditions and effects of
atomic actions, we now define syntax and semantics of com-
plex actions.

The program expressions we consider here are the ones
admitted by the following grammar:

δ ::= 〈〉 | t | α? | δ1; δ2 | δ1|δ2 | πx.δ | δ1||δ2 | δ∗ (1)

That is we allow the empty program 〈〉, primitive actions t
(where t can be any action term), testsα? (whereα is a fluent
sentence), sequence, nondeterministic branching, nondeter-
ministic choice of argument, concurrency, and nondetermin-
istic iteration.

Definition 4 (Golog program). A Golog program P =
(D, δ) consists of a BAT D over the signature Σ =
(NF , NR, NI , NA) and a program expression δ where the
action terms and tests in δ are built from symbols from Σ.
The set of action terms occurring in δ is denoted by Act.

Program expressions are interpreted as follows. A config-
uration 〈z, δ〉 consists of an action sequence z and a program
expression δ, where intuitively z is the history of actions that
have already been performed, while δ is the program that re-
mains to be executed.
Definition 5 (Program Transition Semantics). The transi-
tion relation w−→ among configurations, given a worldw with
w |= D, is the least set satisfying

1. 〈z, t〉 w−→ 〈z · t, 〈〉〉, if w, z |= Poss(t);

2. 〈z, δ1; δ2〉
w−→ 〈z · t, γ; δ2〉, if 〈z, δ1〉

w−→ 〈z · t, γ〉;
3. 〈z, δ1; δ2〉

w−→ 〈z · t, δ′〉,
if 〈z, δ1〉 ∈ Fw and 〈z, δ2〉

w−→ 〈z · t, δ′〉;
4. 〈z, δ1|δ2〉

w−→ 〈z · t, δ′〉,
if 〈z, δ1〉

w−→ 〈z · t, δ′〉 or 〈z, δ2〉
w−→ 〈z · t, δ′〉;

5. 〈z, πx.δ〉 w−→ 〈z · t, δ′〉,
if 〈z, δxn〉

w−→ 〈z · t, δ′〉 for some n ∈ Nx;

6. 〈z, δ1||δ2〉
w−→ 〈z · t, δ′||δ2〉, if 〈z, δ1〉

w−→ 〈z · t, δ′〉;
7. 〈z, δ1||δ2〉

w−→ 〈z · t, δ1||δ′〉, if 〈z, δ2〉
w−→ 〈z · t, δ′〉.

8. 〈z, δ∗〉 w−→ 〈z · t, γ; δ∗〉, if 〈z, δ〉 w−→ 〈z · t, γ〉;
The set of final configurations Fw of a world w is the small-
est set such that

1. 〈z, α?〉 ∈ Fw if w, z |= α;
2. 〈z, δ1; δ2〉 ∈ Fw if 〈z, δ1〉 ∈ Fw and 〈z, δ2〉 ∈ Fw;
3. 〈z, δ1|δ2〉 ∈ Fw if 〈z, δ1〉 ∈ Fw or 〈z, δ2〉 ∈ Fw;
4. 〈z, πx.δ〉 ∈ Fw if 〈z, δxn〉 ∈ Fw for some n ∈ Nx;
5. 〈z, δ1||δ2〉 ∈ Fw if 〈z, δ1〉 ∈ Fw and 〈z, δ2〉 ∈ Fw;
6. 〈z, δ∗〉 ∈ Fw; 〈z, 〈〉〉 ∈ Fw.

Let w−→∗ denote the reflexive and transitive closure of w−→.
The set of reachable subprograms, denoted by sub(δ), is de-
fined as follows:

sub(δ) := {δ′ | ∃w |= D, z ∈ Z s.t. 〈〈〉, δ〉 w−→∗〈z, δ′〉}

Note, that by induction on the size of |δ| it can be shown
that for a transition 〈z, δ〉 w−→ 〈z · t, δ′〉 it holds that w, z |=
Poss(t).

To handle non-terminating, terminating and failing runs
of a program uniformly we proceed as follows:

First, we introduce two fresh 0-ary fluents Term and
Fail and two 0-ary action functions ε and f. We assume that
the axioms 2Poss(ε) ≡ true and 2Poss(f) ≡ true belong
to Dpre. Then we include the following additional SSAs in
Dpost for Term and Fail: 2[a]Term ≡ a = ε ∨ Term,
2[a]Fail ≡ a = f ∨ Fail.

Now, we define an infinite transition system for a given
program P = (D, δ).
Definition 6 (Transition System). Let P = (D, δ) be a
Golog program. The transition system TP = (Q,→, I) in-
duced by P consists of the set of states

Q := {(w, z, δ′) | w |= D, z ∈ Z, δ′ ∈ sub(δ)},

a transition relation →⊆ Q × NA × Q and a set of initial
states I ⊆ Q, which are defined as follows:

• I := {(w, 〈〉, δ) | w, 〈〉 |= D0}
• It holds that (w, z, ρ)

t→ (w, z · t, ρ′) if one of the follow-
ing conditions is satisfied:

1. 〈z, ρ〉 w−→ 〈z · t, ρ′〉.
2. 〈z, ρ〉 ∈ Fw, t = ε and ρ′ = 〈〉.
3. In case there is no 〈z′′, ρ′′〉 s.t. 〈z, ρ〉 w−→ 〈z′′, ρ′′〉 and
〈z, ρ〉 /∈ Fw, we have t = f and ρ′ = ρ.

A run of a program P is now defined as an infinite path in
the corresponding transition system TP starting in an initial
state. A run in TP = (Q,→, I) has the following form:

r = (w, z0, ρ0)
t0→ (w, z1, ρ1)

t1→ (w, z2, ρ2)
t2→ · · ·

with (w, z0, ρ0) ∈ I , z0 = 〈〉 and zi = zi−1 · ti−1 for
i = 1, 2, · · · . The action trace of a run r, denoted by act(r),
is an infinite word over NA given by act(r) = t0t1t2 · · · .

Verification
First, we define the temporal logic used to specify properties
of a given program. We define the logic ES-C2-LTL. The
syntax is the same as for propositional LTL, but in place of
propositions we allow for C2 fluent sentences. The syntax is
given by the following grammar:

Φ ::= α | ¬Φ | Φ1 ∧ Φ2 |XΦ | Φ1 U Φ2 (2)

where α can be any fluent sentence.
Similar to the definition of worlds we introduce the no-

tion of a ES-C2-LTL structure to define the semantics of
ES-C2-LTL.
Definition 7 (ES-C2-LTL semantics). A ES-C2-LTL struc-
ture w = (w, σ) consists of a world w and an infinite action
sequence σ ∈ Nω

A . For a given i ∈ N, σ[0...i] denotes the
prefix of σ up to position i.

Let Φ be a ES-C2-LTL formula, w = (w, σ) a
ES-C2-LTL structure and i ∈ N. Validity of Φ in w at time
point i, denoted by w, i |= Φ, is defined as follows:
• w, i |= α iff w, σ[0..i] |= α

• w, i |= ¬Φ iff w, i 6|= Φ

• w, i |= Φ1 ∧ Φ2 iff w, i |= Φ1 and w, i |= Φ2

• w, i |= XΦ iff w, i+ 1 |= Φ

• w, i |= Φ1 U Φ2 iff ∃k ≥ i : w, k |= Φ2 and ∀j, i ≤ j <
k : w, j |= Φ1

As usual, we use FΦ (eventually) and GΦ (globally) as ab-
breviations for true U Φ and ¬F¬Φ, respectively.

We can thus express properties of runs of a program. Con-
sider a program P and the corresponding transition system
TP . Let r be a run of P starting in the initial state (w, 〈〉, δ).
The ES-C2-LTL structure corresponding to r is given by
w(r) = (w, act(r)).
Definition 8 (Verification Problem). Let P = (D, δ) be
a Golog program, TP the corresponding transition system
and Φ a ES-C2-LTL formula. The formula Φ is valid in
P , written as TP |= Φ, if for all runs r of P it holds that
w(r), 0 |= Φ. The formula Φ is satisfiable in P if there ex-
ists a run r of P such that w(r), 0 |= Φ.

Note, that the logic ES-C2-LTL is expressive enough to
encode several variants of the verification problem. For ex-
ample, consider domain constraints expressed as a conjunc-
tion ϕ of C2 fluent sentences. The problem of whether these
constraints persist during the execution of a program P cor-
responds to validity of the formula Gϕ in the program P .
Furthermore, the fluents Term and Fail can be used to en-
code properties of, for example, terminating and non-failing
runs of a program.

In the following we focus only on decidability of the sat-
isfiability problem. This is sufficient since it clearly holds
that Φ is valid in P iff ¬Φ is not satisfiable in P .

Programs over Ground and Local-effect Actions
The main problem we have to deal with when testing satis-
fiability of a property in a Golog program is that the corre-
sponding transition system is in general infinite. To achieve
decidability we have to make certain restriction on the action
theory and on the programs. In the following we show that
for a so called local-effect basic action theory and a program
where we disallow the pick operator πx.δ, a finite abstrac-
tion of the infinite transition system can be constructed that
preserves the relevant information to verify the property.

In particular, we consider Golog programs P = (D, δ),
where δ is a program expression that can be built according
to the following grammar

δ ::= 〈〉 | t | α? | δ1; δ2 | δ1|δ2 | δ1||δ2 | δ∗ (3)

where t is a ground action term and α a fluent sentence.
Since we have to consider in this restricted setting only

finitely many ground actions, the set of reachable subpro-
grams sub(δ) is finite and bounded by the size of δ. The
size of a program expression |δ| is defined as the number of
ground actions, tests and program constructs occurring in δ.
Lemma 9. Let δ be a program expression over ground ac-
tions. The cardinality of sub(δ) is exponentially bounded in
the size |δ| of δ.

Proof. The proof of this lemma, as well as all other proofs
can be found in the technical report (Zarrieß and Claßen
2013).

In addition to the program expressions, we also restrict the
structure of the action theory to be local-effect. Intuitively,
this means a fluent can change its value as result of an action
application only for arguments that occur as parameters of
this action or are explicitly mentioned as constants in the
SSA.
Definition 10 (Local-effect SSAs). A successor state axiom
is local-effect if both γ+F and γ−F are disjunctions of formulas
that are either of the form
• ∃~z[a = A(~y) ∧ φ(~y)], where A is an action function, ~y

contains ~x, and ~z is the remaining variables of ~y, and φ(~y)
is a fluent formula with free variables ~y; or of the form

• [a = A ∧ ~x = ~c ∧ φ], where A is 0-ary action function, ~c
a vector of constants from NI and φ a fluent sentence.

The formulas φ(~y) and φ are called context formulas. A BAT
D is local-effect if each SSA in Dpost is local-effect.

Note that this definition subsumes the definitions of local-
effect BATs given in (Vassos, Lakemeyer, and Levesque
2008; Liu and Lakemeyer 2009). Moreover, the DL-based
action descriptions introduced in (Baader et al. 2005) can be
translated into a local-effect BAT according to the above def-
inition. Also note that even in this restricted setting the tran-
sition system of the Golog program is infinite: We still have
to consider infinitely many possible worlds over an infinite
domain of standard names, since the tests in the program, the
preconditions and the context formulas in the SSAs possibly
contain quantifiers that quantify over the whole domain.

We basically follow the approach from (Baader and
Zarrieß 2013) to test whether a ES-C2-LTL formula Φ is
satisfiable in a program P = (D, δ) where D is a local-
effect BAT and δ a program expression over ground actions.
It consists of the following steps: First we construct a fi-
nite abstraction of the infinite transition system that retains
enough information to test satisfiability. To do this we in-
troduce the notion of a type of a world such that if in any
situation in two worlds the same relevant formulas are sat-
isfied, then these two worlds are of the same type. Having
these types, we define an equivalence relation on the states
of the transition system. Then it is possible to construct the
finite quotient transition system w.r.t. this equivalence rela-
tion. Essentially, this works because the computation of the
(finitely many) world types reduces to a bounded number of
consistency checks in the underlying decidable logic C2.

Given this finite abstraction we can then apply standard
techniques to verify the ES-C2-LTL formula, as an LTL for-
mula can be translated into an automaton accepting exactly
those structures satisfying the formula. The satisfiability test
can then be reduced to a reachability test in the finite product
of the automaton with the abstract transition system.

First, we introduce some auxiliary notions needed to de-
fine the types of worlds.

Regression with Ground Actions Since we have only
finitely many ground actions in our program it is enough to
consider only a simplified form of the SSAs, called ground
instantiations where the action variable a in the SSA is re-
placed with a ground action term. Consider the SSA of a
fluent F (~x) of the form 2[a]F (~x) ≡ γ+F ∨F (~x)∧¬γ−F and
a ground action term t = A(~c). For the ground instantiated
SSA for F (~x) with t, given as 2[t]F (~x) ≡ γ+F

a

t ∨ F (~x) ∧
¬γ−F

a

t , it holds that both γ+F
a

t and γ−F
a

t are equivalent to a
disjunctions of the form

~x = ~c1 ∧ φ1 ∨ · · · ∨ ~x = ~cn ∧ φn, (4)

where the vectors of constants ~ci are contained in ~c and the
formulas φi are fluent sentences with i = 1, ..., n.

From now on we assume that in the ground instantiated
SSAs the formulas γ+F

a

t and γ−F
a

t are of the form (4). We use
the notation (~c, φ) ∈ γ+F

a

t and (~c, φ) ∈ γ−F
a

t if there exists a
disjunct of the form ~x = ~c∧φ in γ+F

a

t and γ−F
a

t , respectively.
As we will see in the following, the restriction to ground

actions and local-effect BAT makes it is possible to repre-
sent the effects of executing a ground action as a finite set of
fluent literals that can be read off from the ground instanti-
ated SSAs. We define an effect function mapping a world w,

a finite action sequence z and a ground action t to a set of
fluent literals if the precondition Poss(t) is satisfied in the
situation represented by w, z.

Definition 11 (Effect Function). Let P = (D, δ) be a Golog
program and Lit be the set of all positive and negative
ground fluent atoms, given as follows:

Lit := {F (~c),¬F (~c) | ∃t ∈ Act, φ :(~c, φ) ∈ γ+F
a

t or

(~c, φ) ∈ γ−F
a

t }

The effect function E : W × Z × Act → 2Lit for P is a
partial function and if w, z |= Poss(t) then

E(w, z, t) :={F (~c) | ∃(~c, φ) ∈ γ+F
a

t ∧ w, z |= φ} ∪
{¬F (~c) | ∃(~c, φ) ∈ γ−F

a

t ∧ w, z |= F (~c) ∧ φ}

otherwise, if w, z 6|= Poss(t), then E(w, z, t) is undefined.

Next, we show that Reiter’s version of the regression op-
erator can be reformulated using the effect function. We de-
fine our version of the regression operator for a consistent
set of fluent literals and a fluent sentence. A subset E ⊆ Lit
is called non-contradictory if there is no fluent atom F (~c)
such that {F (~c),¬F (~c)} ⊆ E.

Definition 12 (Regression Operator). Let F (~v) be a formula
where F is a fluent and ~v a vector of variables or constants
and let E ⊆ Lit be non-contradictory. We define the regres-
sion of F (~v) through E, written as [F (~v)]R(E), as follows:

[F (~v)]R(E) :=

(
F (~v)∨

∨
F (~c)∈E

(~v = ~c)

)
∧

∧
¬F (~c)∈E

(~v 6= ~c)

Let α be a fluent sentence. The fluent sentence αR(E) is
obtained by replacing any occurrence of a fluent F (~v) by
[F (~v)]R(E).

Clearly, it holds that the regression result αR(E) is again a
C2 fluent sentence. Intuitively, if we want to know whether a
formula α holds after executing an action with effects given
by E, it is sufficient to test whether the regressed formula
αR(E) is satisfied in the current situation.

Lemma 13. Let D be a BAT, w ∈ W with w |= D, α a
fluent sentence and t = A(~c) a ground action term. For all
z ∈ Z it holds that w, z |= αR(E) iff w, z · t |= α with
E = E(w, z, t).

This, means ·R(E) can act as a one-step regression oper-
ator. But also an iterated application of the regression op-
erator can be reduced to an application of the operator for
a single set of fluent literals. For a set E ⊆ Lit we define
¬E := {¬l | l ∈ E} (modulo double negation). It holds
that [

αR(E′)
]R(E) ≡ αR(E\¬E′∪E′). (5)

for two non-contradictory subsets E and E′ of Lit .

Types of worlds Next, we identify the finite set of relevant
fluent sentences occurring in the program and the action the-
ory that is called context.

Definition 14 (context). Let P = (D, δ) be a program. A
context C for P is a finite set of fluent sentences satisfying
the following condition: Let α be a fluent sentence. If
• α is a test in δ;
• or α = ϕ(~c) and there is a ground action A(~c) in δ with

2Poss(A(~x)) ≡ ϕ(~x) ∈ Dpre;
• or α = φ and there exists a ground action t in δ, a ground

instantiated SSA for a fluent F with t and there is a dis-
junct of the form ~x = ~c ∧ φ in γ+F

a

t or γ−F
a

t of the SSA,
• or α = F (~c) and there exists a ground action t in δ, a

ground instantiated SSA for F with t and there is a dis-
junct of the form ~x = ~c ∧ φ in γ−F

a

t of the SSA,
then α ∈ C. Further we close up C under negation.

Next, we show some properties of C. Intuitively, if we
consider a situation consisting of a world and a finite se-
quence of ground actions, then the effects of applying a
ground action in this situation depend only on the formu-
las in C that are satisfied or not satisfied in this situation.
Furthermore, we show that whether a program configuration
is final in a world or has a successor configuration in this
world only depends on the context.
Lemma 15. Let C be a context for a program P = (D, δ).
Let w0, w1 ∈ W satisfying D and z0, z1 ∈ Z such that
w0, z0 |= α iff w1, z1 |= α for all α ∈ C.
1. Let t be a ground action that occurs in δ. It holds that
E(w0, z0, t) = E(w1, z1, t).

2. Let ρ be a program that contains only ground actions from
δ and all tests in ρ are contained in C.

(a) It holds that 〈z0, ρ〉 ∈ Fw0 iff 〈z1, ρ〉 ∈ Fw1 .
(b) It holds that

〈z0, ρ〉
w0−−→ 〈z0 · t, ρ′〉 iff 〈z1, ρ〉

w1−−→ 〈z1 · t, ρ′〉.
Based on the context we partition the worlds satisfying

the BAT into finitely many equivalence classes. To do this
we introduce the notion of a type of a world. Intuitively, if
two worlds are of the same type, the same temporal proper-
ties are satisfied in both worlds if we execute the program.
First, we define a set of type elements for a program P and a
context C for P:

TE(P, C) := {(α,E) | α ∈ C,
E ⊆ Lit is non-contradictory}.

The type of a world is now defined as a set of type elements.
Definition 16 (Type of a World). Let P be a program, C a
context for P and w a world with w |= D. The type of w
w.r.t. P and C is given as follows:

type(w) := {(α,E) ∈ TE(P, C) | w, 〈〉 |= αR(E)}.

To illustrate this definition we give a very simple “mini-
mal” example.
Example 17. Consider a single fluent OnTable(x), an ac-
tion remove(x) and an object constant b. The initial theory
is given by D0 = {OnTable(b)}, Dpost contains a single
SSA

2[a]OnTable(x) ≡ OnTable(x) ∧ ¬a = remove(x).

and in Dpre we have the axiom

2Poss(remove(x)) ≡ OnTable(x).

As a context for the BAT D and program remove(b) we
choose

C = {(¬)OnTable(b), (¬)∃x.OnTable(x)}.

We consider two worlds w0, w1 such that

w0, 〈〉 |= OnTable(b) and

w0, 〈〉 6|= OnTable(b′) for all b′ ∈ NO with b 6= b′

and in w1 it holds that

w1, 〈〉 |= OnTable(b) and

w1, 〈〉 |= OnTable(b′) for some b′ ∈ NO with b 6= b′.

We have to consider three non-contradictory sets of literals
L0 = ∅, L+ = {OnTable(b)} and L− = {¬OnTable(b)}.
We abbreviate OnTable(b) by αb and ∃x.OnTable(x) by
α∃. The different types of w0 and w1 are given by:

type(w0) := {(αb, L0), (α∃, L0), (αb, L
+), (α∃, L

+),

(¬αb, L
−), (¬α∃, L−)};

type(w1) := {(αb, L0), (α∃, L0), (αb, L
+), (α∃, L

+),

(¬αb, L
−), (α∃, L

−)}.

In this simple example b is the only object known to be on
the table initially and it is the only object that can be affected
by an action. But nevertheless, since we have only incom-
plete information about the initial world, we also have to
consider possibly unknown objects. For example, we don’t
know whether there is exactly one object on the table or not.
As we see here, the type of w1 is different from the type of
w0, because the formula ∃x.OnTable(x) in context C re-
mains true in w1 after removing the object b.

The next lemma states some properties of types that
are direct consequences of the definition given above and
Lemma 15.
Lemma 18. Consider two worldsw,w′ and their types w.r.t.
P and C. It holds that:

1. Let z ∈ N ∗A be a sequence of ground actions that occur
in δ and t a ground action occurring in δ. If type(w) =
type(w′), then E(w, z, t) = E(w′, z, t).

2. Let α ∈ C and z ∈ N ∗A a sequence of ground actions
that occur in δ. If type(w) = type(w′), then w, z |= α iff
w′, z |= α.
As a consequence of this lemma we can determine

E(w, z, t) based on type(w). Consider a sequence z =
t0t1 · · · tn of ground actions in δ. Using the equivalence (5)
we can accumulate the set of effects of each prefix of z into
a single set of literals. The accumulated set of effect for z in
world w is denoted by E(w, z). It clearly holds that

w, z |= α iff w, 〈〉 |= αR(E(w,z)) (6)

for any fluent sentence α ∈ C. Now, we are ready to define
an equivalence relation on the states of the transition system.

Definition 19. Consider P , C and the transition sys-
tem TP = (Q,→, I). Let (w, z, ρ), (w′, z′, ρ′) be states
in Q. (w, z, ρ) and (w′, z′, ρ′) are equivalent, written as
(w, z, ρ) ' (w′, z′, ρ′) iff type(w) = type(w′) and
E(w, z) = E(w′, z′) and ρ = ρ′.

Next, we show the desired property that two equivalent
states simulate each other, i.e. they cannot be distinguished
by a temporal property.
Lemma 20. Let C be a context for the program P with
the corresponding transition system TP = (Q,→, I). Let
s0, s1 ∈ Q with s0 ' s1.

1. If there exists a state s′0 with s0
t→ s′0, then there exists a

state s′1 with s1
t→ s′1 and s′0 ' s′1.

2. If there exists a state s′1 with s1
t→ s′1, then there exists a

state s′0 with s0
t→ s′0 and s′0 ' s′1.

Basically, this lemma shows that the relation ' on the
state space Q gives us a bisimulation w.r.t. the formulas in
C. Therefore, the following lemma is a direct consequence
of this property.
Lemma 21. Let C be a context for a program P with the
transition system TP = (Q,→, I) and Φ a ES-C2-LTL for-
mula that contains only fluent sentences from C. Let s, s′ ∈ I
and s ' s′. There exists a run r starting in s with w(r), 0 |=
Φ iff there exists a run r′ starting in s′ with w(r′), 0 |= Φ.

This lemma shows that it is enough to consider the quo-
tient transition system of TP w.r.t. '.
Definition 22 (Quotient Transition System). Let C be a
context for a program P . The quotient transition system
TP/' = (Q̂,�, Î) is given by Q̂ := {[s]' | s ∈ Q},

�:= {[s]'
t
� [s′]' | s

t→ s′} and I := {[s]' | s ∈ I}.
The equivalence class [w, z, ρ]', i.e. a state in the quotient

transition system, can be characterized by the type type(w),
the subset E(w, z) of Lit and ρ ∈ sub(δ). There are only
finitely many world-types, subsets of Lit and reachable sub-
programs of δ. Hence, the quotient transition system is finite.

Constructing the Quotient Transition System Next, we
describe how the quotient transition system can be con-
structed. Consider a program P = (D, δ) and a context C.
First, we guess a set of type elements τ ⊆ TE(P, C) such
that for all α ∈ C and for all non-contradictory E ⊆ Lit ,
it holds that either (α,E) ∈ τ or (¬α,E) ∈ τ . Using the
regression operator we test whether τ is indeed a type of a
world that satisfies the BAT. This is done by checking con-
sistency of theC2 KB, given byD0∪{αR(E) | (α,E) ∈ τ}.
If this KB is consistent, then there exists a worldw, 〈〉 |= D0

with type(w) = τ . We get that (τ, ∅, δ) represents the initial
state [(w, 〈〉, δ)]' in the quotient transition system TP/'.
Moreover, we introduce a function L that labels the states
with the set of formulas from the context C that are satis-
fied in this state. This function is defined by L(τ, E, ρ) :=
{α | (α,E) ∈ τ}. To perform a transition to a successor
state we determine which ground action t can be executed
next and what is the remaining program expression. The la-
beling of the state gives us sufficient information to check

the conditions in the definition of the transition semantics.
As shown in Lemma 18 item 1, it is also possible to com-
pute the value of the effect function for a given type τ , the
accumulated effects E of the action sequence executed so
far and a ground action t. To compute the representation of
the successor state of (τ, E, ρ) after executing an action t,
we update E accordingly and replace ρ by the remaining
subprogram after executing t.

Details of this construction and the proof that this indeed
yields the quotient transition system can be found in the
technical report (Zarrieß and Claßen 2013).

Having this finite abstraction of the transition system
the verification problem basically boils down to a proposi-
tional LTL model checking problem. We simply introduce
an atomic proposition for each formula in the context and
then replace the formulas in the labeling of the quotient tran-
sition system and the formulas in the temporal property by
its corresponding atomic proposition.

The complexity of this decision procedure is determined
by the complexity of the test whether a set of type ele-
ments τ represents the type of a world. To do this we have
to test consistency of an exponentially large C2 knowl-
edge base. Knowledge base consistency in C2 can be de-
cided in NEXPTIME (Pacholski, Szwast, and Tendera 2000).
Therefore, checking whether τ is a type can be done in
2-NEXPTIME. It turns out that 2-NEXPTIME is also an up-
per bound for the overall complexity.

Theorem 23. Satisfiability of an ES-C2-LTL formula in a
Golog program over ground actions w.r.t. a local-effect BAT
is decidable in 2-NEXPTIME.

Undecidability
In this section we argue that the assumptions we made in or-
der to establish the decidability results presented in the pre-
vious section are not arbitrary, but actually necessary. More
precisely, we employed the following restrictions:

1. Fluent formulas have to be expressed in the base logicC2.

2. Disallow pick operators in GOLOG programs.

3. Successor state axioms are all local-effect.

These restrictions are necessary in the sense that once we
drop any one of them, the verification problem becomes un-
decidable again.

Clearly, dropping restriction (1) immediately leads to un-
decidability as this would allow us to formulate arbitrary
first-order sentences as tests and preconditions. Let us there-
fore consider a program P = (D, δ) whereD is local-effect,
but we allow the pick operator for non-deterministic choice
of arguments in the program expression δ.

Theorem 24. The verification problem for GOLOG pro-
grams over non-ground actions based on a local-effect BAT
is undecidable.

The proof is by reduction from the Halting problem of a
Turing machine (TM). The operator πx.δ that allows us to
pick objects from an unbounded domain of standard names
inside a (possibly infinite) loop makes it possible to repre-
sent an unbounded tape of a TM. To create this tape two

predicates are essential. The binary predicate NextTo(x, y)
represents the adjacency relation of tape cells, whereas the
fluent Visited(x) memorizes tape cells that were visited
along a run of the TM. Initially, no tape cell is visited. Dur-
ing the execution of a program that simulates the TM, the
pick operators enable us to always ensure the existence of
fresh, unused cells should the head be moved onto a previ-
ously unvisited position. Encoding the transition relation of
the TM as actions is straightforward.

If we disallow the pick operator again, but instead allow
for non-local effects, a similar construction is possible where
picking “fresh” cells is now formalized inside the successor
state axioms through appropriate (unrestricted) quantifica-
tion. Again note that the details of the constructions used
in this section can be found in the accompanying technical
report (Zarrieß and Claßen 2013).
Theorem 25. The verification for GOLOG programs over
ground actions based on unrestricted BATs is undecidable.

Conclusion
In this paper we presented results on the verification of tem-
poral properties for GOLOG programs. We have extended
the decidability results obtained in (Claßen, Liebenberg, and
Lakemeyer 2013) and (Baader and Zarrieß 2013) to a larger
fragment of local-effect action theories, to the base logic
C2 and to LTL properties over C2-axioms. Furthermore, we
showed that requiring local effects and disallowing pick op-
erators are necessary as dropping one of these restrictions
leads to undecidability of the verification problem.

There are many possible directions for future work. Our
approach could be extended in terms of expressiveness along
many dimensions. For example, we will look at branching
time temporal properties like CTL∗ instead of LTL. More-
over, one could explore classes of successor state axioms
that go beyond local-effect theories. Finally, it would be in-
teresting to see whether a limited form of the pick operator
could be re-introduced without losing decidability.

References
Baader, F., and Zarrieß, B. 2013. Verification of Golog pro-
grams over description logic actions. In: Proc. of FroCoS’13
Baader, F.; Calvanese, D.; McGuinness, D. L.; Nardi, D.;
and Patel-Schneider, P. F., eds. 2003. The Description
Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press.
Baader, F.; Lutz, C.; Miličić, M.; Sattler, U.; and Wolter, F.
2005. Integrating description logics and action formalisms:
First results. In: Proc. of AAAI 2005
Baader, F.; Ghilardi, S.; and Lutz, C. LTL over description
logic axioms. In: Proc. of KR 2008
Baader, F.; Liu, H.; and ul Mehdi, A. Verifying properties of
infinite sequences of description logic actions. In: Proc. of
the ECAI 2010
Burgard, W.; Cremers, A. B.; Fox, D.; Hähnel, D.; Lake-
meyer, G.; Schulz, D.; Steiner, W.; and Thrun, S. 1999.
Experiences with an interactive museum tour-guide robot.
Artificial Intelligence 114(1–2):3–55.

Claßen, J., and Lakemeyer, G. 2008. A logic for non-
terminating Golog programs. In: Proc. of KR 2008
Claßen, J.; Liebenberg, M.; and Lakemeyer, G. On decidable
verification of non-terminating Golog programs. In: Proc. of
NRAC 2013
De Giacomo, G.; Lespérance, Y.; and Levesque, H. J. 2000.
ConGolog, a concurrent programming language based on
the situation calculus. Artificial Intelligence 121(1–2).
De Giacomo, G.; Ternovska, E.; and Reiter, R. 1997. Non-
terminating processes in the situation calculus. In Working
Notes of “Robots, Softbots, Immobots: Theories of Action,
Planning and Control”, AAAI’97 Workshop.
Gu, Y., and Soutchanski, M. 2010. A description logic based
situation calculus. Annals of Mathematics and Artificial In-
telligence 58(1–2):3–83.
Lakemeyer, G., and Levesque, H. J. 2010. A semantic char-
acterization of a useful fragment of the situation calculus
with knowledge. Artificial Intelligence 175(1)
Levesque, H. J.; Reiter, R.; Lespérance, Y.; Lin, F.; and
Scherl, R. B. 1997. GOLOG: A logic programming lan-
guage for dynamic domains. Journal of Logic Programming
31(1–3):59–83.
Liu, Y., and Lakemeyer, G. 2009. On first-order definability
and computability of progression for local-effect actions and
beyond. In: Proc. of IJCAI 2009
McCarthy, J., and Hayes, P. 1969. Some philosophical
problems from the standpoint of artificial intelligence. In
Meltzer, B., and Michie, D., eds., Machine Intelligence 4.
New York: American Elsevier. 463–502.
Pacholski, L.; Szwast, W.; and Tendera, L. 2000. Complex-
ity results for first-order two-variable logic with counting.
Reiter, R. 2001. Knowledge in Action: Logical Foundations
for Specifying and Implementing Dynamical Systems.
Vassos, S.; Lakemeyer, G.; and Levesque, H. J. First-order
strong progression for local-effect basic action theories. In:
Proc. of KR 2008
Zarrieß, B., and Claßen, J. On the decidability of verify-
ing LTL properties of Golog programs. LTCS-Report 13-10,
Chair of Automata Theory, TU Dresden, Dresden, Germany.
See http://lat.inf.tu-dresden.de/research/reports.html.

