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Abstract— High-level behaviour specification of an intelligent
autonomous agent or robot is a non-trivial task. Various ap-
proaches exist some of which try to combine different paradigms
like programming and planning. In this paper, we show how
to integrate fuzzy logic controllers into the logic-based pro-
gramming language Golog. Golog already allows for combining
programming and planning. By adding the instrument of fuzzy
controllers we provide the means to have a natural specification
of rules for tasks that require a high amount of reactivity. Since
the facilities already present in Golog remain, we add to an
already powerful framework thus expanding the applicability of
Golog for high-level behaviour specification of a robot or agent.

I. INTRODUCTION

In the last decades there have been several approaches on

how to specify the high-level behaviour of an agent or robot.

Especially in domains where a fast reaction time is required

approaches such as planning tend to fail due to their increased

computational complexity. That is why one often seeks to

combine reactive control with high-level deliberation trying

to get the best of both worlds. Previously, Golog [7] was used

for controlling robots acting in the real world. The paradigm

was to combine deliberation with explicit programming. Now,

we combine Golog with fuzzy control as a means for reactive

decision making while not losing the advantages of delibera-

tion and a logic-based robot controller framework.

Fuzzy logic was deployed successfully for several robotics

tasks. As an example for the large body of work dealing with

fuzzy control and robots, we want to mention [14] where

Soffiotti shows how fuzzy controllers can be used to design

robust behaviour-producing modules, and even how high-level

reasoning and low-level execution can be integrated on a

mobile robot. He attributes the success of fuzzy logic in

control to “its ability to represent both the symbolical and the

numerical aspects of reasoning. Fuzzy logic can be embedded

in a full logical formalism, endowed with a symbolic reasoning

mechanism; but it is also capable of representing and process-

ing numerical data.” Liu et al. [9] describe a robot kinematics

in a qualitative fashion making use of fuzzy descriptions.

They use fuzzy qualitative trigonometric functions to describe

the movements of a PUMA robot manipulator. According to

the authors this fuzzy qualitative description is very helpful

for calibration procedures in terms of measuring accuracy

or repeatability. They further stress that the fuzzy qualitative

predicates provide the connection between the numerical data

and interval symbols, which are then used for building up the

behaviour vocabulary from which in turn the motion control

of the robot can be derived. In [8], Liu uses the forementioned

fuzzy kinematics to close the representational gap between the

quantitative methods applied to drive the PUMA arm, and a

logical representation based on fuzzy logic predicates. Many

other successful examples for fuzzy control applications are

given in [6]. Good overviews of the fields are also given in [3],

[10], [11], [15].

The usefulness of fuzzy sets to make use of qualitative

fluents in the situation calculus was already shown in [5]. Now

we take a step further to not only give qualitative descriptions

by means of a fuzzy set semantics, but based on this define

fuzzy controllers in Golog.

II. FUZZY SETS AND THE SITUATION CALCULUS

A. The Situation Calculus

The situation calculus is a second order language with

equality which allows for reasoning about actions and their

effects. The world evolves from an initial situation due to

primitive actions. Possible world histories are represented by

sequences of actions. The situation calculus distinguishes three

different sorts: actions, situations, and domain objects. A

special binary function symbol do : action × situation →
situation exists, with do(a, s) denoting the situation which

arises after performing action a in the situation s. The con-

stant S0 denotes the initial situation, i.e. the situation where

no actions have occurred yet. The state the world is in is

characterised by functions and relations with a situation as

their last argument. They are called functional and relational
fluents, resp. The third sort of the situation calculus is the

sort action. Actions are characterised by unique names. For

each action one has to specify a precondition axiom stating

under which conditions it is possible to perform the respective

action and an effect axiom formulating how the action changes

the world in terms of the specified fluents. For space reasons

we will not go into the details on the formalisation of the

situation calculus here. To get an idea, it is enough to know

that actions can only be performed when they are possible, i.e.

their precondition axiom holds, and their effects are manifested

in the environment. Finally, we need a basic action theory,

which is a set of sentences D consisting of D = Σ ∪ Dssa ∪
Dap ∪Duna ∪DS0 , where Dssa contains sentences about the

successor state axioms, Dap contains the action precondition

axioms, Duna states sentences about unique names for actions,

and DS0 consists of axioms what holds in the initial situation.
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Additionally, Σ contains a number of foundational axioms

defining situations. For details we refer to [12], [13].

B. Golog

The high-level programming language Golog [7] is based

on the situation calculus. As planning is known to be computa-

tionally very demanding in general, which makes it impractical

for deriving complex behaviours with hundreds of actions,

Golog finds a compromise between planning and program-

ming. The robot or agent is equipped with a basic action

theory. The programmer can specify the behaviour just like

in ordinary imperative programming languages but also has

the possibility to project actions into the future. The amount

of planning (projection) used is in the hand of the programmer.

With this, one has a powerful language for specifying the

behaviours of a cognitive robot or agent.

As an example consider a robot with the goal to deliver a

letter to a user Alex. A Golog program for this tasks could

be:

proc deliver letter

navigate(post office); pick up(letter );

if inOffice(alex ) then deliver letter(alex )

else do nothing endif
endproc

This simplistic program shows some sequences of primi-

tive actions as well as control constructs like if-then-else or

procedures. Such programs are evaluated using a transition

semantics, making use of the situation calculus. This is intrigu-

ing as we have a formal situation calculus semantics for our

programming and planning language and the execution trace

yields a formal proof of the executability of the program. With

such a basic action theory tasks like projecting programs into

some future world situation becomes possible.

The program is interpreted in a step-by-step fashion where

a transition relation defines the transformation from one step

to another. In this so-called transition semantics a program

is interpreted from one configuration 〈σ, s〉, a program σ in

a situation s, to another configuration 〈δ, s′〉 which results

after executing the first action of σ, where δ is the remaining

program and s′ the situation resulting from the execution of

the first action of σ. The one-step transition function Trans
defines the successor configuration for each program construct.

In addition, another predicate Final is needed to characterise

final configurations, which are those where a program is

allowed to legally terminate. To give an example we show

the definition of the conditional:

Trans(if φ then δ1 else δ2, s, δ, s′) ≡
φ[s] ∧ Trans(δ1, s, δ, s′) ∨ ¬φ[s] ∧ Trans(δ2, s, δ, s′)

We only sketched the transition semantics here. For a

concise overview of the transition semantics we refer the

interested reader for example to [1], [2]. We remark that

the transition semantics allows for a natural integration of

sensing and on-line execution of programs. Further, we want

to note that our implementation is based on another variant of

Golog: Readylog. In particular, we need on-line execution and

exogenous fluent features from that dialect, though it suffices

for the moment to know that Readylog is a Golog dialect with

a transition semantics which allows a direct coupling of sensor

values to the run-time system. As there is not enough space

to get into the details here, for an overview of other features

of Readylog, we refer to [4].

C. Fuzzy Fluents Revisited

We need to define qualitative categories, fuzzifiers and

defuzzifiers, as well as possibilities to query and access quali-

tative/fuzzy values in the situation calculus. In [5], we defined

a fuzzy set semantics for qualitative fluents in the situation

calculus. In the following, we sketch the ideas from [5], as

they are some of the key ingredients for defining the semantics

of fuzzy controllers in Golog.

First, [5] introduces reals and linguistic terms in the situa-

tion calculus. Reals are to be understood with their standard

calculus interpretations together with their usual operations,

while linguistic terms are defined as constants in the situation

calculus. Each constant refers to a unique qualitative class,

that is c 	= d for distinct c, d. A fuzzy set F ⊆ linguistic ×
real × [0, 1] is defined as

∀c, u, μu.F(c, u, μu) ≡
(c = c1 ⊃ u = uc1,0 ∧ μu = μc1,0 ∨ · · · ∨
u = uc1,m1 ∧ μu = μc1,m1) ∨ . . . ∨

(c = ck ⊃ u = uck,0 ∧ μu = μck,0 ∨ · · · ∨
u = uck,mk

∧ μu = μck,mk
),

assigning each quantitative value belonging to a category

c a non-negative membership value. One has to ensure

that, for each category, each pair (u, μu) is unique, that is

∀c, u, μu, μ
′
u.F(c, u, μu) ∧ F(c, u, μ′u) ⊃ μu = μ′u. In the

following definitions, we assume the following t-norm, s-norm,

and negation:

A ∪B ⊃ μA∪B(x) = max[μA(x), μB(x)] (1)

A ∩B ⊃ μA∩B(x) = min[μA(x), μB(x)] (2)

μĀ(x) = 1− μA(x) (3)

Fuzzy fluents are defined as functional fluents which take

values from IR. As the definition of membership is important

here, we restate the definition from [5]:

Definition 1 (Membership) To query if a fuzzy fluent f(�t, σ)
belongs to a given category γ, we define the predicate is ⊆
real × linguistic as

is(f(�t, σ), γ)
def
= ∃u, μu.f(�t, σ) = u ∧ F(γ, u, μu) ∧ μu > 0

Similarly, we define is� ⊆ real × linguistic to mean that a
fuzzy fluent does not belong to a certain category

is�(f(�t, σ), γ)
def
= ¬∃u, μu.f(�t, σ) = u ∧ F(γ, u, μu)∨

∃u, μu.f(�t, σ) = u ∧ F(γ, u, μu) ∧ μu < 1.
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It holds that a fluent value does not belong to a certain
category, if either the value in question is not defined in
terms of a fuzzy set, or the value exists and its degree of
membership is less than 1 (cf. also Eq. 3 for the definition
of complement). For complex queries, for example if a fuzzy
fluent value belongs to several overlapping categories at the
same time, we define a predicate is� ⊆ real × (linguistic)n

with a finite n ∈ IN as

is�(f(�t, σ), γ0, . . . , γn)
def
=

∃u, μu,0, . . . , μu,n.f(�t, σ) = u ∧ F(γ0, u, μu,0)
∧ · · · ∧ F(γn, u, μu,n) ∧ (μu,0 � · · · � μu,n > 0).

Here, the t-norm � refers to the min-operation as given in
Eq. 2. Similarly, for asking whether or not a fuzzy fluent
value belongs to one category or the other, we introduce the
predicate is⊕ : real × (linguistic)n with a finite n ∈ IN

is⊕(f(�t, σ), γ0, . . . , γn)
def
=

∃u, μu,0, . . . , μu,n.f(�t, σ) = u ∧ F(γ0, u, μu,0)
∧ · · · ∧ F(γn, u, μu,n) ∧ (μu,0 ⊕ · · · ⊕ μu,n > 0).

In our case, the s-norm ⊕ refers to the max-operator as given
in Eq. 1.

We now have everything we need to define fuzzy controller

support in the Golog language. We define the semantics for

fuzzy controllers in the next section.

III. INTERPRETING FUZZY RULES IN GOLOG

In this section we define the support for fuzzy controller in

the language Golog. We make use of our dialect Readylog [4],

as it comes with many useful features like on-line fluents

or continuous change, and our implementation is based on

Readylog. However, the formal semantics can be transferred

to any other Golog dialect easily. Note that we use Golog as

a synonym for Readylog. Before we start with defining the

predicates, which map the common fuzzy inference rules into

logic, we introduce new program statements for embedding

fuzzy controllers in our control language and define their

transition semantics formally.

A. Fuzzy Controller in Golog

In this section we show the embedding of a fuzzy controller

in the Golog language. The general architecture of a fuzzy

controller is shown in Fig. 1. The quantitative sensor values

y(t), together with some reference input r(t), which describes

the vital state of the system, need to be fuzzified, i.e. the mem-

bership to a certain linguistic class needs to be determined. The

Inference Mechanism uses these fuzzified input values together

with a rule base of fuzzy rules to select the appropriate control

output. The output as such uses fuzzy categories and thus must

be defuzzified to serve as an input u(t) for the real world. The

output of the real world process serves as the sensor input for

the next control step.

Following Fig. 1, we need some means to do the fuzzi-

fication, apply some inference mechanism to our rule base
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Fig. 1. General architecture of a fuzzy controller from [11]

and defuzzify the output again. Therefore, we introduce a new

statement

fuzzy controller(rule-base)

into our language. The rule base basically consists of con-

ditionals in form of if-then statements which encode the

fuzzy rules. These conditionals can be grouped in sequence.

Moreover, we define default actions which will be selected as

output in case no other rule matches. Thus, a rule base can be

seen as a restricted Golog program consisting of a sequence of

if-then statements and a number of default rules. For example,

a rule base might look like

if φ then assign(f, ck); · · · ;
if ψ then assign(g, cl);
default(assign(f, cn); assign(g, cm))

Formally, we define

Trans(fuzzy controller(p), s, δ, s′) ≡
∃p′, d.infer(p, p′, d, s) ∧ s′ = s ∧ (4)

(Final(p′) ∧ δ = d ∨ ¬Final(p′) ∧ δ = p′)

Note that free variables in formulae are implicitly univer-

sally quantified. The predicate infer(p, p′, d, s) is the interface

to our fuzzy inference engine. The idea is that a certain fuzzy

rule base p and some particular world situation s is handed

over to the inference engine, and the result will be a sequence

of output assignments for the control variables. In this way, we

transform the rule base to one or more matching fuzzy outputs.

The variable d defines some default output assignment, as

we will describe below. We will defer the explanation of the

Final predicate in the definition above until we introduced

the definition of conditionals and the default statement. For

now it is sufficient to know that the remaining program δ will

consist of one or more assignment actions which will assign

a value to our control output variables.

To interpret a fuzzy conditional, we use

infer(if φ then assign(f, c), p′, d, s)
def
=

φ[s] ∧ p′ = assign(f, c) ∨ ¬φ[s] ∧ p′ = nil

where φ[s] stands for the formula φ with the situation argu-

ment restored. If the antecedent φ of a fuzzy rule holds, then

we will add the consequence assign(f, c) to our control output
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p′, otherwise the rule will contribute nil. Before we discuss

how φ is evaluated, we need to define how sequences are

defined in terms of the predicate infer . As stated above, our

rule base consists of sequences of conditionals and defaults.

Hence, we need to interpret sequences:

infer((p1; p2), p′, d, s)
def
=

∃p′1, p′2.infer(p1, p
′
1, d, s) ∧

infer(p2, p
′
2, d, s) ∧ p′ = p′1; p

′
2.

Each matching fuzzy rule will be replaced by its conse-

quence, i.e. the assignment statement, while non-matching

ones contribute nil. Sometimes, it may happen that no given

rule in a controller block matches at all, nevertheless some

output would be required. We therefore define an additional

statement default(assign(f, c); . . .), which is interpreted in

case the control output was the nil action after evaluating

the rule base. We allow one or more assignment actions as

parameter of the default, which is denoted by the ellipsis:

infer(default(assign(f, c); . . .), p′, d, s)
def
=

d = assign(f, c); . . .

With the predicate infer we are able to interpret the

statements which are allowed inside the rule base. The

idea is pretty much the same as using Golog’s evaluation

semantics to find a legal action sequence (cf. e.g. [13]).

Now it is clear why we used the Final predicate in the

definition of our fuzzy controller statement (Eq. 4). It holds

Final(nil; . . . ;nil, s) ≡ true, i.e. if all rules in the rule

base contributed nil, the final predicate becomes true and

we choose a default output. If one rule matched, then the

program p′ in Eq. 4 contains an assignment action for which

Final(nil; . . . ; assign(·, ·);nil; . . . ;nil, s) ≡ false.

B. Fuzzy Inference in Golog

In order to interpret fuzzy conditionals we need to define

the truth value of these conditionals. For that, we define the

truth values for the following inference rules as given by

Zadeh in [15]: (1) Entailment rules, (2) Negation rules, (3)

Conjunction and Disjunction rules, and (4) Categorical rules.

1) Entailment rules: The entailment rule refers to a simple

entailment of the form IF X = C THEN Y = B . . . . If some

antecedent of a fuzzy rule holds, i.e. the control variable X’s

value belongs to a certain category C, then the consequence

of the rule is applied by means of rule 4 (see below). If

φ = is(f, c), then

φ ≡ is(f[s], c).

As we already defined the value-membership relation in the

situation calculus (cf. Def. 1), the above definition is straight-

forward.

2) Negation rules: In fuzzy control there are rules which

refer to an object not being part of a certain category. Usually,

they are written in the form IF X 	= C THEN Y = B . . ., i.e. if

φ = is�(f, c) then

φ ≡ is�(f[s], c).

3) Conjunction and Disjunction rules: Fuzzy variables

are connected disjunctively and conjunctively, resp., as in

IF X = C1 ◦ · · · ◦ X = Cn THEN Y = B . . . where ◦ ∈ {�,⊕}
refers to the t-norm and s-norm, resp. Hence, if φ =
is◦(f, c1, . . . , cn) then

φ ≡ is◦(f[s], c1, . . . , , cn)

referring to is� and is⊕ as given in Def. 1. As the fuzzy

conditions φ and ψ are logical formulae defined by the

predicate is (Def. 1), also φ∧ψ, φ∨ψ, and ¬φ are formulae

and we can compose complex fuzzy conditions.

4) Categorical rules: Categorical rules are rules stating

properties of fuzzy variables, like X is small . In our Golog

dialect, this simply breaks down to assigning a certain category

to a fuzzy fluent. We do this by making use of the situation

calculus action assign as defined in [5]:

For a fuzzy fluent f(�x, s) we define a special assignment

operator assign which assigns the value of a category c to the

fluent f in situation s. The intention is to assign the category’s

mean value û with

cog(c) = û ≡ ∃u0, . . . , uk, μu0 , . . . , μuk
.F(c, u0, μu0) ∧ · · · ∧

F(c, uk, μuk
) ∧ u0 	= · · · 	= uk ∧ ∀u∗, μ∗.(u∗ 	= u0 ∧ · · · ∧

u∗ 	= uk ∧ μ∗ 	= μu0 ∧ · · · ∧ μ∗ 	= μuk
⊃ ¬F(c, u∗, μ∗)) ∧

û =
k∑

i=1

ui · μui

/ k∑
i=1

μui
(5)

denoting the centre of gravity of all values defining the

category c.1 The assignment action can be formalised by

adding the following case to the successor state axiom of

fluent f: f(�x, do(a, s)) = û ≡ . . . a = assign(f, c) ∧ cog(c) =
û . . . . The assignment operator is a special primitive situation

calculus action.

C. Hedges

As another useful feature for dealing with linguistic terms,

we introduce so-called hedges. Hedges are linguistic modifiers

that are acting on a fuzzy set membership function in order

to modify its meaning. A common example is the hedge very.

If weak pressure is a fuzzy set, then very weak pressure, or

extremely weak pressure are examples for hedges. One can dis-

tinguish between several kinds of hedges: (1) Concentration,

(2) Dilatation, and (3) Artificial Hedges.

The idea of concentration is to express the cumulativeness

of a membership function. For example, we would like to

express that something is very small, or very very large. This

is done by means of concentration, and we introduce some

new function into the situation calculus for this purpose.

Definition 2 Let f(�x, s) be a fuzzy fluent with normalised
support F(c, u, μ).2 (1) Concentration: we define a function
very : IR → IR with very(μc) = μ2

c; (2) Dilatation: we

1Note that we have chosen the centre of gravity as a defuzzifier here, every
other defuzzifier function is applicable as well and can be selected.

2With normalised support we mean that the values of F range between 0
and 1.
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Fig. 2. The Pole Balance Task

define a function less : IR → IR with less(μc) = μ
1
2
c ; and (3)

Artificial Hedges: We define a function plus : IR → IR and
a function minus : IR → IR with plusc(u) = (μ(u))1.25 and
minusc(u) = (μ(u))0.75.

IV. A FIRST FUZZY CONTROL EXAMPLE IN GOLOG

A. The Pole Balancing Domain

The pole-balancing problem requires the proposal of a

close-loop feedback control system with the desired behaviour

of balancing a pole (an inverted pendulum) that is connected

to a motor driven cart by a ball-bearing pivot. The movement

of the cart is restricted to the horizontal axis by a track, and

the pole is free to move about the horizontal axis of the pivot.

The state of the system is defined by four real values: the

angle of the pole φ, the angular velocity of the pole φ̇, the

position of the cart relative to the centre of the track x and

the velocity of the cart ẋ. The output of the control system

is a forward or backward movement of the cart in form of a

force applied to it (see Fig. 2 and Tab. I).

TABLE I

THE CONTROL PARAMETER

Symbol Name Description
φ Pole angle [rad] current angle of the pole

φ̇
Pole velocity
[rad/sec]

angular velocity of the pole

φ̈
Pole acceleration

[rad/sec2]
ang. acceleration of the pole

x Cart position [m]
measured as relative offset from

the middle of the track
ẋ Cart velocity [m/sec] current velocity of the cart

ẍ
Cart acceleration

[m/sec2]
current acceleration of the cart

mc
Mass of the cart,

mc = 1 kg
÷

mp
Mass of the pole,

mp = 0.1 kg
÷

l
Length of the pole,

l = 1 m
÷

t Time [sec] ÷
F force [N]

force applied to the cart in steps
of (±10 N)

h track limit, ±2.5 m border of the track

r
pole failure angle

[rad]
r ∈ [−0.209, 0.209],

(±12◦ to 0◦)
τ time step discrete time step

We connected a simple pole balance simulator to our Golog

run-time system for providing the closed control loop and for

applying the force to the cart appropriately. In our simulator,

the cart behaves according to the following motion equations:

φ̈t =
g sinφt + cosφt

(−Ft−mplφ̈2
t sin φt

mc+mp

)

l
(

4
3 − mp cos2 φt

mc+mp

)

ẍt =
Ft +mpl

(
φ2

t sinφt − φ̈t cosφt

)

mc +mp

As we show in the next section, the inputs φ and φ̇ are

connected to our system as exogenous fluents, the force is

applied to the cart via primitive actions.

B. Controlling the Cart with Golog

Axiomatising fuzzy controllers in Golog requires a basic

action theory. For our axiomatisation of fuzzy controllers we

need to add sentences defining linguistic categories, exogenous

fluents, fuzzy fluents, and membership functions. We add these

sentences to the set DS0 , defining what is true in the initial

situation.

DS0 = {. . . ,ffluent(φ),ffluent(φ̇),ffluent(F ),
category(med−φ ), category(small−φ ), category(zeroφ),

category(med−
φ̇

), . . . , category(med−F ), . . .

F(φ,med−φ , . . . , (−π/2, 1.0), . . . , (π/2, 0.04)),

F(φ, small−φ , . . .), . . . ,

F(φ̇, . . .),F(F, . . .)
connect(φ, cart ang), connect(φ̇, cart ang vel)
. . .}

Above, we defined the fuzzy fluents φ, φ̇ and F together

with their fuzzy sets F. For each fluent, denoted by the

predicate category , we define the value/membership pairs for

each fluent. We defined the categories small , medium , zero
for each fuzzy fluent (indicated by the subscript), for positive

and negative values (indicated by the superscript). Finally, we

need to pair the fuzzy fluent with an exogenous fluent, which

will be needed for updating the quantitative fluent value. Here,

cart ang , cart ang vel , and cart force are such exogenous

fluents which relate to the fuzzy fluents φ and φ̇. Note that

while in our formalisation we refer only to discrete fuzzy sets

which explicitly enumerate the value-membership relationship

for every fluent value, in our Prolog implementation we make

use of triangular-shaped membership functions for the cart

controller, though.

Now, we can define the controller and the rule base in

Golog. The fuzzy controller for the inverted pendulum is

simply the set of rules based on the qualitative categories

of the sensor input φ, the angle of the pendulum, and its

angular velocity φ̇. The control output is the force F applied

to the cart. The Golog procedure for balancing the pole and

the corresponding rule base is given below. As long as the

reference input r(t) is not exceeded, i.e. the pendulum’s angle

is not beyond ±0.209 radians, we update our sensor values,

consult the rule base, and finally apply the force to the cart.
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proc pole balance

while | cart ang |≤ 0.209 do
update; rulebase; apply force

endwhile
endproc

proc rulebase

fuzzy controller( . . . ;

if is�(φ, zeroφ, φ̇,med+
φ̇) then assign(F,med−F );

if is�(φ, small+φ, φ̇, small −̇φ) then assign(F, zeroF );
. . . ; default(assign(F , zeroF ))
) /* end fuzzy controller */

endproc

For the whole set of rules used in the pole balancing domain,

we refer to the literature, e.g. [11].

As already mentioned, the rule base consists of a block of

rules enclosed by the program statement fuzzy controller().
The rules themselves are arranged as sequences of condition-

als, with a fuzzy condition as antecedent and an assignment

action as consequence. In our controller implementation we

moreover make use of the default assignment, which we

introduced in the previous section. When the control flow

returns from the rule base, we have at least one assignment to

the output force.

Finally, we need to apply the force to the cart.

proc apply force

if F = med−F then push left strong

else if F = small−F then push left

. . .

else F = med+
F then push right

endif
endproc

V. CONCLUSION

In this paper we presented an approach to integrate fuzzy

controllers into the high-level robot planning and programming

language Golog. In an earlier paper, a semantics for qualitative

situation calculus fluents was presented, which was based on

fuzzy sets. In this paper we make use of these qualitative

fluents and show an embedding of fuzzy control rules in the

logic-based high-level language Golog. We introduce a new

program statement which allows for formulating fuzzy rules

in Golog programs and define its Golog transition semantics.

For evaluating the antecedent of fuzzy rules we define the

truth values of these formulae in the situation calculus. The

consequence of a fuzzy rule is simply mapped to a special

primitive Golog action which defuzzifies the output value and

assigns it to a fuzzy fluent. Finally, we defined hedges like

very or less which are very useful when formulating qualitative

action theories.

We implemented a pole balancing agent in Golog using

fuzzy controller as presented in this paper. With a simple set of

25 rules the agent was able to keep the pole upright not taking

longer than 4ms for any of its decisions. Thus, as a proof of

concept, we were able to combine the reactive decision making

process provided by a fuzzy controller with the expressive

power of the Golog language. While the experimental results

mentioned in this paper are clearly preliminary and can only be

seen as a proof of concept, we aim at tackling more interesting

control problems in the future. Of course, a toy domain like

the pole balancing domain, which is a prototypical problem for

applying fuzzy rules is not challenging. However, we think that

the approach to combine purely reactive control patterns like

fuzzy rules with a deliberative reasoning engine, which comes

with the situation calculus and Golog, is intriguing and can

be beneficially deployed in the robotics context for the future.

The possibility to use such qualitative control laws in Golog

increases its expressiveness and will increase the possibilities

to tackle robotic high-level problems.
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