
Aspects of Integrating Diverse Software into Robotic Systems
Extended Abstract

Tim Niemueller
Knowledge-based Systems Group

RWTH Aachen University
Aachen, Germany

niemueller@cs.rwth-aachen.de

Gerhard Lakemeyer
Knowledge-based Systems Group

RWTH Aachen University
Aachen, Germany

gerhard@cs.rwth-aachen.de

Alexander Ferrein
Electrical Engineering Department

Aachen University of Applied Sciences
Aachen, Germany

ferrein@fh-aachen.de

A robot platform consists of numerous devices such as
sensors to acquire data or actuators to interact with the out-
side world. As such, a user of a new robot platform (that she
most often has not built by herself) needs a software system
with many drivers to control at least the lowest hardware
layer of the system and a lot of software implementing
algorithms for tasks like perception or locomotion.

The vendor of a robot platform has to come up with good
selling points for his product which, at least in general and
nowadays, is not a mass product but has a rather high price.
Such systems should be open to extensions made by the
customer for future developments and solving new tasks. One
selling point here is to provide a complete software stack
running on the platform so that the robot can be used out-
of-the-box at least for certain tasks.

It is especially this desire for a ready-to-run system that
often makes it cumbersome to adapt and extend the robot.
During software integration the engineers of the system
had certain scenarios in mind and assumptions were made
required to avoid an open-ended development. This means
that the user of the platform has to adapt to the platform
first, before being able to start the own actual work.

Two examples for such platforms are the Nao1 and the
Robotino2. The humanoid robot Nao from Aldebaran is
used in the RoboCup Standard Platform League and em-
ploys NaoQi [1]. It is a service-oriented framework for
which modules must be written which in turn can then
interact with the hardware and software components like
walking motion pattern generators. The holonomic omni-
drive robot Robotino from Festo Didactic is mostly used
for educational purposes and in the new RoboCup Logistics
League Sponsored by Festo [2]. It uses OpenRobotino [3],
a messaging-based framework where clients connect to a
central device server to access the hardware. Both platforms
expect developers to use their existing framework as the
only way to access the underlying hardware. The advantage
of these systems is that newcomers can get started quickly.
On the downside to use another framework (for example to
re-use existing software), time must be spent to integrate
the two systems. It becomes particular difficult if these

1http://www.aldebaran-robotics.com/en/
2http://www.robotino.de

framework are not Open Source software like NaoQi, for
instance. NaoQi makes it particularly hard because it cannot
be embedded in other software and remote network access
is rather inefficient. Another software framework is the ROS
framework [4]. While it has many great features and ready-
to-use packages for typical robotic problems, one needs to be
conformant with their middleware. Robots like the YouBot3

come prepared to run with only this framework. Using any
other requires a tremendous amount of effort. At least ROS
provides efficient remote access and thin client libraries,
making integration considerably easier like, say, NaoQi.

On the other hand, hardware components like sensors or
actuators usually come with a software library to access
data and give commands. Examples are the URG library4

for Hokuyo laser range finders, or libdc13945 to access
IEEE 1394 cameras. For such devices integration into a larger
system is expected, therefore a thin interface is provided.
Sometimes components for a particular framework are pro-
vided on top of such libraries6, and sometimes such libraries
are ignored a re-implemented to suit a particular framework.7

It is important to note that libraries and frameworks in gen-
eral have an inversed control flow. Libraries provide classes
or functions which are invoked by some application, while
frameworks most often take control and trigger modules by
means of callbacks, notifications, or cyclic calls. Especially
this control flow is what makes it often more difficult to
integrate components of separate frameworks.

On our robots we primarily employ Fawkes [5], in particu-
lar because it was developed with knowledge-based systems
for behavior control in mind and therefore fits our area of
primary research. Because we employ Fawkes on a variety of
robots, including the mentioned Nao and Robotino, and our
custom-built domestic service robot Caesar [6] (cf. Figure 1),
we needed to integrate Fawkes with all of the mentioned
frameworks and libraries.

Some of the issues we experienced have been outlined

3http://youbot-store.com/
4http://www.hokuyo-aut.jp/02sensor/07scanner/

download/urg_programs_en/
5http://libdc1394.sourceforge.net
6http://trac.fawkesrobotics.org/wiki/Plugins/

laser
7http://www.ros.org/wiki/hokuyo_node



(a) Domestic service robot Caesar (b) Humanoid robot Nao (c) A modified Robotino robot

Fig. 1. Robots running Fawkes contributing to the experience made when integrating with other software

in [7], for example fragmentation, duplication of efforts, and
software lock-in. Following the idea of component-based
software design [8], [9], [10] and considering the differences
of libraries and frameworks, new robot platforms should
provide all basic drivers in form of software libraries and then
use these libraries for integration into a particular framework.
In this way, the functionality could be more easily integrated
into the system of choice. The user would not have to extract
some driver functionality hidden deep in some framework
function. Extracting the code is moreover only possible if
one is lucky and the framework’s sources are provided. If
not, one is stuck with the third-party framework and all the
problems that come with it.

This problem is observed also by several robot software
component developers. For example in ROS, several com-
ponents which were integrated into the system have been
separated from the framework in current software versions.
The Point Cloud Library [11] for instance was deeply in-
tegrated with ROS’ communication framework. Now, it is
available as a library which can be used with or without ROS.
Similarly, OctoMap [12] was bundled with ROS previously.
Today, it has the mentioned thin interface and has then been
re-integrated with ROS on top of this.

In summary, to integrate diverse software into a robotic
system, the drivers and components should provide thin
interfaces which are not specific to one particular robot
framework. Encapsulating the functionality in a software
library leaves all options to the user. No particular assump-
tions about the communication infrastructure of some robot
framework are made. This gives the user of the library the
chance to integrate the functionality more easily into the
target framework of choice.

REFERENCES

[1] “NaoQi,” http://www.aldebaran-robotics.com/en/Discover-NAO/
Key-Features/NAOqi.html, last visited on 2013/03/15.

[2] T. Niemueller, G. Lakemeyer, and A. Ferrein, “Incremental Task-
level Reasoning in a Competitive Factory Automation Scenario,” in
Proc. of AAAI Spring Symposium 2013 - Designing Intelligent Robots:
Reintegrating AI, 2013.

[3] “OpenRobotino,” http://www.openrobotino.org/, last visited on
2013/03/15.

[4] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source Robot Operating
System,” in ICRA Workshop on Open Source Software, 2009.

[5] T. Niemueller, A. Ferrein, D. Beck, and G. Lakemeyer, “Design Princi-
ples of the Component-Based Robot Software Framework Fawkes,” in
International Conference on Simulation, Modeling, and Programming
for Autonomous Robots (SIMPAR), 2010.

[6] A. Ferrein, T. Niemueller, S. Schiffer, and G. Lakemeyer, “Lessons
Learnt from Developing the Embodied AI Platform Caesar for Do-
mestic Service Robotics,” in Proc. of AAAI Spring Symposium 2013 -
Designing Intelligent Robots: Reintegrating AI, 2013.

[7] A. Makarenko, A. Brooks, and T. Kaupp, “On the Benefits of Making
Robotic Software Frameworks Thin,” in International Conference on
Intelligent Robots and Systems, 2007, workshop for Measures and
Procedures for the Evaluation of Robot Architectures and Middleware.

[8] M. D. McIlroy, “’Mass Produced’ Software Components,” Software
Engineering: Report On a Conference Sponsored by the NATO Science
Committee, pp. 138–155, 1968.

[9] D. Brugali and P. Scandurra, “Component-based robotic engineering
(Part I),” IEEE Robotics Automation Magazine, vol. 16, no. 4, pp.
84–96, 2009.

[10] D. Brugali and A. Shakhimardanov, “Component-Based Robotic Engi-
neering (Part II),” IEEE Robotics Automation Magazine, vol. 17, no. 1,
pp. 100–112, 2012.

[11] R. B. Rusu and S. Cousins, “3d is here: Point cloud library (pcl),”
in Proc. of the 2011 IEEE International Conference on Robotics and
Automation (ICRA-2011), 2011.

[12] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Bur-
gard, “OctoMap: An Efficient Probabilistic 3D Mapping Framework
Based on Octrees,” Autonomous Robots, 2013.


