Turning High-Level Plansinto Robot Programsin

Uncertain

Domains

Henrik Grosskreutz and Gerhard Lakemeyer!

Abstract. The actions of a robot like lifting an object are often best is flawed because the two are initially perfectly correlatBlide use

thought of as low-level processes with uncertain outcoméigh-
level robot plan can be seen as a description of a task whigh co
bines these processes in an appropriate way and which malyénv
nondeterminism in order to increase a plan’s generalitya tyiven
situation, a robot needs to turn a given plan into an exetai{atio-
gram for which it can establish, through some form of progextthat

it satisfies a given goal with some probability. In this paperwill
show how this can be achieved in a logical framework. In pakai,
low-level processes are modelled as progran@E3@LOG, a prob-
abilistic variant of the action languageOLOG. High-level plans
are like ordinaryGOLOG programs except that during projection
the names of low-level processes are replaced by F@D®LOG-
definitions.

1 Introduction

The actions of a robot like lifting an object are often besiutght
of as low-level processes with uncertain outcome. For eantipe
lifting action may only succeed 80% of the time. A high-levatbot

of inspect is complicated by two things, however. ifipectis not
perfect: if the widget is blemished then 90% of the time it
—0K, but 10% of the time it erroneously repo@X. If the widget
is not blemished, howeveinspectalways reportOK. (2) Painting
the widget removes a blemish but not a flaw, so executisgectaf-
ter the widget has been painted no longer conveys informatbhmut
whether it is flawed.

All actions are always possible, but may result in differefifects.
paint makes PAtrue (and BLfalse with probability 0.95 if the wid-
get was not already processed. Otherwise, it causes antiexeet
ror (ER).shipandreject always make PRrue, shipmakes ER true
if FL holds, andrejectmakes ERrueif FL does not hold.

In this examplepaint, ship, rejectandinspectare considered low-
level processes which we assume the robot is able to perforject
to the uncertainties as outlined above. Also, during execwte as-

sume the robot has direct access to the value of OK, whichtis se

by inspect We call OK directly observable Suppose we hand the
robot the following nondeterministic, high-level plafor an arbi-

plan can be seen as a description of a task which combines the&ary number of times either paint or inspect; if OK holdseafrards
processes in an appropriate way. An elegant way to obtaimspla then ship else rejecthe question we want to answer is the follow-

which are applicable in many circumstances is to allow (atéich
amount of) nondeterminism such as “either do this or do"tiFat:

a particular circumstance, it is then up to the robot to turchsa
plan into a suitable executable program. By suitable we ntlean
the robot is able, through some form of projection, to deteenthat
executing the program will satisfy a given goal with a suéfitide-
gree of probability. In this paper we will show how this candmme
in a logical framework, in particular, by suitably modifgrthe ac-

ing: how can the robot turn this plan into a program, which alet
to be a deterministic variant of the pfarior which it can guarantee
that after execution of the program the g&al A PR A —=ER holds
with probability 0.95?

To attack this problem, we first model the low-level procedsg
means of procedures in a probabilistic action languagechvhie
call pGOLOG. In a nutshellpGOLOG is the deterministic frag-
ment of GOLOG augmented with a new construct, which allows us

tion languagesOLOG [10], which has many desirable features such {0 €xPress that a program is executed only with a certaingiéty.

as nondeterminism and control structures familiar fromveational
programming languages, yet does not address actions witrtain
outcomes.

To get a better feel for what we are aiming at, let us consider t
following ship/rejectexample (adapted from [3]), which we follow
throughout the paper: We are given a manufacturing robdt thie
goal of having a widget painted (PA) and processed (PR).€R3sdag
widgets is accomplished by rejecting parts that are flawégd @F
shipping parts that are not flawed. The robot also has anmagémt
that usually makes PA true. Initially, all widgets are flawitdhey
are blemished (BL), and the probability of being flawed is 0.3

Although the robot cannot tell directly if the widget is flagyehe

actioninspectcan be used to determine whether or not it is blem-

ished.inspectreports—OK if the widget is blemished an@K if not.
The inspect action can be used to decide whether or not thgetvid

Given a faithful characterization of the low-level proces#n terms
of pGOLOG procedures, we can th@mnojectthe effect of the activa-
tion of these processes using their correspongi@@LOG models.
Moreover, this projection mechanism allows us to assesdepece
of belief in sentences like the above goal after the executiba
pGOLOG program.

Next we introduce the languageGOLOG, which allows us to
formulate nondeterministic high-level plans such as the aipove.
The syntax ofmGOLOG is very similar to the originaGOLOG,
with the names of low-level processes modellepp@®OLOG tak-
ing on the role of primitive actions. A robot who wants to astd a
certain goal with a given plan considers deterministicasmts P of

the plan, which ar@GOLOG programs, and does the following: (1)

using projection it determines whether the goal is achievalith
sufficiently high probability; (2) in case this succeeds Bsas the

1 Department of Computer Science, Aachen University of Tetdgy, D-
52056 Aachen, Germanygrosskreutz,gerhaj@cs.rwth-aachen.de

2 One deterministic variant is tmspect thenpaint, followed by the condi-
tional.

program to be executed, otherwise consider a different B2 Nt
the resulting P, if it exists, only mentions processes whietassume
the robot is able to initiate likpaint P may also contain conditionals
like if OK then ship else rejeciWe require that the condition -
rectly observabldy the robot, as is the case for OK, but not for BL,
for example. (We remark that our approach captures a restriorm

of sensing. In the example, sensing happens through thatot of

In order to specify that processes ligaint may result in different
possible outcomeqGOLOG provides a new probabilistic branch-
ing instruction, that did not exist iIGOLOG: prob(p, o1, 02). Its
intended meaning is to execute programwith probability p, and
o2 with probability 1 — p. This allows us to specify a probabilis-
tic process as pGOLOG program, where the different probabilis-
tic branches of the program correspond to different outeaiehe

theinspectprocess, which has the effect of providing the executionprocess. We only consider the following deterministic fregt of

system with arOK or -OK answer.)

The rest of the paper is organized as follows. After a vergflin-
troduction to the situation calculus, we defip€ OLOG and show,
starting from a probabilistic model of what the world lookkel
initially, how projection works inpGOLOG. Next we introduce
mMGOLOG and the mapping from a nondeterministitGOLOG
plan into an appropriate deterministic program. After tyieouch-
ing on experimental results, the paper ends with a discusHioe-
lated work and concluding remarks.

2 The Situation Calculus

One increasingly popular language for representing ansoreag
about the effects of actions is the situation calculus [\\&3 will only
go over the language briefly here: all terms in the languagefsort
ordinary objects, actions, situations, or reskhere is a special con-
stantS, used to denote thiaitial situation, namely that situation in
which no actions have yet occurred; there is a distinguigiedry
function symbolbowheredo(a, s) denotes the successor situation of
s resulting from performing action in s; relations whose truth val-
ues vary from situation to situation are calfagents and are denoted
by predicate symbols taking a situation term as their lagti@ent;
finally, there is a special predica®sga, s) used to state that action
a is executable in situation

Within this language, we can formulate theories which dbscr
how the world changes as the result of the available actiong
possibility is abasic action theorpf the following form [11]:

e Axioms describing the initial situatiorfjy.

e Action precondition axioms, one for each primitive actigrchar-
acterizingPosga, s).

Successor state axioms, one for each flugnstating under what
conditionsF' (&, do(a, s)) holds as a function of what holds in sit-

GOLOG together with the newrob-instruction.

@ primitive action
¢? wait/test action
seq(o1,02) sequence
if(¢,01,02) conditional
while(¢, o) loop

prob(p,o1,02) probabilistic execution

Besides these instructions, we provide a restricted nafipnoce-
dures inpGOLOG, where procedure names can be used like atomic
actions. To do so, we use a special function symbek and write
axioms of the fornproc(8) = o to express that there is a procedure
named3 whose body consists of tiEOLOG programo. Note that
this necessitates the reification of programs as first omterd in the
language, an issue we gloss over completely Adter the purpose
of this paper, we do not allow (recursive) procedure calthiwipro-
cedure bodies and restrict to procedures that take no argame

Using theprob instruction, it is possible to model processes with
uncertain effects gsGOLOG proceduresThe following procedure
models thepaint process informally described in the introductibn.

proc(paint) =
if (PR, setERprob(0.95, seq(setPAclipBL)))®

Formal Semantics The semantics gdGOLOG is defined using a
so-called transition semantics similar@nGolog [5]. It is based

on defining single steps of computation and, as we use a proba-
bilistic framework, their relative probability. We definefanction
transPr(o, s,d,s") which, roughly, yields the transition probability
associated with a given progratmand situations as well as a new
situations’ that results from executing's first primitive action ins,

and a new prograni that represents what remainscogfter having
performed that action. Letil be the empty programy a primitive

Uation S. These take the place of the SO'Ca”ed effect aXiOmS, bubc’[ion, anq3 a procedure name. Throughout the paper we assume

also provide a solution to the frame problem [15].

tions, as well as unique names axioms for situations.

3 pGOLOG - modelling low-level processes.

Most processes in real-world applications need to be deetrat

a level of detail involving many atomic actions interactingcom-
plicated ways. To describe such processes, we intropGeLOG,

a probabilistic descendant of the high-level programmamgliage
GOLOG [10]. GOLOG is a special action programming language
which offers constructs such as sequences, iterationsesmalsive
procedures to define complex actions. Most importantlg, éritirely
based on the situation calculus, which allows us to projeetdut-
come of a program, that is, reason about how the world eveies

a program is executed.

3 While the reals are not normally part of the situation calsyive need them
to represent probabilities. For simplicity, the reals aseaxiomatized and
we assume their standard interpretations together withshal operations
and ordering relations.

Domain closure and unique names axioms for the primitive ac-

that free variables are universally quantified, unlesgdtatherwise.
transPr(nil,s,0,s') =0
transPr(a,s,d,s') =

if Poss(a,s) Ad = nil As' = do(a, s) then 1 else 0
transPr($?,s,0,s') =

if ¢(s) NG =nil A s’ = s then 1 else 0’
transPr(if(¢,01,02),5,0,5') =

if ¢(s) then transPr(o1, s, d,s') else transPr(o, s,d,s")
transPr(seq(o1,02),5,0,8') =

if 0 = seq(d’,02) then transPr(o1,s,d’,s")

else if Final(o1,s) then transPr(os,s,d,s') else 0
transPr(B,s,6,s') = transPr(proc(B), s,d,s")

4 See [5] for details. The reification @iGOLOG programs is also necessary
for the definition of the semantics pGOLOG as done below.

5 We assume successor state axioms that ensure that theatughof P A is
only affected by the primitive actiorsetPAandclipPA, whose effect is to
make ittrue resp.false Similarly for the other fluents.

6 We writeprob(p,) as a shorthand fgrrob(p, «, nil). Similarly, we write
i (¢, a) for if (¢, , nil) andseq(a, 8,) for seq(a, seq(B,7)).

transPr(while(p,0),s,d,s') = 4 Probabilistic projectionsin pGOLOG
if ¢(s) A d = seq(8', while(p, o))

then transPr(s,s, 8, s') else 0 So far the language allows us to talk only about how the agiodd

evolves, starting in the initial situatiafy. But in scenarios like the
A f ship/reject-example, there is uncertainty about theah#ituation.

‘ffS =01As 5 do(tOSSHe“df s) then p else To take this into account, we opt for a probabilistic chazgzation

if § = 02 A 5" = do(tossTail(start, s) then 1 —pelse 0 of an agent's epistemic state. More specifically, we charamt an

Intuitively, a program that consists of a single atomic@tti re- epistemic state byset of situations considered possitded thdike-
sults in the execution oft and an empty remaining program with |ihood assigned to the different possibilities. We thereby fol[diy
probability 1 iff o is executable. The execution &fg(o1,02) ins who introduce a binary functional fluepts’, s) which can be read
may result in any successor situation that could be reachetied a5 “in situations, the agent thinks thaf is possible with probability
execution ofo1, with a remaining progrargeq(d’, o2), whered’ is (s’) "1° All weights must be non-negative and situations consid-
what remains of; or, if o is final, it just corresponds to the execu- ered impossible will be given weight 0. Note that we are retitg
tion of o2. A procedure namg is simply replaced by its body, which gurselves to discrete probability distributions. To kelgipds simple,
is the value ofproc(3). Finally, the execution ofrob(p,o1,02) re- e additionally require that the probabilities of all siioas consid-
sults in the execution of a dummy actfotvssHead or tossTail ered possible i, sum to 1, that is, we need the following axidfn:
with probabilityp resp.1 — p with remaining prograna, resp.o.°

Besides the specification of which transitions are possivie ZP(S’SO) =1 ©)
have to define which configuratiogs, s) are final, meaning that the N
computation can be considered completed when a final coafigar
is reached. This is denoted by the predicBial (o, s). Here we
only consider some of the definitions, wherés a primitive action.

Final(a,s) = FALSE Final(nil,s) =TRUE

Final(prob(p,o1,02,8)) = FALSE

Final(while(p,), s) = ¢(s) A Final(o, s) V —¢(s)

So far, we have only defined which successor configurations ca 351, 52Vs.s # s1 A s # s2 D p(s,50) =0 A

transPr(prob(p,o1,02),s,0,5') =

As an example, we describe the initial belief in the shigfeflo-
main. Here, the world is initially in one of two states], and s2,
which occur with probabilityd.3 and0.7, respectively. In this sim-
ple scenario, these are the only possibilities, all othteiagibns have
likelihood 0. The following axiom makes this precise togetivith
what holds and does not hold in each of the two states.

be reached through a single transition. Next, we definens- Ap(s1,So) = 0.3 A p(s2, S0) = 0.7
Pr*(8,s,68',s'), which represents the probability to reach a configu- ~ AF'L(s1) A BL(s1) A =PA(s1) A =PR(s1) A 2ER(s1)
rations(s’, s’y by a sequence of transitions, starting in configuration ~ A7FL(s2) A nBL(s2) A ~PA(s2) A 2PR(s2) A “ER(s2)
(0, s), that is, the transitive closure 6fansPr. Now that we have defined which situations may result from the
transPr*(3,s,0',s') = p = Vt[... D t(8,s,0',s") = p]V execution of gpGOLOG program, and which situations the agent
p=0A-3p Vt[... Dt(s,s,8,s) =p] considers possible initially, we turn our attention to &motquestion:

how probable, from the point of view of an agent with a probstit
belief state, is it thap will hold after the execution of @GOLOG
1(5,5,6,5) = 1 @ programa? To determine this probability, we project a program

T wrt each situation considered possipleeighted by the likelihood
@) assigned by.

p1,p2 > 0D t(8,5,8,5") = p1 *p2 Formally, we make use of the special situation tetmw. Let

Basically, this formula says that i) if there is a path of nemwtran- ¢[rnow] be a formula whose only term of sort situatiorisw. We
sitions from(d, s) to (&', s'), thentransPr* (4, s,8', s') is equal to write Bel(p[now], s, o) to denote the belief that holds after the
the product of the transition probabilitigsalong this path (which ~ execution ofr in situations. Note that this is merely a projection of
we call its weight), otherwise it is zero; and ii) there aretwo paths the effects ofr, no action actually gets executdlel(¢[now], s, o)
from one configuration to another with different weights. is an abbreviation for the following term expressible in@et:order

If there is a path of nonzero transitions, then (i) obtainsighly, logic.
by “iterating” through Formula 2, making use of the refle§df ¢t Sy.i 51| Finai(s, 5y nd[now| sy P(8 , 8) * transPr (o, s', 8" | s")
(Formula 1) for the case where the_re is exactly one tra_rr!sfrhm Bel($[now), s, o) is defined to be the weight of all paths that
(0,s) to (&', s"). If_ there is no path_wﬂhoqt nonzero transitions, then oach a final configuratiof”, s”') that fulfills ¢[now|s"] (= ¢ with
one can always find a functian which satisfies the ellipsis such that ,, ., replaced bys"), starting from a possible initial configuration
t1(9,5,0',s') = 0. HencetransPr*(d,s,d',s') = 0. {0, s'y, weighted by the agent’s belief isl. Note that for all situa-

_To see why ii) holds, let us assume that there are two patlis Wit{ions s, there is at most one final configuration reachable by a path

different weights from(¢, s) to (&', s). Then no functiont ex- yith positive weight. Through this definition we are restrig our-
ists that satisfies Formula 2; therefors]...] is vacuouslytrue, and gejves to discrete probability distributions, where thebability of a

transPr-(d,s,0',s") = pforallp, a contradiction. Note thatto pre- et can be computed as the sum of the probabilities of theeelesm
vent this from happening when executingrab even ifo; = o2, we of the set.

introduce the dummy actiorisss Head andtossTail which ensure For example, let us calculate the belief that the widget istpd,
that the situations associated withando are different. processed and no execution error occureed.) after the execution

7 ¢ is a situation calculus formula with all situation argunsestippressed. Of o,05by1 = seq(paint, ship). Here is the specification of thehip
$(s) is obtained fromg by restorings as the situation argument in all process as pGOLOG procedure:

where the ellipsis stands for the universal closure of thieviang
formulas:

t(d,5,0%,5") = p» AtransPr(6*,s",8',s') = p1 A

fluents of¢.
8 toss Head or tossT'ail have no effects and are always possible. 10 Having more than one initial situation means that Reiterkiction axiom
9 The reader familiar with [5] might wonder why we don’t defineymchro- for situations [11] no longer holds, just as in [1].

nized version oprob. The reason is explained when we definensPr*. 11 See [1] for how to characterize such equations in seconekrdogdic.

proc(ship) = seq(if(F L, setER, setPR)

Now that we have explained the restricted form of sensingwea
consider, we turn back to the definitionmfGOLOG. An mGOLOG

Let AX be the set of foundational axioms of Section 2 togetherprogram consists ggGOLOG procedure namé$ testsconcerning

with the definitions oftransPr, Final, transPr* and Axiom 3.

only directly observable fluentsequencing, conditionals and nonde-

Further, lefl’ be the set of axioms AX together with successor stateterministic instructions.

axiom for the fluents, precondition axioms stating thatetlissd clip
actions are always possible, the definitions ofp@lOLOG-proc’s
used and the above axiom describing the initial situati®hsn,

I | Bel(¢r[now], So, 0robby1) = 0.665

This is determined as follows:

If the world is as described i1, the only final configurations that
can be reached along a path of transitions with positive ktepn-
sist of the situations[toss Head, setPAclipBL, setERsetPRs1]*2 or
[tossTail, setER setPR s1] with remaining programnil. If the world is as
described irs2, the possible results af&ss Head, setPA clipBL, setPR 5]
(= Sor) Or [tossTail,setPRsz2], again with remaining pro-
gram nil. The situation s,; is the only one that fulfills ¢,, and
trans Pr*(orobby1, S0, nil, 501 IS equal t00.95 * 0.7 = 0.665.

Theorem 1 For all ¢[now] ando: AX |= Bel(¢[now], So, o) < 1.

Proof: The proof relies on the fact that s sytransPr(o,s,d,s') <1,
i.e. for each configuration the set of directly reachablefigarations has a
total probability that is no more than 1. Additionally, if @rdiguration is
final it has no successor configuration.

5 Nondeterministic high-level plans

One of the key features of high-level programming is theitghib
make use of nondeterministic instructions. It is then thek taf an
interpreter to determine the appropriate actions to perfahereby
making reasoned decisions. To this end, we define the nontdate
istic high-level plan languagsmGOLOG. Although anmGOLOG
plan looks like aGOLOG plan, there are differences. First, while
aGOLOG program is made up of atomic actionsnmcOLOG the
names of low-level processes take their role. Second, thetBumen-
tioned in anmGOLOG program are restricted, as we will explain
below.

One of our goals is that amGOLOG interpreter determines a
program that can branch on a sensed value during executiconk
trast, aGOLOG plan is mapped to a fixed sequence of primitive
actions. At this point, we have to explain what we mean byisgns
To us, sensing means: activate a sensor. This “activatias”ds an
effect a sensor reading. In the example, sensing happengtithe
activation of theinspectprocess, whose effect is to provide @

or =OK answer. This answer is captured by setting the value of the

fluent OK. Arguably, there is no uncertainty about the valtiehis
answer. Therefore, we distinguish such fluents from othentland
call themdirectly observableDirectly observable fluents are such
that the agent always has perfect information about theke-the
display of one’s watch or a fuel gauge in the tar.

While, during real execution, the actual low-levekpect process
provides the answer, for the task of projection we model gielior
of the sensor by means of a probabilistic program. Here, fteetef
inspect is to set the directly observable fluent OK correctly with
high probability, as discussed in the introduction.

proc(inspect) = i f(BL, prob(0.9, clipOK, setOK), setOK))

12 We write (a1, ...am, $] instead ofdo(an, do(..., do(au, s)...).

13 For those familiar with [1], note that we do not model how tipéstemic
state of the sensing agent, which is characterized by thetfluehanges.
In particular, we have no successor state axionpfor

B pGOLOG procedure name
@7 directly observable test
seq(o1,02) sequence
if(¢,01,02) conditional (directly obs.)
or(o1,02) nondeterministic choice
o” nondeterministic iteration
m(v,0) nondeterministic argument choice

or(o1,02) may result in the execution of amy. o™ signifies non-
deterministic iteration o, i.e. executer zero, one or more times.
(v, o) means that is to be executed with an arbitrary — but fixed
— binding forv. As tests, we only allow Boolean combinations of di-
rectly observable fluents. That means that during executierobot
has access to their truth value through appropriate meatditién-
ally, we require that initially all directly observable fius arefalse

The semantics of nondeterministic plans is defined by syagif
which determistipGOLOG programs are legaleterministic vari-
antsof the plan. To specify this relationship, we use the pradica
det(N P, o), meaning that is a legal deterministic program wrt plan
N P. Note that through the restriction of tests to directly abables
all deterministic variants are executable: all tests caevaduated,
they do not mentioprob instructions and each corresponds to the
activation of a low-level process.

det(B,8) for procedure names and tests
det(seq(o1,02), seq(d1,02)) = det(o1,01) A det(o2, d2)
det(if(qS, o1, 0'2), Zf(¢, (517 52)) = det(al, 51) N det(ag, 52)
det(or(o1,02),0) = det(o1,0) V det(oz,0)

det(c*,0) =6 = nil V det(seq(c”,0),6)

det(mw(v,0),d) = Jz.det(oy, d)

Using the predicatedet and Bel we can now ask for a deter-
ministic varianto that achieves7OAL = PA A PR A -ER
with success probability 0.95, using the high-level pl&mP
seq(or(paint, inspect)*,if (OK, ship, reject)).® To do so, we
make use of the predicapéan which is defined as follows:

plan(o,p,s, NP,o) = det(NP,o) A Bel(¢p,s,0) > p

Let I" be defined as above ardX,.; be the axiomatization afet.
The existence of a feasibg5OLOG program can now be stated as:

I'U AXg4et = Joplan(GOAL, p, So, NP, o)
In our exampleseq(inspect, paint, paint, i f(OK, ship, reject)
would be a feasible program. Note that this solution, like every
program derived from amGOLOG plan, only mentions directly
observable fluents and low-level procedures, and therefere
assumed to be executable. Again, we stress that during tbalac
execution the proceduresdint, inspect etc) are treated as atomic.
Indeed, their procedure body cannot be executed, becausawee
no evidence concerning the value of non-observable flugwt$SL.
These procedure definitions are part of the agent’s modehef t
world, only intended to project the prograsm During execution the
actual low-level processes are activated.

14 \We assume that for each low-level process, ther@i8@LOG procedure
that models how it affects the world.

15 Note that, as explained in [3], without making use of somelkifisensing
it would be impossible to come up with a plan that has a suqoedmbility
>0.7.

We have implemented anGOLOG interpreter in PROLOG, and
applied it to some probabilistic domains (see [5] for suloliféer-

we introducednGOLOG, a high-level plan language that provides
nondeterministic instructions. UnlikBOLOG, whose primitive ac-

ences between an implementation and the theory due to PROLOGiIons are those of the situation-calculus domain theogypifimitive

closed world assumption). Using this interpreter, we wdrke &
solve the above example in 0.13 seconds. Of course, we hage to
mit that the amount of nondeterminism that can effectivedyhan-
dled within our approach is limited. That means that the @ogner
must carefully consider the use @f, = andx* instructions.

6 Conclusionsand related work

Within the situation calculus Levesque [9] considers plaitlk loops
and conditionals which are also assumed to be directly ¢ablzu
Lakemeyer [8] proposes to map nondeterministic plans tditional
action trees, which allows for branching during executionboth
cases, uncertainty is not considered. Acting under uniogytties

actions ofmGOLOG are the names of low-level processes. Addi-
tionally, tests inmGOLOG programs are restricted to directly ob-
servable fluents. We show thaGOLOG can be used to determine
a pGOLOG program that has a sufficient probability to achieve a
given goal through projection of the deterministic varsaof the
mGOLOG plan, whereas the effects of the activation of low-level
processes is simulated using the correspon@@@®LOG models.
The resulting program is directly executable and brancheb®an-
swers of the sensor processes activated.

Finally, a promising property of our framework is that it iase
ily amenable to Monte-Carlo methods for the estimation efghc-
cess probability of @GOLOG program (unless, of course, exact as-
sessment is required). In a nutshell, Monte-Carlo simufatian be

at the heart of POMDPs and they deal with these aspects in @ motchieved by pursuing only one of the branches pfab instruction

exhaustive way, but the computational cost is prohibitiveaaly in
relatively small domains (e.g. [4]). Note that unlike POMD&nd
probabilistic planners like C-Buridan [3] our frameworKudly logic
based and much more expressive since we are not restrigteaito-
sitional representations. RecentlyT Golog [2] has been proposed
as a way to integrate the theory of MDPs within B®LOG frame-
work. The integration of decision theory into the situat@aiculus
has also been investigated in [14].

The work of [1] on noisy sensors and effectors may seem like an

alternative to our treatment of probabilistic outcomeswigeer, the
topic of our approach and theirs is different. While they eoe-
cerned about how the epistemic state (i.e. the flp¢changes as a
result of the execution of noisy actions and the perceptfomocsy
sensor readings, we completely ignore this aspect. Insteachodel
sensors as probabilistic procedures that are activatedvande ef-
fect is to set some directly observable fluents. These prwesdare
intended to be used only for the task of projection. Duringogx
tion, their activation is replaced by the actual activatéihe robots
low-level processes. For this task, our approach has thensatye
of being simpler than [1}® Last but certainly not least, [1] does not
even consider projections of programs ap@OLOG.

As for the connection to probabilistic planning without s,
we compared our approach with Buridan [7] and MAXPLAN [12]
with persuasive resulf€. The comparision with state-of-the-art prob-
abilistic planners that accounts for sensing (cf [6, 16]yif§icult

becausenGOLOG does not provide means to automatically synthe-]

size branch conditions.

Summarizing, we have proposp@GOLOG, a probabilistic exten-
sion of GOLOG. UsingpGOLOG, we were able to model low-level
processes with uncertain outcome as probabilistic progréye have
then shown how to characterize the epistemic state of art agehn
have provided a projection mechanism that allows us to assms
probable it is that a sentence holds after the executiopp&@LOG
program. Having definedGOLOG and the projection mechanism,

16 While [1] makes use of nondeterministicinstructions, action-likelihood
axioms () and observation-indistinguishability axiom®J) in order to
deal with noisy sensors and effectop&GOLOG manages solely with the
prob instruction.

17 We used the BMB/TOILET and S.1P. GRIPPERSceNarios to compare
the implementations on Pentium Il 500 Mhz Linux workstati@uridan
solved the problems in 0.21 to 41 seconds (depending on fessment
algorithm used) resp. 0.41 to 682 seconds, while MAXPLANtO@! resp.
0.3 seconds to solve the problems. Even though we didn't ms&ef any
domain knowledge and used (action,....,action,)* asmGOLOG
plans, our implementation outperformed the other impleatems by an
order of magnitude: it solved the problems in 0.022 res@®7Geconds.

depending on the outcome of a random number toss. The apgeali
property of Monte-Carlo methods is that the number of samfie
be considered depends only on the desired precision of timags,
not on the length of the program.

REFERENCES

[1] F. Bacchus, J.Y. Halpern, and H. Levesque, ‘Reasonir@u@hoisy
sensors and effectors in the situation calculéstjficial Intelligence
111(1-2) (1999).

C. Boutilier, R. Reiter, M. Soutchanski, and S. Thrun,etision-
theoretic, high-level agent programming in the situatiafcalus’, in
AAAI'200Q (2000).

D. Draper, S. Hanks, and D. Weld, ‘Probabilistic plarmiwith in-
formation gathering and contingent execution’,Rmoc. of AIPS'94
(1994).

H. Geffner and B. Bonet, ‘High-level planning and coringth incom-
plete information using pomdps’, iRroc. Fall AAAlI Symposium on
Cognitive Robotics(1998).

Guiseppe De Giacomo, Yves Lesperance, and Hector J feees
‘Congolog, a concurrent programming language based onitha- s
tion calculus: foundations’, Technical report, Univeysidf Toronto,
http://ww. cs.toronto. edu/ cogrobo/,(1999).
Emmanuel Guere and Rachid Alami, ‘A possibilistic plenthat deals
with non-determinism and contingency’, iBCAI'99, (1999).

N. Kushmerick, S. Hanks, and D. Weld, ‘An algorithm foopabilistic
planning’, Artificial Intelligence 76, 239-286, (1995).

G. Lakemeyer, ‘On sensing and off-line interpreting wlag’, in Log-
ical Foundations for Cognitive Agentsds., H. Levesque and F. Pirri,
Springer, (1999).

H. J. Levesque, ‘What is planning in the presence of seyisiin
AAAI'96, (1996).

Hector J. Levesque, Raymond Reiter, Yves Lespranaeg#fen Lin,
and Richard Scherl, ‘Golog: A logic programming language dg-
namic domains’Journal of Logic Programming3l, 59-84, (1997).

F. Lin and R. Reiter, ‘State constraints revisitedburnal of logic and
computation4(5), 655-678, (1994).

Stephen M. Majercik and Michael L. Littman, ‘Maxplan: #ew ap-
proach to probabilistic planning’, iAIPS 98 (1998).

J. McCarthy, ‘Situations, actions and causal laws'¢chrécal report,
Stanford University. Reprinted 1968 in Semantic InformatProcess-
ing (M.Minske ed.), MIT Press, (1963).

David Poole, ‘Decision theory, the situation calculusd conditional
plans’,Linkdping Electronic Articles in Computer and InformatiSci-
ence 3(8), (1998). URL: http://www.ep.liu.se/ealcis/1998/008

Ray Reiter, ‘The frame problem in the situation caleula simple solu-
tion (sometimes) and a ccompleteness result for goal reigres in In
Artificial Intelligence and Mathematic Theory of Computati Papers
in Honor of John McCarthy(1991).

D. Weld, C. Anderson, and D. Smith, ‘Extending grapipta handle
uncertainty and sensing actions’,AMAI'98, (1998).

(2]

(3]

(4]

(5]

(6]

[7]
8]

[10]

[11]
[12]

[13]

[14]

[15]

[16]

