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Abstract
We present a system for detecting and recognizing faces
in images in real-time which is able to learn new iden-
tities in instants. In mobile service robotics, interac-
tion with persons is becoming increasingly important,
real-time performance is required and the introduction
of new persons is a necessary feature for many applica-
tions. Although face detection and face recognition are
well studied, only a few papers address both problems
jointly and only few systems are able to learn to identify
new persons quickly. To achieve real-time performance
on modest computing hardware, we use random forests
for both detection and recognition, and compare with
well-known techniques such as boosted face detection
and support vector machines for identification. Results
are presented on different datasets and compare favor-
ably well to competitive methods.

1. Introduction
We introduce a new framework for the detection and
recognition of human faces in images. To create an ex-
tremely fast system that is able to run in real-time on a
service robotic platform, we use random forests (RF) [6]
for the detection, recognition and learning of faces and
identities in images.

Service robots aim at offering assistance to humans
in general and to people with disabilities in particu-
lar. Such robots socially interact with human beings,
i.e. they respond dynamically to requests and communi-
cate. The interaction can be more “natural” if the robot
can identify persons it encounters. We envision that on
encountering unknown identities, the robot may intro-
duce itself and add the new identity to its knowledge
base. Therefore, a fast and reliable face recognition sys-
tem is required, which, in a first step, detects faces and,
in a second step, recognizes the persons. This task is
complicated by the computational limitations of com-
mon robots which typically have only modest comput-
ing power that additionally have to be shared with other
robot components such as motion control and localisa-
tion. In the literature, face detection and face recogni-
tion, typically, are addressed separately, although they
share identical structural foundations [13, 7]. The work
presented here is a one-step system that addresses both
face detection and recognition in an integrated frame-
work using random forests (RF). The advantages of RFs

have been thoroughly investigated [2] and it has been
shown that RFs are fast and have good generalization
capabilities.

Additionally, we introduce identity learning, as an
extension to this framework. A collection of face images
for a new identity captured by the robot can be added to
the knowledge base in real-time, i.e. the robot learns to
recognize new persons from that instant. This is made
feasible as a result of a very short training time. Simi-
lar to other approaches, we use local descriptors, which
are known to be an excellent means for face authentica-
tion [9].

We compare the detection performance of our ap-
proach to the AdaBoost face detector [7], an excel-
lent implementation of which is freely available in
OpenCV1. The AdaBoost face detector is often consid-
ered a quasi standard [10] for face detection, compara-
ble to detection with neural networks [12, 11]. Results
of our recognition are later compared to those achieved
with support vector machines (SVM), which have been
succesfully used for face identification [5] before.

RFs have previously been used for biological image
classification [8] where, similar to our approach ran-
domly sampled rectangles are used as test candidates in
the training procedure. RFs have also been successfully
used for general object/image classification [1]. RFs
have been used for foreground/background segmenta-
tion in a video chat application and systematically com-
pared to boosting and bagging classifiers [14]. An ap-
proach most similar to our own has been proposed for
real-time gesture recognition. Here, an RF is used for
segmentation and subsequently a second RF is used for
the recognition [3].

2. Random Forests
An RF is a collection of random trees (RT). Random
trees are structurally identical to classical decision trees
but are trained differently. During training not an ex-
haustive search of the possible test candidates is consid-
ered but only a randomized subset in order to allow for
creating several different and independent RTs.

In our approach, we create a large number of random-
ized test candidates to the training procedure in each it-
eration. Here, a randomized test candidate is a local fea-

1http://www.intel.com/technology/computing/opencv/



Figure 1. The six different Haar features used in our RTs.
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Figure 2. Schematic representation of the training method.

ture on a rectangle of random dimensions and at a ran-
dom location in the training data images.

2.1. Features
We use Haar features similar to those used in the boosted
face detection cascade by Viola and Jones [7]. They al-
low for fast evaluation and they are known to be good
features for face detection. We allow the RT to choose
among six different Haar features (depicted in Figure 1)
and during training, in each iteration a set of these fea-
tures is generated by choosing the type (one of the six),
the size, and the test threshold randomly. A test is suc-
cessful, if the sum of the pixel gray values in the black
area minus the sum of the pixel gray values in the white
area is higher than the test threshold. These tests can
efficiently be calculated using integral images [7].

2.2. Tree Training
An RT is grown in an iterative procedure. In each iter-
ation, a set of L test candidates is randomly generated.
The test candidates are applied to all the training sam-
ples at a node and the entropy gain is measured on the
corresponding split. The best candidate is chosen and
the left and right branches are appended to the existing
node and the procedure continues until the leaf nodes
maintain training data of only a single class.

The training data for face detection consists of seg-
mented faces (positives) and patches of background im-
ages (negatives). These images are all scaled to a com-
mon size and subwindows (up to a heuristically deter-
mined percentage of the image size) are sampled as test
candidates. The initialization of the RT is done using
a normal training iteration by choosing the candidate
among a set of L random test candidates that optimizes
the classification according to the entropy gain. To mea-
sure the entropy gain we use class histograms. The class
histogram compares the number of images for each class
in a leaf node on a split to the image count in the parent
node to calculate an information gain. The candidate
with the highest gain is chosen for each node in each it-
eration. The divided training samples are propagated to
the left and right children of a split node. The training
process is schematically shown in Figure 2. This pro-

cedure is repeated until either a predefined threshold is
reached or until perfect class separation is reached.

It is known that RTs are prone to overfitting if trained
long enough (i.e. too many nodes added). It is further-
more known that averaging classifiers improves the gen-
eralization ability and to benefit from both effects, RFs
are one possibility [2]. Following the aforementioned
ideas, we create a RF by training a set of T RTs simul-
taneously.

2.3. Detection
To detect faces in an input image, we use integral images
to allow for rapid evaluation of our RTs. Then, each
RT is used in a sliding windows manner on an image
to determine for each position whether the surrounding
area is a face or not. Eventually, in each RT a leaf node
is reached delivering a probability (by looking up the
relative frequency of the nodes class histogram) for the
region to contain a face:

FMP =
number of face images in leaf node
total number of images in leaf node

. (1)

Each RT is applied in this manner, resulting in T proba-
bilities at each position. These probabilities are fused to
determine the absence/presence of a face for each posi-
tion.

To detect faces of different sizes, either the input im-
age is scaled or the RTs are adapted by scaling the di-
mensions of tests, which is faster because it does not
require for recalculating the integral image.

The fusion of the different RTs at different scales is
performed using an aggressive merging step, much sim-
pler than the one proposed in [7]. Our merging tech-
nique finds an area of interest by listing neighbors of a
detection window. Then, a weighted average over the
detected face areas is computed to deliver the final de-
tection, where we chose the weights from experiments
on a preliminary in-house dataset.

2.4. Recognition
For face recognition, we have to discriminate between P
known identities with the additional option of classify-
ing a person as unknown. In our integrated joint detec-
tion and recognition approach, we use the face/no-face
information jointly with the identity labels. Therefore,
we first train a normal detection RF as described above,
then we add the identity labels and continue training to
be able to discriminate among identities (i.e. grow addi-
tional leaves until these contain either only one identity
or the “unknown identity” label).

The detected face is propagated into the leaf nodes
of the detection RT, the corresponding class histograms
are extended with the additional classes and additional
training iterations are applied to discriminate among the
identities and the large set of unknown identities. This
step is repeated for each RT and a final identity label is
obtained using majority voting.



New Identities. This training step only needs few it-
erations, thus this method allows for adding new identi-
ties on the fly in the same way as initially the detection
RT is extended to become a joint detection and recog-
nition RT. Similarly, new identities can be added to a
detection/recognition tree: A new set of face images are
supplied for the new identity. These images are propa-
gated to the leaf nodes of the RT and additional nodes
are added until the new identity is separated from other
identities.

Another option to achieve detection and recognition
is to first create a detection RF and then in a second step
to create a recognition RF. A similar setup was presented
for the task of hand gesture and object recognition in [3].
This setup is also open to the learning of new identities
by rebuilding the recognition forest.

2.5. Parameters
We provide insights into the parameters modeled and
the values experimentally considered as optimal. The
forest size T is theoretically and empirically related to
the classification accuracy. We grow ten RTs. The fea-
ture size limits the dimensions of the rectangles sampled
and we find 0.5 ·

√
K × L, where K × L is the dimen-

sion in pixels of the training samples, as optimal. We
set L = 200 for our evaluations. Note that it has been
shown, with as few as 3 or 5 RTs, acceptable perfor-
mance was achieved [3].

3. Experimental Evaluation
In this section, we present the results from the
experimental evaluation of our proposed methods
and discuss the integration into our RWTH-Aachen
RoboCup@Home [4] mobile robots.

3.1. Detection
We compare our detection performance to the AdaBoost
face detector [7] of the OpenCV library. For this pur-
pose, we use the pre-trained model delivered with the li-
brary and we also compare using a model that we trained
using our training data. It is well known that the pre-
trained model was very carefully engineered and per-
forms extremely well. Unfortunately, it is unclear which
data was used for training and thus comparison with this
model is not completely fair.

Our training collection includes a collection of 4,000
faces and 4,000 background images collected from vari-
ous sources on the Internet, all scaled to 24× 24 pixels.
We trained the AdaBoost detector for four and 13 days,
denoted as B-4 and B-13, respectively. Training was per-
formed on an Opteron machine with 2.2GHz.

The RF is trained on the same data, where we allow
for up to 8,000 nodes (which allows perfect discrimina-
tion between all training samples). Here, the training
takes approx. 400 sec/RT on a 2.0 GHz Intel Core2Duo
machine.
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Figure 3. ROC curve for the detection results.

Table 1. Results (error rates) from the recognition.
Test Collection RF SVM

Yale[RF] 46.6 69.4
BioID[RF] 86.3 68.63
Yale[B-FIN] 15 7.7
BioID[B-FIN] 13.5 2.7

ROC curves for the detection results are shown in
Figure 3 for a combination of the MIT+CMU test col-
lection [12], Yale Face Database2 and the BioID Face
Database3. In the figure, both B-4 and B-13 attain a de-
tection accuracy of 90% with a very high false positive
rate, emphasizing the need for weeks of training time for
AdaBoost models [10]. RFs outperform B-4 and B-13.
Further, RFs perform comparatively to B-FIN albeit with
a slightly higher false positive rate. We however note
that our detections suffer from alignment errors. One op-
tion to tune our method would be to incorporate a more
carefully engineered filtering/merging step similar to the
one proposed by Viola and Jones [7].

3.2. Recognition
The recognition is evaluated after detection on the
BioID and Yale collections (here, we cannot use the
MIT+CMU test set since identities are not annotated).
We compare the performance of our RF classifier to an
SVM classifier. Results are given in Table 1. Due to
the alignment errors of our detection framework, the er-
ror rates in Yale[RF] and BioID[RF] are rather high. If,
however, we use the pre-trained OpenCV face detector
(B-FIN), a drastic performance improvement can be ob-
served in the corresponding Yale[B-FIN] and BioID[B-
FIN]. In general, it must be noted that the SVM outper-
forms the RFs but at the cost of a) a much higher training
time, and b) a much higher time required for the classi-
fication.

To further analyse the difference in the classification
speed, we trained RTs for recognition only and detail the
training time. It takes about 7.5ms to create an RF con-
sisting of ten RTs, each grown up to a 1000 nodes with

2http://cvc.yale.edu/projects/yalefaces/yalefaces.html
3http://www.bioid.com/downloads/facedb/



Table 2. Relations between L,N, number of nodes, the train-
ing time, and the recognition rate (RR).

Dataset Nodes L N Time RR [%]

Detection 8000 200 8000 400s –
BioID 1000 50 464 0.75ms 86.5
Lab 200 50 88 0.25ms 92.86
Yale 200 50 40 0.2ms 85.0

L = 50 on our BioID training collection of 464 face im-
ages and six identities. As our Yale training collection
is smaller, a total of 40 face images and 5 identities, we
are able to build ten RTs in only 2ms by letting each RT
grow up to 200 nodes and L = 50. Clearly, if the num-
ber of training images per identity can be approximately
estimated in advance, we can optimize the correspond-
ing node count (2 · number of identities · images per
identity) and grow an RF extremely rapidly with rank-1
recognition rates comparable to SVM.

3.3. Realistic Scenario
The method was developed for mobile service robots, we
also evaluate it on our in-house lab dataset. Images with
faces in typical backgrounds that a mobile robot encoun-
ters were captured consisting of four identities and up to
30 images per per identity. Sample images are depicted
in Figure 4. Faces were collected using B-FIN. We use
22 images for training and 8 to evaluate the performance.
We train an RF of ten RTs with up to 200 nodes, training
takes 2.5 milliseconds and the error rate is 7.1%. Re-
searchers may find Table 2 useful for insights into the
duration of RT growth. Here, the number of nodes, test
candidates and training data that contribute to the train-
ing time are enumerated on the experiments presented
in this paper. The rank-1 recognition rates correspond to
the error rates discussed in the table above and that on
our lab test.

The described system was employed by a RWTH
Aachen University robot at the recent RoboCup German
Open competition4 and at the RoboCup World Cham-
pionship5 in the RoboCup@Home league. The task in-
cluded detecting, recognizing and learning faces in the
arena (Figure 4) to hand over objects of interest to the
respective personnel.

4. Conclusions
In this paper, we presented a framework for one-step
face detection and recognition with low training time,
which is able to learn new identities at any moment on
the mobile robotic platform.

The proposed method is evaluated on different
datasets and compared to the standard AdaBoost detec-
tion method and an SVM-based recognition system and
it is shown that the new method is faster by several or-
ders of magnitude in the training and testing time with
only little deterioration of the accuracy.

4http://www.robocup-german-open.de/
5http://www.robocup-cn.org/

Figure 4. Left: examples from the lab test set. Right: de-
tection, segmentation and recognition of faces at the 2008
RoboCup German Open, Hannover, Germany.

The problem of one-step detection and recognition is
addressed using decision trees which can be trained to
discriminate additional classes with only little effort and
it is shown that the technique works well.

We plan to improve our detection aggregation tech-
nique in a similar way as the AdaBoost cascade does
and we will employ the system on our service robot plat-
form [4].
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