
Turning High-Level Plans into Robot Programs in
Uncertain Domains

Henrik Grosskreutz and Gerhard Lakemeyer1
Abstract. The actions of a robot like lifting an object are often best
thought of as low-level processes with uncertain outcome. Ahigh-
level robot plan can be seen as a description of a task which com-
bines these processes in an appropriate way and which may involve
nondeterminism in order to increase a plan’s generality. Ina given
situation, a robot needs to turn a given plan into an executable pro-
gram for which it can establish, through some form of projection, that
it satisfies a given goal with some probability. In this paperwe will
show how this can be achieved in a logical framework. In particular,
low-level processes are modelled as programs inpGOLOG, a prob-
abilistic variant of the action languageGOLOG. High-level plans
are like ordinaryGOLOG programs except that during projection
the names of low-level processes are replaced by theirpGOLOG-
definitions.

1 Introduction
The actions of a robot like lifting an object are often best thought
of as low-level processes with uncertain outcome. For example, the
lifting action may only succeed 80% of the time. A high-levelrobot
plan can be seen as a description of a task which combines these
processes in an appropriate way. An elegant way to obtain plans
which are applicable in many circumstances is to allow (a limited
amount of) nondeterminism such as “either do this or do that.” For
a particular circumstance, it is then up to the robot to turn such a
plan into a suitable executable program. By suitable we meanthat
the robot is able, through some form of projection, to determine that
executing the program will satisfy a given goal with a sufficient de-
gree of probability. In this paper we will show how this can bedone
in a logical framework, in particular, by suitably modifying the ac-
tion languageGOLOG [10], which has many desirable features such
as nondeterminism and control structures familiar from conventional
programming languages, yet does not address actions with uncertain
outcomes.

To get a better feel for what we are aiming at, let us consider the
following ship/reject-example (adapted from [3]), which we follow
throughout the paper: We are given a manufacturing robot with the
goal of having a widget painted (PA) and processed (PR). Processing
widgets is accomplished by rejecting parts that are flawed (FL) or
shipping parts that are not flawed. The robot also has an action paint
that usually makes PA true. Initially, all widgets are flawediff they
are blemished (BL), and the probability of being flawed is 0.3.

Although the robot cannot tell directly if the widget is flawed, the
action inspectcan be used to determine whether or not it is blem-
ished.inspectreports:OK if the widget is blemished andOK if not.
The inspect action can be used to decide whether or not the widget1 Department of Computer Science, Aachen University of Technology, D-

52056 Aachen, Germany,fgrosskreutz,gerhardg@cs.rwth-aachen.de

is flawed because the two are initially perfectly correlated. The use
of inspect is complicated by two things, however. (1)inspectis not
perfect: if the widget is blemished then 90% of the time it reports:OK, but 10% of the time it erroneously reportsOK. If the widget
is not blemished, however,inspectalways reportsOK. (2) Painting
the widget removes a blemish but not a flaw, so executinginspectaf-
ter the widget has been painted no longer conveys information about
whether it is flawed.

All actions are always possible, but may result in differenteffects.
paint makes PAtrue (and BLfalse) with probability 0.95 if the wid-
get was not already processed. Otherwise, it causes an execution er-
ror (ER).shipandreject always make PRtrue, shipmakes ER true
if FL holds, andrejectmakes ERtrue if FL does not hold.

In this example,paint, ship, reject, andinspectare considered low-
level processes which we assume the robot is able to perform,subject
to the uncertainties as outlined above. Also, during execution we as-
sume the robot has direct access to the value of OK, which is set
by inspect. We call OK directly observable. Suppose we hand the
robot the following nondeterministic, high-level plan:For an arbi-
trary number of times either paint or inspect; if OK holds afterwards
then ship else reject.The question we want to answer is the follow-
ing: how can the robot turn this plan into a program, which we take
to be a deterministic variant of the plan2, for which it can guarantee
that after execution of the program the goalPA ^ PR ^ :ER holds
with probability 0.95?

To attack this problem, we first model the low-level processes by
means of procedures in a probabilistic action language, which we
call pGOLOG. In a nutshell,pGOLOG is the deterministic frag-
ment ofGOLOG augmented with a new construct, which allows us
to express that a program is executed only with a certain probability.
Given a faithful characterization of the low-level processes in terms
of pGOLOG procedures, we can thenprojectthe effect of the activa-
tion of these processes using their correspondingpGOLOG models.
Moreover, this projection mechanism allows us to assess thedegree
of belief in sentences like the above goal after the execution of a
pGOLOG program.

Next we introduce the languagemGOLOG, which allows us to
formulate nondeterministic high-level plans such as the one above.
The syntax ofmGOLOG is very similar to the originalGOLOG,
with the names of low-level processes modelled inpGOLOG tak-
ing on the role of primitive actions. A robot who wants to achieve a
certain goal with a given plan considers deterministic variants P of
the plan, which arepGOLOG programs, and does the following: (1)
using projection it determines whether the goal is achievable with
sufficiently high probability; (2) in case this succeeds useP as the2 One deterministic variant is toinspect, thenpaint, followed by the condi-

tional.



program to be executed, otherwise consider a different P. Note that
the resulting P, if it exists, only mentions processes whichwe assume
the robot is able to initiate likepaint. P may also contain conditionals
like if OK then ship else reject. We require that the condition isdi-
rectly observableby the robot, as is the case for OK, but not for BL,
for example. (We remark that our approach captures a restricted form
of sensing. In the example, sensing happens through the activation of
the inspectprocess, which has the effect of providing the execution
system with anOK or:OK answer.)

The rest of the paper is organized as follows. After a very brief in-
troduction to the situation calculus, we definepGOLOG and show,
starting from a probabilistic model of what the world looks like
initially, how projection works inpGOLOG. Next we introduce
mGOLOG and the mapping from a nondeterministicmGOLOG
plan into an appropriate deterministic program. After briefly touch-
ing on experimental results, the paper ends with a discussion of re-
lated work and concluding remarks.

2 The Situation Calculus
One increasingly popular language for representing and reasoning
about the effects of actions is the situation calculus [13].We will only
go over the language briefly here: all terms in the language are of sort
ordinary objects, actions, situations, or reals.3 There is a special con-
stantS0 used to denote theinitial situation, namely that situation in
which no actions have yet occurred; there is a distinguishedbinary
function symboldowheredo(a; s) denotes the successor situation ofs resulting from performing actiona in s; relations whose truth val-
ues vary from situation to situation are calledfluents, and are denoted
by predicate symbols taking a situation term as their last argument;
finally, there is a special predicatePoss(a; s) used to state that actiona is executable in situations:

Within this language, we can formulate theories which describe
how the world changes as the result of the available actions.One
possibility is abasic action theoryof the following form [11]:� Axioms describing the initial situation,S0.� Action precondition axioms, one for each primitive actiona, char-

acterizingPoss(a; s).� Successor state axioms, one for each fluentF , stating under what
conditionsF (~x; do(a; s)) holds as a function of what holds in sit-
uations: These take the place of the so-called effect axioms, but
also provide a solution to the frame problem [15].� Domain closure and unique names axioms for the primitive ac-
tions, as well as unique names axioms for situations.

3 pGOLOG - modelling low-level processes.

Most processes in real-world applications need to be described at
a level of detail involving many atomic actions interactingin com-
plicated ways. To describe such processes, we introducepGOLOG,
a probabilistic descendant of the high-level programming language
GOLOG [10]. GOLOG is a special action programming language
which offers constructs such as sequences, iterations and recursive
procedures to define complex actions. Most importantly, it is entirely
based on the situation calculus, which allows us to project the out-
come of a program, that is, reason about how the world evolveswhen
a program is executed.3 While the reals are not normally part of the situation calculus, we need them

to represent probabilities. For simplicity, the reals are not axiomatized and
we assume their standard interpretations together with theusual operations
and ordering relations.

In order to specify that processes likepaint may result in different
possible outcomes,pGOLOG provides a new probabilistic branch-
ing instruction, that did not exist inGOLOG: prob(p; �1; �2). Its
intended meaning is to execute program�1 with probabilityp, and�2 with probability 1 � p. This allows us to specify a probabilis-
tic process as apGOLOG program, where the different probabilis-
tic branches of the program correspond to different outcomes of the
process. We only consider the following deterministic fragment of
GOLOG together with the newprob-instruction.� primitive action�? wait/test actionseq(�1; �2) sequenceif(�; �1; �2) conditionalwhile(�; �) loopprob(p; �1; �2) probabilistic execution

Besides these instructions, we provide a restricted notionof proce-
dures inpGOLOG, where procedure names can be used like atomic
actions. To do so, we use a special function symbolpro
 and write
axioms of the formpro
(�) = � to express that there is a procedure
named� whose body consists of thepGOLOG program�. Note that
this necessitates the reification of programs as first order terms in the
language, an issue we gloss over completely here.4 For the purpose
of this paper, we do not allow (recursive) procedure calls within pro-
cedure bodies and restrict to procedures that take no arguments.

Using theprob instruction, it is possible to model processes with
uncertain effects aspGOLOG procedures. The following procedure
models thepaint process informally described in the introduction.5pro
(paint) =if(PR; setER; prob(0:95; seq(setPA; clipBL)))6

Formal Semantics The semantics ofpGOLOG is defined using a
so-called transition semantics similar toConGolog [5]. It is based
on defining single steps of computation and, as we use a proba-
bilistic framework, their relative probability. We define afunctiontransPr(�; s; Æ; s0) which, roughly, yields the transition probability
associated with a given program� and situations as well as a new
situations0 that results from executing�’s first primitive action ins,
and a new programÆ that represents what remains of� after having
performed that action. Letnil be the empty program,� a primitive
action, and� a procedure name. Throughout the paper we assume
that free variables are universally quantified, unless stated otherwise.transPr(nil; s; Æ; s0) = 0transPr(�; s; Æ; s0) =if Poss(�; s) ^ Æ = nil ^ s0 = do(�; s) then 1 else 0transPr(�?; s; Æ; s0) =if �(s) ^ Æ = nil ^ s0 = s then 1 else 07transPr(if(�; �1; �2); s; Æ; s0) =if �(s) then transPr(�1; s; Æ; s0) else transPr(�2; s; Æ; s0)transPr(seq(�1; �2); s; Æ; s0) =if Æ = seq(Æ0; �2) then transPr(�1; s; Æ0; s0)else if Final(�1; s) then transPr(�2; s; Æ; s0) else 0transPr(�; s; Æ; s0) = transPr(pro
(�); s; Æ; s0)4 See [5] for details. The reification ofpGOLOG programs is also necessary

for the definition of the semantics ofpGOLOG as done below.5 We assume successor state axioms that ensure that the truth value ofPA is
only affected by the primitive actionssetPAandclipPA, whose effect is to
make ittrue resp.false. Similarly for the other fluents.6 We writeprob(p; �) as a shorthand forprob(p; �; nil). Similarly, we writeif(�; �) for if(�; �; nil) andseq(�; �; 
) for seq(�; seq(�; 
)).



transPr(while(�; �); s; Æ; s0) =if �(s) ^ Æ = seq(Æ0; while(�; �))then transPr(�; s; Æ0; s0) else 0transPr(prob(p;�1; �2); s; Æ; s0) =if Æ = �1 ^ s0 = do(tossHead; s) then p elseif Æ = �2 ^ s0 = do(tossTail(start; s) then 1� p else 0
Intuitively, a program that consists of a single atomic action� re-

sults in the execution of� and an empty remaining program with
probability 1 iff � is executable. The execution ofseq(�1; �2) in s
may result in any successor situation that could be reached by the
execution of�1, with a remaining programseq(Æ0; �2), whereÆ0 is
what remains of�1; or, if �1 is final, it just corresponds to the execu-
tion of�2. A procedure name� is simply replaced by its body, which
is the value ofpro
(�). Finally, the execution ofprob(p;�1; �2) re-
sults in the execution of a dummy action8 tossHead or tossTail
with probabilityp resp.1� p with remaining program�1, resp.�2.9

Besides the specification of which transitions are possible, we
have to define which configurationsh�; si are final, meaning that the
computation can be considered completed when a final configuration
is reached. This is denoted by the predicateFinal(�; s). Here we
only consider some of the definitions, where� is a primitive action.Final(�; s) � FALSE Final(nil; s) � TRUEFinal(prob(p; �1; �2; s)) � FALSEFinal(while(�; �); s) � �(s) ^ Final(�; s) _ :�(s)

So far, we have only defined which successor configurations can
be reached through a single transition. Next, we definetrans-Pr�(Æ; s; Æ0; s0), which represents the probability to reach a configu-
rationshÆ0; s0i by a sequence of transitions, starting in configurationhÆ; si, that is, the transitive closure oftransPr.transPr�(Æ; s; Æ0; s0) = p � 8t[::: � t(Æ; s; Æ0; s0) = p℄_p = 0 ^ :9p0:8t[::: � t(Æ; s; Æ0; s0) = p0℄
where the ellipsis stands for the universal closure of the following
formulas: t(Æ; s; Æ; s) = 1 (1)t(Æ; s; Æ�; s�) = p2 ^ transPr(Æ�; s�; Æ0; s0) = p1 ^p1; p2 > 0 � t(Æ; s; Æ0; s0) = p1 � p2 (2)

Basically, this formula says that i) if there is a path of nonzero tran-
sitions fromhÆ; si to hÆ0; s0i, thentransPr�(Æ; s; Æ0; s0) is equal to
the product of the transition probabilitiesp along this path (which
we call its weight), otherwise it is zero; and ii) there are notwo paths
from one configuration to another with different weights.

If there is a path of nonzero transitions, then (i) obtains, roughly,
by “iterating” through Formula 2, making use of the reflexivity of t
(Formula 1) for the case where there is exactly one transition fromhÆ; si to hÆ0; s0i. If there is no path without nonzero transitions, then
one can always find a functiont1 which satisfies the ellipsis such thatt1(Æ; s; Æ0; s0) = 0. HencetransPr�(Æ; s; Æ0; s0) = 0.

To see why ii) holds, let us assume that there are two paths with
different weights fromhÆ; si to hÆ0; s0i. Then no functiont ex-
ists that satisfies Formula 2; therefore8t[:::℄ is vacuouslytrue, andtransPr�(Æ; s; Æ0; s0) = p for all p, a contradiction. Note that to pre-
vent this from happening when executing aprob even if�1 = �2, we
introduce the dummy actionstossHead andtossTail which ensure
that the situations associated with�1 and�2 are different.7 � is a situation calculus formula with all situation arguments suppressed.�(s) is obtained from� by restorings as the situation argument in all

fluents of�.8 tossHead or tossTail have no effects and are always possible.9 The reader familiar with [5] might wonder why we don’t define asynchro-
nized version ofprob. The reason is explained when we definetransPr�.

4 Probabilistic projections in pGOLOG

So far the language allows us to talk only about how the actualworld
evolves, starting in the initial situationS0. But in scenarios like the
ship/reject-example, there is uncertainty about the initial situation.
To take this into account, we opt for a probabilistic characterization
of an agent’s epistemic state. More specifically, we characterize an
epistemic state by aset of situations considered possible, and thelike-
lihood assigned to the different possibilities. We thereby follow[1],
who introduce a binary functional fluentp(s0; s) which can be read
as “in situations, the agent thinks thats0 is possible with probabilityp(s0; s).”10 All weights must be non-negative and situations consid-
ered impossible will be given weight 0. Note that we are restricting
ourselves to discrete probability distributions. To keep things simple,
we additionally require that the probabilities of all situations consid-
ered possible inS0 sum to 1, that is, we need the following axiom:11Xs p(s; S0) = 1 (3)

As an example, we describe the initial belief in the ship/reject do-
main. Here, the world is initially in one of two states,s1 and s2,
which occur with probability0:3 and0:7, respectively. In this sim-
ple scenario, these are the only possibilities, all other situations have
likelihood 0. The following axiom makes this precise together with
what holds and does not hold in each of the two states.9s1; s28s:s 6= s1 ^ s 6= s2 � p(s; S0) = 0 ^^p(s1; S0) = 0:3 ^ p(s2; S0) = 0:7^FL(s1) ^BL(s1) ^ :PA(s1) ^ :PR(s1) ^ :ER(s1)^:FL(s2) ^ :BL(s2) ^ :PA(s2) ^ :PR(s2) ^ :ER(s2)

Now that we have defined which situations may result from the
execution of apGOLOG program, and which situations the agent
considers possible initially, we turn our attention to another question:
how probable, from the point of view of an agent with a probabilistic
belief state, is it that� will hold after the execution of apGOLOG
program�? To determine this probability, we project a program�
wrt each situation considered possible, weighted by the likelihood
assigned byp.

Formally, we make use of the special situation termnow. Let�[now℄ be a formula whose only term of sort situation isnow. We
write Bel(�[now℄; s; �) to denote the belief that� holds after the
execution of� in situations. Note that this is merely a projection of
the effects of�, no action actually gets executed.Bel(�[now℄; s; �)
is an abbreviation for the following term expressible in second-order
logic.�fs00;Æ00jFinal(Æ00;s00)^�[nowjs00℄gp(s0; s) � transPr�(�; s0; Æ00; s00)Bel(�[now℄; s; �) is defined to be the weight of all paths that
reach a final configurationhÆ00; s00i that fulfills�[nowjs00℄ (= � withnow replaced bys00), starting from a possible initial configurationh�; s0i, weighted by the agent’s belief ins0. Note that for all situa-
tionss00, there is at most one final configuration reachable by a path
with positive weight. Through this definition we are restricting our-
selves to discrete probability distributions, where the probability of a
set can be computed as the sum of the probabilities of the elements
of the set.

For example, let us calculate the belief that the widget is painted,
processed and no execution error occurred (� �r) after the execution
of �robby1 = seq(paint; ship). Here is the specification of theship
process as apGOLOG procedure:10 Having more than one initial situation means that Reiter’s induction axiom

for situations [11] no longer holds, just as in [1].11 See [1] for how to characterize such equations in second-order logic.



pro
(ship) = seq(if(FL; setER); setPR))
Let AX be the set of foundational axioms of Section 2 together

with the definitions oftransPr, Final, transPr� and Axiom 3.
Further, let� be the set of axioms AX together with successor state
axiom for the fluents, precondition axioms stating that all set and clip
actions are always possible, the definitions of allpGOLOG-pro
’s
used and the above axiom describing the initial situations.Then,� j= Bel(�r[now℄; S0; �robby1) = 0:665
This is determined as follows:

If the world is as described ins1, the only final configurations that
can be reached along a path of transitions with positive weight con-
sist of the situations[tossHead; setPA; clipBL; setER; setPR; s1℄12 or[tossTail; setER; setPR; s1℄ with remaining programnil. If the world is as
described ins2, the possible results are[tossHead; setPA; clipBL; setPR; s2℄
(= sok) or [tossTail; setPR; s2℄, again with remaining pro-
gram nil. The situation sok is the only one that fulfills�r , andtransPr�(�robby1; S0; nil; sok) is equal to0:95 � 0:7 = 0:665.

Theorem 1 For all �[now℄ and�: AX j= Bel(�[now℄; S0; �) � 1.

Proof: The proof relies on the fact that�hs0;ÆitransPr(�; s; Æ; s0) � 1,
i.e. for each configuration the set of directly reachable configurations has a
total probability that is no more than 1. Additionally, if a configuration is
final it has no successor configuration.

5 Nondeterministic high-level plans

One of the key features of high-level programming is the ability to
make use of nondeterministic instructions. It is then the task of an
interpreter to determine the appropriate actions to perform, thereby
making reasoned decisions. To this end, we define the nondetermin-
istic high-level plan languagemGOLOG. Although anmGOLOG
plan looks like aGOLOG plan, there are differences. First, while
a GOLOG program is made up of atomic actions, inmGOLOG the
names of low-level processes take their role. Second, the fluents men-
tioned in anmGOLOG program are restricted, as we will explain
below.

One of our goals is that anmGOLOG interpreter determines a
program that can branch on a sensed value during execution. In con-
trast, aGOLOG plan is mapped to a fixed sequence of primitive
actions. At this point, we have to explain what we mean by sensing.
To us, sensing means: activate a sensor. This “activation” has as an
effect a sensor reading. In the example, sensing happens through the
activation of theinspectprocess, whose effect is to provide anOK
or :OK answer. This answer is captured by setting the value of the
fluent OK. Arguably, there is no uncertainty about the value of this
answer. Therefore, we distinguish such fluents from other fluents and
call themdirectly observable. Directly observable fluents are such
that the agent always has perfect information about them - like the
display of one’s watch or a fuel gauge in the car.13

While, during real execution, the actual low-levelinspe
t process
provides the answer, for the task of projection we model the behavior
of the sensor by means of a probabilistic program. Here, the effect ofinspe
t is to set the directly observable fluent OK correctly with
high probability, as discussed in the introduction.pro
(inspe
t) = if(BL; prob(0:9; clipOK; setOK); setOK))12 We write [�1; :::�n; s℄ instead ofdo(�n; do(:::; do(�1; s):::).13 For those familiar with [1], note that we do not model how the epistemic

state of the sensing agent, which is characterized by the fluent p, changes.
In particular, we have no successor state axiom forp.

Now that we have explained the restricted form of sensing that we
consider, we turn back to the definition ofmGOLOG. An mGOLOG
program consists ofpGOLOG procedure names14, testsconcerning
only directly observable fluents, sequencing, conditionals and nonde-
terministic instructions.� pGOLOG procedure name�? directly observable testseq(�1; �2) sequenceif(�; �1; �2) conditional (directly obs.)or(�1; �2) nondeterministic choice�� nondeterministic iteration�(v; �) nondeterministic argument choiceor(�1; �2) may result in the execution of any�i. �� signifies non-
deterministic iteration of�, i.e. execute� zero, one or more times.�(v; �) means that� is to be executed with an arbitrary – but fixed
– binding forv. As tests, we only allow Boolean combinations of di-
rectly observable fluents. That means that during execution, the robot
has access to their truth value through appropriate means. Addition-
ally, we require that initially all directly observable fluents arefalse.

The semantics of nondeterministic plans is defined by specifying
which determisticpGOLOG programs are legaldeterministic vari-
antsof the plan. To specify this relationship, we use the predicatedet(NP; �), meaning that� is a legal deterministic program wrt planNP . Note that through the restriction of tests to directly observables
all deterministic variants are executable: all tests can beevaluated,
they do not mentionprob instructions and each� corresponds to the
activation of a low-level process.det(�; �) for procedure names and testsdet(seq(�1; �2); seq(Æ1; Æ2)) � det(�1; Æ1) ^ det(�2; Æ2)det(if(�; �1; �2); if(�; Æ1; Æ2)) � det(�1; Æ1) ^ det(�2; Æ2)det(or(�1; �2); �) � det(�1; �) _ det(�2; �)det(��; Æ) � Æ = nil _ det(seq(��; �); Æ)det(�(v; �); Æ) � 9x:det(�vx; Æ)

Using the predicatesdet andBel we can now ask for a deter-
ministic variant� that achievesGOAL = PA ^ PR ^ :ER
with success probability 0.95, using the high-level planNP �seq(or(paint; inspe
t)�; if(OK; ship; reje
t)).15 To do so, we
make use of the predicateplan which is defined as follows:plan(�; p; s;NP; �) � det(NP; �) ^ Bel(�; s; �) � p
Let � be defined as above andAXdet be the axiomatization ofdet.
The existence of a feasiblepGOLOG program can now be stated as:� [AXdet j= 9�:plan(GOAL; p; S0; NP; �)

In our example,seq(inspe
t; paint; paint; if(OK; ship; reje
t)
would be a feasible program�. Note that this solution, like every
program derived from anmGOLOG plan, only mentions directly
observable fluents and low-level procedures, and thereforeis
assumed to be executable. Again, we stress that during the actual
execution the procedures (paint, inspe
t etc) are treated as atomic.
Indeed, their procedure body cannot be executed, because wehave
no evidence concerning the value of non-observable fluents like BL.
These procedure definitions are part of the agent’s model of the
world, only intended to project the program�. During execution the
actual low-level processes are activated.14 We assume that for each low-level process, there is apGOLOG procedure

that models how it affects the world.15 Note that, as explained in [3], without making use of some kind of sensing
it would be impossible to come up with a plan that has a successprobability� 0.7.



We have implemented anmGOLOG interpreter in PROLOG, and
applied it to some probabilistic domains (see [5] for subtlediffer-
ences between an implementation and the theory due to PROLOGs
closed world assumption). Using this interpreter, we were able to
solve the above example in 0.13 seconds. Of course, we have toad-
mit that the amount of nondeterminism that can effectively be han-
dled within our approach is limited. That means that the programmer
must carefully consider the use ofor, � and� instructions.

6 Conclusions and related work

Within the situation calculus Levesque [9] considers planswith loops
and conditionals which are also assumed to be directly executable.
Lakemeyer [8] proposes to map nondeterministic plans to conditional
action trees, which allows for branching during execution.In both
cases, uncertainty is not considered. Acting under uncertainty lies
at the heart of POMDPs and they deal with these aspects in a more
exhaustive way, but the computational cost is prohibitive already in
relatively small domains (e.g. [4]). Note that unlike POMDPs and
probabilistic planners like C-Buridan [3] our framework isfully logic
based and much more expressive since we are not restricted topropo-
sitional representations. Recently,DTGolog [2] has been proposed
as a way to integrate the theory of MDPs within theGOLOG frame-
work. The integration of decision theory into the situationcalculus
has also been investigated in [14].

The work of [1] on noisy sensors and effectors may seem like an
alternative to our treatment of probabilistic outcomes. However, the
topic of our approach and theirs is different. While they arecon-
cerned about how the epistemic state (i.e. the fluentp) changes as a
result of the execution of noisy actions and the perception of noisy
sensor readings, we completely ignore this aspect. Instead, we model
sensors as probabilistic procedures that are activated andwhose ef-
fect is to set some directly observable fluents. These procedures are
intended to be used only for the task of projection. During execu-
tion, their activation is replaced by the actual activationof the robots
low-level processes. For this task, our approach has the advantage
of being simpler than [1].16 Last but certainly not least, [1] does not
even consider projections of programs as inpGOLOG.

As for the connection to probabilistic planning without sensing,
we compared our approach with Buridan [7] and MAXPLAN [12]
with persuasive results.17 The comparision with state-of-the-art prob-
abilistic planners that accounts for sensing (cf [6, 16]) isdifficult
becausemGOLOG does not provide means to automatically synthe-
size branch conditions.

Summarizing, we have proposedpGOLOG, a probabilistic exten-
sion ofGOLOG. UsingpGOLOG, we were able to model low-level
processes with uncertain outcome as probabilistic programs. We have
then shown how to characterize the epistemic state of an agent and
have provided a projection mechanism that allows us to assess how
probable it is that a sentence holds after the execution of apGOLOG
program. Having definedpGOLOG and the projection mechanism,16 While [1] makes use of nondeterministic�-instructions, action-likelihood

axioms (l) and observation-indistinguishability axioms (OI) in order to
deal with noisy sensors and effectors,pGOLOG manages solely with theprob instruction.17 We used the BOMB/TOILET and SLIP. GRIPPERscenarios to compare
the implementations on Pentium III 500 Mhz Linux workstation. Buridan
solved the problems in 0.21 to 41 seconds (depending on the assessment
algorithm used) resp. 0.41 to 682 seconds, while MAXPLAN took 0.4 resp.
0.3 seconds to solve the problems. Even though we didn’t makeuse of any
domain knowledge and usedor(a
tion1; ::::; a
tionn)� asmGOLOG
plans, our implementation outperformed the other implementations by an
order of magnitude: it solved the problems in 0.022 resp. 0.0097 seconds.

we introducedmGOLOG, a high-level plan language that provides
nondeterministic instructions. UnlikeGOLOG, whose primitive ac-
tions are those of the situation-calculus domain theory, the primitive
actions ofmGOLOG are the names of low-level processes. Addi-
tionally, tests inmGOLOG programs are restricted to directly ob-
servable fluents. We show thatmGOLOG can be used to determine
a pGOLOG program that has a sufficient probability to achieve a
given goal through projection of the deterministic variants of the
mGOLOG plan, whereas the effects of the activation of low-level
processes is simulated using the correspondingpGOLOG models.
The resulting program is directly executable and branches on the an-
swers of the sensor processes activated.

Finally, a promising property of our framework is that it is eas-
ily amenable to Monte-Carlo methods for the estimation of the suc-
cess probability of apGOLOG program (unless, of course, exact as-
sessment is required). In a nutshell, Monte-Carlo simulation can be
achieved by pursuing only one of the branches of aprob instruction
depending on the outcome of a random number toss. The appealing
property of Monte-Carlo methods is that the number of samples to
be considered depends only on the desired precision of the estimate,
not on the length of the program.

REFERENCES
[1] F. Bacchus, J.Y. Halpern, and H. Levesque, ‘Reasoning about noisy

sensors and effectors in the situation calculus’,Artificial Intelligence
111(1-2), (1999).

[2] C. Boutilier, R. Reiter, M. Soutchanski, and S. Thrun, ‘Decision-
theoretic, high-level agent programming in the situation calculus’, in
AAAI’2000, (2000).

[3] D. Draper, S. Hanks, and D. Weld, ‘Probabilistic planning with in-
formation gathering and contingent execution’, inProc. of AIPS’94,
(1994).

[4] H. Geffner and B. Bonet, ‘High-level planning and control with incom-
plete information using pomdps’, inProc. Fall AAAI Symposium on
Cognitive Robotics, (1998).

[5] Guiseppe De Giacomo, Yves Lesperance, and Hector J Levesque,
‘Congolog, a concurrent programming language based on the situa-
tion calculus: foundations’, Technical report, University of Toronto,
http://www.cs.toronto.edu/cogrobo/, (1999).

[6] Emmanuel Guere and Rachid Alami, ‘A possibilistic planner that deals
with non-determinism and contingency’, inIJCAI’99, (1999).

[7] N. Kushmerick, S. Hanks, and D. Weld, ‘An algorithm for probabilistic
planning’,Artificial Intelligence, 76, 239–286, (1995).

[8] G. Lakemeyer, ‘On sensing and off-line interpreting in golog’, in Log-
ical Foundations for Cognitive Agents, eds., H. Levesque and F. Pirri,
Springer, (1999).

[9] H. J. Levesque, ‘What is planning in the presence of sensing’, in
AAAI’96, (1996).

[10] Hector J. Levesque, Raymond Reiter, Yves Lesprance, Fangzhen Lin,
and Richard Scherl, ‘Golog: A logic programming language for dy-
namic domains’,Journal of Logic Programming, 31, 59–84, (1997).

[11] F. Lin and R. Reiter, ‘State constraints revisited’,Journal of logic and
computation, 4(5), 655–678, (1994).

[12] Stephen M. Majercik and Michael L. Littman, ‘Maxplan: Anew ap-
proach to probabilistic planning’, inAIPS 98, (1998).

[13] J. McCarthy, ‘Situations, actions and causal laws’, Technical report,
Stanford University. Reprinted 1968 in Semantic Information Process-
ing (M.Minske ed.), MIT Press, (1963).

[14] David Poole, ‘Decision theory, the situation calculusand conditional
plans’,Linköping Electronic Articles in Computer and Information Sci-
ence, 3(8), (1998). URL: http://www.ep.liu.se/ea/cis/1998/008/.

[15] Ray Reiter, ‘The frame problem in the situation calculus: a simple solu-
tion (sometimes) and a ccompleteness result for goal regression.’, in In
Artificial Intelligence and Mathematic Theory of Computation: Papers
in Honor of John McCarthy, (1991).

[16] D. Weld, C. Anderson, and D. Smith, ‘Extending graphplan to handle
uncertainty and sensing actions’, inAAAI’98, (1998).


