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Abstract

This work is motivated by the existence of two
useful but quite different knowledge represen-
tation formalisms, the situation calculus due to
McCarthy, and the logi@ L of only knowing
due to Levesque. In this paper, we propose the
logic AOL, which combines both approaches in
a clean and natural way. We present a seman-
tics for AOL which generalizes the semantics
of OL to account for actions, and a sound and
complete set of axioms fadOL which gener-
alizes the Lin and Reiter foundational axioms of
the situation calculus to account for only know-
ing. The logic is compatible with earlier work
on knowledge and action in that the solution to
the frame problem for knowledge proposed by
Scherl and Levesque becomes now a theorem
of AOL. We also demonstrate that the logic
avoids certain anomalies present in related work
by Lakemeyer. Finally we provide a mapping
from OL into AOL such that a sentence 65

is valid iff its mapping is a theorem oflOL,
thus providing, for the first time, a complete ax-
iomatic characterization @ L.

1 Introduction

This work is motivated by the existence of two useful but
quite different knowledge representation formalisms:

¢ thesituation calculugMcC63] is a dialect of first or-

der logic for representing and reasoning about the pre-
conditions and effects of actions. A recent second-

order refinement explored by Lin and Reiter [LR94]
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¢ the logic ofonly knowingO L [Lev90] is a quantified
modal logic for representing and reasoning about the
de dictoandde reknowledgé of an agent, and all that
that agent know$.This language has been found use-
ful for capturing autoepistemic reasoning [Moo85b]
within a purely monotonic logic, as well as certain
forms of relevance [Lak95].

In this paper, we propose the logitO L, which includes

in a clean and natural way both the situation calculus noted
above and an embedding of the logic of only knowing. The
amalgamation is carried out at both the semantic and the
syntactic levels. While the semantics naturally extends the
model theory ofOL to account for actions, the axioms,
which are sound and complete for the semantics, can be
seen as a version of the foundational axioms of the situation
calculus proposed in [LR94], generalized to deal with the
much richer ontology required for only knowing.

The motivation for the amalgamation is perhaps best seen
in the following example. Suppose we have a robot that
knows nothing about the initial state of the environment,
but that there is a sensing action, reading a sonar, which
tells the robot when it is getting close to a wall. Then we
would like to prove the following:

1. in the situation that results from reading the sonar, the
robot knows whether the wall is close;

2. assuming the robot knows the sonar is working, it also
knows in the initial state that it will know whether the

wall is close after checking its sonar;

3. suppose the robot checks its sonar and discovers that
the wall is not close. If it now moves towards the wall,

it no longer knows whether or not the wall is close; if

!De dictoandde re knowledge refers to the distinction be-

has been shown to be useful for high-level robot and,yeenknowing thaandknowing whqKap71].

agent control [LRL97], exploiting a simple solution to
the frame problem presented in [Rei91].

2Actually, it is belief that is dealt with i L, but we will use
the two terms interchangeably, unless noted otherwise.



it moves away from the wall instead, it continues to the successor situation toresulting from performing the
know whether or not it is close. actiona; relations whose truth values vary from situation
to situation, are called relationfilents and are denoted
These are all simple and reasonable properties involvingy predicate symbols taking a situation term as their last
knowledge and action. Observe that to get them rightargument; similarly, functions varying across situations are
it is necessary to reason about the effects of sensing aealled functional fluents and are denoted analogously; fi-
tions, knowledge about knowledge and action, and all thahally, there is a special predicaResga, s) used to state
is known. The latter is necessary, in particular, if an agenthat actiona is executable in situatios
wants to reason about its own ignorance without having‘N_ o , )
to be told explicitly what it does not know. Furthermore, Vithin this language, we can formulate theories which de-

knowledge aboutignorance plays an important role in guid_scribe how the world changes as the result of the available

ing an agent's actions such as deciding whether it is nece%ctlons. One possibility is basic action theorpf the fol-

sary to use a sensor. owing form [Rei91]:

Ours is certain!y not the first approach combining knowl- ¢ avioms describing the initial situatiors,.

edge and action (see, for example, [Moo85a, SL93,

Lak96]). In fact,AOL is compatible with this line of work e Action precondition axioms, one for each primitive
in that the solution to the frame problem for knowledge actiona, characterizingPosga, s).

proposed by Scherl and Levesque [SL93], which builds i .

on [Moo85a], becomes a logical consequence of the ax- ® SUCCESSOr state axioms, one for each fluérstating
ioms. So far, only Lakemeyer [Lak96] has proposed an  Under what conditions'(, do(a, s)) holds as a func-
amalgamation of only knowing and action in a quantified  tion of what holds in situation. These take the place
logic.3 However, he provides only a semantics, but no ax- qf the so-called effect axioms, but also provide a solu-
ioms. In this paper we also point to certain anomalies in  tion to the frame problem [Rei91].

his logic and demonstrate how they are avoidedifL.
Finally we provide a mapping fror@ L into AOL such
that a sentence i@ L is valid iff its mapping intoAOL is
a logical consequence of the axioms. This provides, for the e A collection of foundational, domain independent ax-
first time, a complete axiomatic characterizatiorff. ioms.

e Domain closure and unique names axioms for the
primitive actions.

The rest of the paper is organized as follows. In Sections 2 _ _ _ _
and 3, we briefly review the situation calculus and the logic!" [LR94] the following foundational axioms are consid-
OL, respectively. In Section 4, we present the new logicered-

AOL, both semantically and axiomatically. The proper-

ties of knowledge and action are studied in more detail in 1. VsVa.Sy # do(a, s).

Section 5. Section 6 formalizes the robot example above.
In Section 7, we show an embedding Gf into AOL.

In Section 8, we compare our approach with the amalga-

mation presented in [Lak96]. Section 9 presents a brief 3 vp P(So) A [Vs¥a.(P(s) D P(do(a, 5)))] D
summary and suggests areas of future work. VsP(s). ’

2. Vaq,as, s1, S3. dO(al,sl) = dO(CLQ,Sg) D
(a1 = as A S1 = 82).

2 Situation Calculus 4. Vs. =(s < Sp).

) ) , 5. Vs,s',a. (s < do(a,s') = (Posga,s") A s < s')),
One increasingly popular language for representing and  \\hares < ' is an abbreviation fos <s'Vs—sg.

reasoning about the preconditions and effects of actions

'S the situation calculus [McC63]. We will only go over The first three axioms serve to characterize the space of all
the language briefly here noting the following features: all .~ . A : P
situations, making it isomorphic to the set of ground terms

terms in the language are one of three sorts, ordinary ob-

. . NV . . of the formdo(ay, - - -, do(a,, Sp) - - -). The third of these
jects, actions or situations; there is a special consfgnt . . : i

L o is a second-order induction axiom that ensures that there
used to denote thimitial situation, namely that situation

in which no actions have yet occurred; there is a distin-27€ ° situations other than those accessible Lesirfgom

) . . Sp. The final two axioms serve to characterize aelation
guished binary function symbab wheredo(a, ) denotes between situations. Later, we will be introducing abbre-

®In the context of modeling belief revision, [dVS94] provide viations of various sorts into our representation language,
axioms for only knowing in the situation calculus, but these
limited to the propositional case. “In addition to the standard axioms of equality



and we can in fact do so here, defining theelation as an |[f(t1, - te)|w = w[f(n1,...,n)], wheren; = |t;]w.
abbreviation for a certain second-order formula:

s< s =VYP[L..5 P(s,s)] We often write|t],, instead of(|t1]uw, - . . , [tk |w).

While the truth of objective sentences is determined by a
single worldw, the meaning of sentences of the foifw
andO« is defined relative to aetof worldse. Ka holds

if « is true in all worlds ofe. O« holds if Ka holds and,

in addition, every world that satisfiesis also a member

) ) ] o ) of e. This waye minimizes what is known besides ¢ is
It is not hard to show that with this definition, the final two also called apistemic statand a pair¢, w) is sometimes

axioms do not have to be postulated, and are in fact [0giCaloferred to as a aé2 model.
theorems.

where the ellipsis stands for the conjunction of

Va, s.Posga, s) D P(s,do(a, s))
Vs1,89,83.P(s1,82) A P(s2,s3) D P(s1,s3)

The semantic rules which determine the truth of a sentence
« at a given worldw and epistemic state (denoted as

3 The LogicOL e,w = «) are defined as follows:

The Ignguage of?_ﬁ is a modal first-order dialfac_t yvith e,w = F(7) it w[F(7)] = 1andi = |f]w,
equality and function symbols plus a countably infinite set
of standard name&” = {#0, #1,#2, ...} which will serve

as our universe of discourse. As discussed in more detalil

whereF (t) is atomic.
e,w |: t1 = to iff |t1|w = |t2|w

. ) : o e,w = o iff e, wHa
in [Lev84], standard names allow interesting distinctions "’ |_ . ’ #_ _

. ; ewEaVp it ewlEaore,wlEpj
betweende dictoandde re beliefs (see below for an ex- B . e

. : e,w = Vra iff e,w | a®forallneN
ample). Terms and atomic formulas are defined as usual. B . , 'L
A term is calledprimitive if it consists of a function sym ew = Ka if forallw' €e e, =a
IS primitive it | SISts unction sym- e,w = Oa iff forallw', w' €eiff e, |= a

bol followed by standard names as argument. Similarly a
formulais called primitive if it consists of a predicate sym-
bol followed by standard names. Arbitrary formulagdf
are constructed in the usual way from the atomic formulas,
equality, the connectivesandv, the quantifiel,®> and the
modal operatordS and O, where Ko should be read as Here we only briefly discuss the operatdfsandO. For a
“the agent knows:” and O« as “the agent only knows.”  detailed discussion aD L, we refer the reader to [Lev90]
Sentenceare formulas without free variables. A formula and [LL9X]. K has the usual properties of the lo¢i45 or
is calledobjectiveif it does not contain any modal opera- weak S§HC68] whose characteristic axioms are:

tors. Vector notation will be used freely for sequences, for . K(a> B) > (Ka > Kj)

exampleVa for Vzy - - - V. 4 Koo KKa

Aformulaa is valid (o ) iff e, w = « for all worldsw
and all sets of worlds.® We sometimes write |= « if
fs an objective sentence.

The semantics oL is based on the familiar notion ofa 9 —Ka D K-Ka

world, which assigns meaning to the nonlogical symbolsthe Barcan formuld¥z Ko S KV¥za) is also valid since
of the languageO L makes the assumption that all worlds e 4re assuming a fixed universe of discourse [HC68].
have as their universe of discourse the same set which igile Kis very well understood, this is less the case@or
isomorphic to the standard names, that is, an individual i%xcept perhaps whe@ is applied to an objective sentence.
identified with a unique name. A world is then completely ~ynsider an atomic sentenedlt is easy to see that the only
specified by providing the meaning of every primitive term epistemic state whereOp is satisfied is: = {w | w |= p},
and formula: that is, the set of all worlds whegeis true. It is the “iff”

in the semantic rule o® which has the effect of maximiz-
ing e. As a result, the objective sentences knowe ate
exactly the logical consequencesgfwhich captures the
idea that is all that is known. Note that the meaning@f

Given a worldw, the denotation of an arbitrary ground term crucially depends on as well as on the complement af

Definition 3.1: A world w is a function from primitive
expressions int§0, 1} UN, wherew[p] € {0, 1} for prim-
itive formulasp, andw(t] € A for primitive termst.

t is defined recursively as In particular, forOa to be truea has to be known and all
worlds not ine have to falsifya. The story becomes much
In|w = n, wheren is a standard name. more complicated with arbitrary formulas in the scope of
®Other logical connectives lika, D, and= and the quantifier ®Levesque used so-calledaximal setgo define validity, a

3 are used freely and are defined in the usual way. complication we ignore here for simplicity.



O. For example, as shown in [Lev90], usifit is possi- K (s), a new constart of sort ordinary object, and a new
ble to fully reconstruct and extend Moore’s Autoepistemicfunction symbolsucgz), which maps ordinary objects to
Logic [Moo85b]. However, in this paper we will not be ordinary objects. The set of (relational and functional) flu-
concerned with such issues, and all the examples used hegats as well as the set of action function symbols is assumed
consider only knowing applied to objective sentences.  to be finite.

[Lev90] presents an axiomatization ¥, which is com-  For simplicity, we also make the following restrictions:
plete for the propositional case, but was recently shown tahere are no constants or functions of the situation sort other
be incomplete for the full first-order language [HL95]. An thanS, anddo; action functions do not take situations as
interesting by-product of our work is that, by appealing toarguments; all ordinary object functions other tttaand
second-order logic, a complete axiom systemdut ob-  succare fluents; and all predicates other than those men-
tains. tioned above are fluents. Finally, we assume that fluents

To see the utility of0, consider an agent who knows the only have situation terms as arguments in the final position.

standard name for the current temperature, which could bRecall thatOL assumes a fixed countably infinite do-
a particular value on some temperature scale. If this is alinain of ordinary objects, isomorphic to the set of standard
she knows then it should follow that she knows what thenames. We want to use standard names as objegt®if
temperature is and that she does not know what the bar@s well. However, in order to facilitate the axiomatization
metric pressure is. 1L this can be expressed by the fol- later on, we will not represent them using infinitely many

lowing valid sentence, whereis a standard name and both distinct predicate calculus constaft#1, . . ., but instead
temperatureandpressureare ordinary constants: construct them using@ andsucc The idea is thad will
play the role of#0, sucd0) the role of#1, etc. (similar to
O(temperature=n) > the way numerals are represented in number theory). As
Jz K (temperature= x) A —~Jy K(pressure= y). before, we refer to the set of standard names (now ground

Note that the implication would not go through if we re- terms) asV'.

placedO by K: knowing the temperature does not rule out To deal with knowledge itdO L, the biggest change is that
knowing the barometric pressure as well. We feel that bewe imagine that in addition t§, and its successors, there
ing able to derive facts about what m®t known without  are an uncountable number of other initial and non-initial
having to state them as premises is a useful feature of theituations considered as possible epistemic alternatives. To
language that becomes even more important when reasosgtate what is known it$,, we useK,. Informally, taking

ing about knowledge and action. Sp to be the situation counterpart to the given warldn
OL, K, is the counterpart to the given epistemic state
4 The Logic. AOL in OL. In other words,Ky(s) is intended to hold ifs is

a situation considered by the agentSp to be possible.

There are two ways of understanding what is required tg10W knowledge changes when performing an actian
amalgamate the situation calculus and the lagie; we  Situations is governed bySHa, s) andPosga, s) and will
can view it in terms of extensions 82, and how the se- P& discussed later in Section 5.

mantics there needs to be modified, or we can view it in

terms of extensions to the situation calculus, and how the

foundational axioms need to change. Our approach can bg1 Semantics

seen as taking both views. We begin by proposing a seman-

tics which extends that @£ by adding actions and apply- Recall that inOL, there are worlds corresponding to all

ing it to a slightly extended language of the situation calcu ossible interpretations of the predicate and function sym-

lus to account for knowledge and standard names. We theh . :
X . X ols (over the domain of standard names). Different ap-
provide a small set of axioms which are sound and com-

plete for the semantics and which, taken by themselves, C%)hcatlons, of course, will use different subsets as part of

: . . the givene, but the complement of is still relevant be-
be thought of as foundational axioms for an extended situ- : :
ation calculus. cause of only knowing. We need the samed®L with

respect tak, but more: we need to allow for all possible
The language aflO L will be a dialect of the second-order interpretations of the predicate and function symladter
predicate calculus, like the situation calculus introduced irall possible sequences of actioriEhat is, to ensure that it
Section 2. Again we have three sorts: ordinary objects, ads possible to know the initial value of a term or formula
tions and situations. The constéf, the functiondo, and  without also necessarily knowing its value in successor sit-
special predicatPosga, s) are exactly as before. We will uations, it is necessary that there be initial situations that
however require two new special predicat8f{a,s) and  agree on the values of all terms and formulas but that have



successors that disagree on these valuBsus instead of variable maps maps object, action, and situation variables
defining a world as a function from primitive expressions tointo standard names for objects and actions, and.tfaC
suitable values as we did A, we define aworld ildOL  situations, respectively. In addition,assigns relations of
as a function from primitive expressions and sequences ahe appropriate tygeo relational variables. For a given
actions to these values. We then define a situation as a paif denotes the variable map which is likeexcept that: is
consisting of a world and a sequence of actions. mapped intw.

Worlds and situations The meaning of terms

More precisely, the standard names for objects, as aMVe write| - |ar,, for the denotation of terms with respect to
ready mentioned, are ground terms involving jasand  an action modeM = (e, w) and a variable map. Then
sucg the standard names for actions are terms of the form
A(ty,...,t,) whereA is an action function and eachis a 0|ar,, = 0;
standard name; there are no standard names for situations

. . o . ) ' |sucdt = sucd|t ;
since there will be more situations than expressions in the [suce?)lar. Qltlar)

language. The primitive ternf® are object terms of the | (Fts) [ = w'[f (Hlarw), @), wheref (£,1,) is
form f(t,...,t,) Where each; is a standard name, and functional fluent, andts |, = (w',@);
f(z1,...,7,,s) is a functional fluent. The primitive for- |A(®)|m,w = A(#]ar,0), whereA(#) is an action term;
mulasP are atoms of the form'(¢4, . . ., t,) where each; _ .

: : . |Solar,y = (w,€);

is a standard name, ad{z1, ..., z,, s) is a relational flu-

ent, orF is one ofPossor SF. Note that except faPossand |do(ta, ts)|m, = (w',@-a), wherelt,|n,, = (w',d),
SF, primitive expressions are all fluents with the situation andlta|ar, = a;

argument suppressed. |z|am,» = v(z), wherez is any variable, including

Let Act* be the set of all sequences of standard names for predicate variables.

actions including the empty sequence )
Observe that in a modéll = (e, w), the only way to refer

Definition 4.1: An A®L world w is a function: to a situation that does not use the given warlds to use
a situation variable.
w: (P xAct) U (T xAct) — {0,1}UN

such that The meaning of formulas

We write M,v = « to mean formulax comes out true in
w(p,d] € {0,1} forallp € P. action modelM/ and variable map:
wlt,a] € Nforallt € T.
M,v |= F(i,t,) iff w'[F(|f|p.),d) = 1, where
Let )V denote the set of allOL worlds. F(t,t5) is a relational fluent, and, s, = (w',d@);
M,v = X (1) iff ||, € v(X), whereX is a

Definition 4.2: An AOL situationis a pair(w, @), where relational variable:

w € W anda € Act*. An initial situation is one where

7 =e. M, v |= Posgt,, t,) iff w'[Posg|ta|r,.),d] = 1,
where|t, |y, = (w', @),

Definition 4.3: An action model\/ is a pair(e, w), where M, v |= SKtq, ts) iff w'[SK|ta|nr,y),a] =1,

w € W ande CW. wherelts|ar, = (W', @);

As in OL, w is taken to specify the actual world, aad M,v = Ko(ts) iff [ts|a, = (w',€) andw' € ¢;
specifies the epistemic state as those worlds an agent has M, v |=t1 =t iff |[t1|a0 = [t2|a0;

not yet rulgd out as being the gctual one. As we \_NiII See N,y k= —aiff M,vlta;

below, a situation terns will be interpreted semantically ,

as anAOL situation(w, @), consisting of a world and a M,vEaVgiff M,vEaorM,v =5
sequence of actions that have happened so far. A fluent M,v = Vz.«iff M,v? = afor all o of the appro-
p(s) will be considered true ifv[p, @ = 1. priate sort (object, action, situation, relation).

Because situations cannot have standard names, to interpretThe type determines the arity and the sort of each argument

formulas with variables, we need to use variable maps. Af the relations the variable ranges over. Since, in our @lesn

- the type will always be obvious from the context, we leavs thi
’In some applications this generality will not be required. information implicit.



For sentences we sometimes writd/ | « instead of Vs1. R(s1, 1)
M,v = a. Va, s1. R(s1,d0(a, s1))

Validity is defined in the usual way as truth in all models, Vs1, 52, 83. R(s1,52) A R(s2,53) D Rs1,53)

that is, a formulay is valid in AOL (FaoL «) iff for all
action modelsV = (e, w) and variable maps, M,v
Q.

Then the only remaining job is to characterize the set of
initial situations. Looking back at the semantics4® L,
recall that for a correct interpretation of only knowing, we
had to insist that there be an initial situation correspond-
ing to any conceivable outcome of the fluents initially and

The first three axioms tell us that the set of objects is iso&fte€r any sequence of actions. Given the power of second-
morphic to the se of standard object names. Indeed the ©rder logic, it is possible to precisely capture this property
formulation resembles the usual second-order definition ofXiomatically®

the natural numbers, that is, the following three axioms dorg handle sequences of actions, we begin by introducing an
no more than give us domain closure and unique names axpbreviation”(s', s) intended to say that' ands involve

4.2 An axiomatization

ioms for objects. the same sequence of actions from perhaps different initial
states:
F1l. Vz.sucdr) #0 C(s',s) =VR[... D R(s', 5)]
F2: Vz,y.sucdz) =sucdy) Dx =y . : .
F3. VP.[P(0) AVz(P(z) S P(sucdz)))] O where the ellipsis stands for the conjunction of
Vz.P(z)

Vs1,s9. Init(s1) A Init(s2) D R(s1, s2)
Next we need to say that the actions consist precisely of the ~ Va, s1, s2. R(s1,52) D R(do(a, s1),do(a, s2)).
primitive actions and that they are all distinct. This can be
done in the usual way. With this in place, we can use situationwhereSy < s as
a canonical way of talking about sequences of actions.
F4: Domain closure and unique names

. . Suppose that our language contains relational fluents
axioms for actions.

Fi,..., F,.X0 Then we can write our final axiom as:

NeitherSFnor Possneed special axioms since their mean-
ing is left completely user-defined. The only foundational
axiom concerning<, is one saying that it only applies to
initial situations. To be precise, let

F8: Vs.Init(s) =VQI[... D Q(s)]
where the ellipsis stands for

Init(s') = =3a, s.s" = do(a, s). VP, ..., Pyi2,35". Q(s") A Init(s") A
VT, .., Tn, t,u, a.
s' <tASo 2uAC(t,u) D
Fl(fl,t) = Pl(fl,u) AN
Fo(Zn,t) = Pp(Zn,u) A

. . . . Posga,t) = P,y1(a,u) A
Finally we have the job of characterizing the set of situa- SHa, 1) = Pois(a, )

tions. As in the original dialect of the situation calculus, we

first want to say that any non-initial situation is the result : . . .
y y To see how this axiom works, imagine that 1, Fi (z, s)

of applyingdoto an initial situation. We use variants of the . :
previous axioms: is a unary fluent, and ignofossandSF. Then, the set of

initial situations is the least set such that for every mapping
from sequences of actions (here represented by:}he
sets of objects, there is an initial situatiehsuch thatF;
holds on exactly that set of objects in the situatiohat
results from doing those actions startingsin

Then we have

F5: Init(So) A Vs.Ko(s) D Init(s)

F6: Val,ag,sl,SQ. dO(al,Sl) = dO(ag,Sg) D
(a1 = a2 A S1 = 82).
F7. VP. (Vs,s'.Init(s) As < s’ D P(s") D

Vs.P(s)
®We are indebted to Fangzhen Lin who pointed this out to us.
where we have 10Recall that apart from the special predicafés, Possand
SF, our language has only finitely many relational and funatlon
s X8 =VR[...D R(s,s")] fluents. To make things simple, we omit functional fluents €eom

pletely from this axiom. They require functional variableghe
with the ellipsis standing for the conjunction of language.



These are all the axioms we need, and we will refer to thento ensure that the precondition appliesStoand its succes-
collectively as AX from now on, and we l&tX |= a stand  sors. Itis then a separate step to assert that the precondition
for “« is logically implied by AX” in ordinary (second- is known, if desired. To do so, the user would write
order) logic.

Vs,s'. Ko(s) A s < s' D[PosgA, s') = da(s')].
Itis not hard to show that the axioms are sound with respect
to the semantics ol L. Moreover, action models are, in This ensures that the axiom is considered to hold in any sit-
a sense, the only models of the axioms. More preciselyyation initially considered possible and all of its successors.
one can show that for any arbitrary Tarskian mofl@f  Similar considerations apply to writing successor state ax-
the axioms there is an action modgl such thatl and A/ ioms. In general, we write initial state axioms, precondi-
agree on all sentences. The key property is that the objectipn axioms, and successor state axioms all parameterized
actions, and situations of an arbitrary model of AX are iso-by the initial situation we wish to consider, and only quan-
morphic to the objects, actions, and situations, respectivelyify over successors of that initial situation. We will see an
of action models. With that we obtain the main result. example shortly.

Given a specification of what is known iy, the predicates
SFandPossare then used to characterize what is known in
successor situations. Note that the logic itself imposes no
constraints on eitheBF or Poss it is up to the user in an

Theorem 4.4: For any«, =po o iff AX = .1t

Given this result one may wonder what the point of intro-

ducing a non-standard semantics $6©OL is in the first application to write appropriate axioms. FBoss these

place, that is, why not just use the axioms? Perhaps thgre the precondition axioms; f&F, the user must write

isr::joenp%isdt:r:?;:gf)rc])trltr:c:?xgrcclja];itr:ethsaetntqhaengiisolri;haigzrI:(ejr:ade% nsed fluent axiomane for each action type, as discussed
reasonable. The fact that the semantics generalizes that © [Lev96]. The idea is thaBHa, 5) gives the condition

: . n ion in situations. we might have, for
OL in a natural way adds further credence to that claim. ziafne;;jleby action in situations. So we might have, fo

5 Knowledge and Action SHsonar, s) = (wdisf(s) < 10)

o ) ) as a way of saying that thenar sensing action in situ-
Before going into details about the connection betweeniion s tells the robot whether or not the distance to the
knowledge and action itlOL, a few words are in order || in s is less than 10 units. In case the actiomas
about how we should envisage usiA@L to model a par- g sensing component (as in simple physical actions, like

ticular domain of interest. moving), the axiom should state tHa{a, s) is identically

Instead of simply writing a basic action theory as presented RUE. Having definedSF as a predicate, we essentially

ing actions, the user must now worry about the other initial"®Sult of a sense action to be the value of a term such as a
situations. sonar measuring the actual distance to the wall, we can do

) - ) ~so by simply redefinin@Fas a function and treatintRUE
Consider, for example, a precondition axiom for an actiongnqraLse as special values returned BF. To keep the

A. In .the ordinary situation calculus, the user would write presentation simple, however, we ignore this issue here.
an axiom of the form _ _
With these terms, we can now defii&s’, s) as an abbre-

Vs. PoS$A, s) = ¢a(s). viation for a formula that characterizes when a situation
is accessible from an arbitrary situatien?

whereg,, is some formula does not menti®oss The in-
tent of the quantification (given the previous foundational
axioms) was for this to hold it5, and all its successors.
But in AOL, the quantification oveall situations is much
too strong. By virtue of8 there will be initial situations
wherePossand ¢, have different truth values, and so the
axiom as it stands is false! To achieve the desired effect,
the user should write instead

K(s',s) =VR]...D R(s', )]

where the ellipsis stands for the conjunction of

Vs1,s9. Init(s1) A Init(s2) A Ko(s2) D R(s2, 1)
Ya, s1, 2. R(s2,s1) A (SHa, s2) = SHa, s1)) A
(Posga, s2) = Posga, s1)) D
R(dO(a, 52)7 dO(a, 51))'

Vs'. Sp < s D [PosgA,s') = ¢, (s')]. 2We could have definet, as well as< andC, as a predicate
- in the language as is usually done, but we have chosen not to
For reasons of space proofs are generally omitted and desimply because we wanted to keep the formal apparatus ak smal
ferred to a longer version of this paper [LL98]. as possible.



Space precludes a detailed analysis of this definition, ex- Vs'.s <s' D

cept to claim that it satisfies the successor state axiom for a Va. wdist(do(a, s')) = z =
predicatek proposed in [SL93] as a solution to the frame a = adv A z = wdist(s’) — 1
problem for knowledge and later reformulated in [Lev96], V a=revAz=wdists') + 1
whose notation we follow here: V z =wdist(s') A a # adv A a # rev
Theorem 5.1: The following is a theorem o4O L: The formulaCloses) in the above is an abbreviation:
Va, S, s'. POS$a, 5) ) K(Sla dO(a, 5)) = C|OS€(8) = WdISt(S) < 10.

3s". s’ = do(a,s") A K(s",s) A Posga, s") ) N )

A [SHa, s) = SHa, s")]. Now we are ready to consider some specifics having to do

with what is true initially. Assume the robot is located ini-
Given K, knowledge can then be defined in a way simi-tially 6 units away from the wall irty. For simplicity, we
lar to possible-world semantics [Kri63, Hin62, Moo85a] asalso assume that all of the axioms above are trug jrthat
truth in all accessible situations. Similarly, only knowing they are also known iy, and this is all that is known. So
a sentence at a situations means that all and only those let T’y be the conjunction of the axioms in AX and:
situations with the same action history aare accessible. .
We denote the two forms of knowledg?e/ using the following Wdist(So) =6 A ALL(S0) A OKnows(ALL(now), So)
macros, where. may contain the special situation symbol With these in hand® we are ready to establish some prop-
now. Leta?°" refer toa with all occurrences ofiow re-  erties of the relationship between knowledge and action.
placed bys. Then

1. After reading its sonar sensor, the robot knows that it

Knows(a, s) = Vs'K(s',5) D a’¥ is close to the wall:
OKnows(a, s) = Vs'C(s', 5) O (K(s',5) = ag™). I’y = Knows(Close do(sonar, Sp))
For example, Knows(Broken(z, now),S;) stands for The proof is as follows: Suppose = T'o. Further
VsK(s,So) D Broken(z,s) and should be read as “the suppose thad/, v |= K (s, do(sonar, Sp)). By Theo-
agent knows irS,, thatz is (now) broken.” rem 5.1, we get that
M, v |= 3s'.s = do(sonar, s)
6 An Example A Ky(s") A [Closgs') = Closd.Sy)].

) ) SinceM [ Clos€.Sy) and
We now turn to an example showing how knowing and only

knowing can be combined with actions 40O L. M |= Vs.Ko(s) O (wdist(do(sonar, 5)) = wdist(s))

Imagine a robot that lives in a 1-dimensional world, and by virtue of ', we get thatd/, v = Closgs). Thus,
that can move towards or away from a fixed wall. Therobot ~ we have that

also has a sonar sensor that tells it when it gets too close to B

the wall, say, less than 10 units away. So we might imag- M | Vs.K(s, dosonar, 5y)) 5 Closs).

ine three actionsadv andrev which move the robot one 5 Before reading its sensor, however, the robot does not

unit towards and away from the wall, and@nar sensing know if it is close to the wall:
action. We have a single fluentdist(s), which gives the
actual distance from the robot to the wall in situation Ty = ~Knows(Closg Sp)

We begin by defining precondition axioms, sensed fluent ~ The proof is as follows: Suppos® = I'p. Letw’

axioms and successor state axioms, all parameterized by be the element oV which is just likew except that

some initial situations (as discussed in Section 5). Let w'[wdist ] = 10. Then, wherv(s) = (v',¢€), we

ALL(s) stand for the conjunction of these formulas: have that)/,v |= —Closgs) and M,v = ALL(s).
From the latter and the fact that

Vs'.s < s' D Posgadv, s') = wdist(s") > 0 M = Vs.Init(s) D (Ko(s) = ALL(s)),
Vs'.s < s' D Posgrev, s') = TRUE
Vs'.s < s' D Posgsonar, s') = TRUE
Vs'.s < s’ D SHadv, s’) = TRUE

Bstrictly speaking, we also need axioms for basic arithmetic

's=<sd "= Rl ; S
Vs'.s < 8’ > SHrev, s') = TRUE as needed by the example. For simplicity we ignore this cempl
Vs'.s < s' D SKsonar, s’) = Closds') cation here.

it follows that M, v |= Ky(s). Consequently,
M |= -Vs.K(s,So) D Closds).



3. After reading its sensor and moving closer to the wall, 5. As for knowledge of the future, we have that the robot
the robot continues to know that the wall is close: knows initially that after it reads its sonar, it will know
whether or not it is close to the wall:
I’y |= Knows(Close do(adv, do(sonar, Sy)))
Iy = Knows([Knows(Close do(sonar, now)) V

The proof is as follows: Suppose |= Ty. Further Knows(—Closg do(sonar, now))], So)
suppose thal/,v = K(s,do(adv, do(sonar, Sp))).
By Theorem 5.1, we get that The proof is as follows: Suppose |= I'y. Suppose
further thatM,v = Ko(s). There are two cases to
M,v |= 3s'.s = do(adv, do(sonar, s")) A Ko(s') consider: suppose thaf, v = Closd€s). Then, by an
A [Clos€s’) = Clos€.Sy)]. argument similar to the one for (1) above, we get
SinceM [ Clos€S,) and M, v |= Knows(Close do(sonar, s));
M EVs.Ky(s) D if on the other hand), v |= —Clos€s), by a similar
(wdist{do(adv, do(sonar, s))) = wdist(s) — 1) argument we get that
by virtue of 'y, we get thatM, v |= Closd€s). Thus, M, v |= Knows(—Closeg do(sonar, s)).

we have that
Either way, we have that
M = Vs.K (s,do(adv, do(sonar, Sp))) D
Closds). M EVs. Ko(s) D [Knows(Close do(sonar, s)) V
Knows(—Close do(sonar, s))]

4. After reading its sensor and moving away from the

wall, the robot is still close to the wall, but no longer 6. As for knowledge of the past, we have for example

knows it: that after moving closer to the wall, the robot knows
that it was at least 1 unit away just before doing that

I’y |= Clos€do(rev, do(sonar, Sp))) A action:

—Knows(Close do(rev, do(sonar, Sp))).
Ty = Knows(3s'[now = do(adv, s') A

The proof is as follows: Suppos¥ = I'y. To show wdist(s') > 0], do(adv, Sp))
that M = Clos€do(rev, do(sonar, Sp))), we need
only observe that becauselof, we have that The proof is as follows: Suppose = I'y. Suppose
_ further thatM, v |= K (s, do(adv, Sp)). Then by The-
M |= wdist(do(rev, do(sonar, S9))) = 7. orem 5.1, we have that
To show that M,v = 3s'.s = do(adv, s') A Ko(s') A Posgs').
M = —Knows(Closg do(rev, do(sonar, Sp))), FromT, we get that
we begin by lettingw’ be the element oV this is M = Vs.Ky(s) D [Posgadv, s) = (wdist(s) > 0)].
just like w except that'[wdist €] = 9. Then, when
v(s) = (w',¢), we have thall/, v |= Closgs), and so Thus,M,v E 3s'.s = do(adv, s') A (wdist(s") > 0).
because of', we get thatM,v | Ky(s). It follows So we have that
that
M E Vs.K(s,do(adv, Sp)) D
M, v [= K(do(rev, do(sonar, ), [3s'. s = do(adv, s') A (wdist(s') > 0)].
do(rev, do(sonar, Sp)))
and moreover, that 7 EmbeddingOL in AOL
M, v = wdistdo(rev, do(sonar, 5))) = 10. In this section we show that O L is a faithful extension of
OL in the following sense. It is possible to translate every
Thus, we have that sentencex of OL into a sentence([s] of AOL, wheres is
any situation, such that is valid in OL iff a[Sy] is a log-
M, v = 3s.K (s, do(rev, do(sonar, Sp))) A ical consequence of the axioms. The following translation

—Closds). is essentially the same as the one proposed in [Lak96].



Definition 7.1:  Given any term or formula in OL, the
corresponding term or formuld[s] in AOL, wheres is
any situation term, is defined as follows.

First, we let* denote the obvious translation from the stan-
dard names aP £ into those ofAO L involving 0 andsucc
For example?3* = sucdsucgsucg0))).

x[s] = x if z is a variable

n[s] = n* if n is a standard name

f(tla e ,tn)[s] = f(tl[s], s ,tn[s]a 8)
if £(f)isaterminOL

F(tl, s ,tn)[s] = F(tl[s]a s 7tn[s], S)
if P(t) is an atomic formula i £

t1 =ta)[s] = (ta[s] = t2[s])

—a)ls] = ~als]

oV B)ls] = afs] v 413

Vza)[s] = Vza[s]

Koa)[s] = Knows(a[now], s)

Oa)[s] = OKnows(a[now], s)

(
(
(
(
(
(

For example, letv = OP(a) D -3z KP(x). Then

a[So] = [VsC(s,50) D (K(s,50) = P(a(s),s))] O
-3z(VsK (s, So) D P(x,s)).

agree withw; andw, on F into two nonempty sets and as-
sign them tce’ ande’, respectively. Such a split is always
possible and it can easily be arranged based on the truth
value of a predicate not occurring jf (such asos9.

Similarly, one can also show the converse, namely that for
every action model/ there is an equivalerd® L modeli/’
such thatM' satisfies iff M satisfiesy[So].

This construction, together with the fact that validity in
AOL is completely characterized by the axioms AX (The-
orem 4.4), then leads to the desired embedding 6f

Theorem 7.2: Leta be a sentence i®L. Thena is valid
in OL iff a[Sp] is a logical consequence 8iX.

This result then provides us, for the first time, with an ax-
iomatic characterization of the valid sentencegaf.

The careful reader will have noticed that Axidi8 needs

to vary depending omn, sinceF8 must mention explicitly
at least all those fluents occurringadn In the full paper we
will show that it is possible to have a fixed axiom system
for all sentences oL by encoding the infinitely many
predicate and function symbols 6f£ using only finitely
many fluents indOL.

Note that we tacitly assume that for each predicate and\part from this technical issue, it should be noted that

function symbol inx there is a corresponding fluent of the
same name iAOL. Since we are applying the transla-

the price of the axiomatization @PL is high in that we
need to appeal to second-order logic. Whether there is a

tion only to sentences, one at a time, there is no problem ifirst-order axiom system fo©L remains an open ques-

making this assumptidh

The embedding 0O L into AOL is established, roughly,
by proving that for every) £ modelM there is an “equiv-
alent” action modelM’, and vice versa. Here “equivalent”
means that\/ satisfies iff M’ satisfiesa[Sy] for any «
mentioning only fluents iIMOL. We denote the set of all
fluents of AOL asF. (Note thatPossis not part ofF.)

Let us consider informally how to construct, given @2
model M = (e,w), an equivalent action modéll’ =
(e',w'). First, notice that the truth value af[Sy] is de-
termined by initial situations only. This means that, when
mappingM into M’, we can simply ignore all actions and
non-initial situations. The mapping frod/ to M’ then,
roughly, amounts to the following. L&tdenote the com-
plement ofe. Then for eachw* € e (€) make sure that’
(¢/) contains all thosed© £ worldsw’ whose initial situa-
tions agree withv* on F. There is only one complication.
It may be the case that there @& worldsw,; andw, such
thatw; € e andw, € € and both agree off. In this case
we need to split thedOL worlds whose initial situations

There would be a problem if we were to apply the translation
to infinite sets of sentences, singg)L is restricted to finitely
many fluents, whileD L is not. We will have a bit more to say
about how to deal with this mismatch at the end of this section

tion. Note, however, that Halpern and Lakemeyer [HL95]
have recently shown that, even if one exists, it cannot be
recursive!® So chances are that we may have to settle for
second-order.

8 Comparison with Lakemeyer's OLS:

As already mentioned, Lakemeyer [Lak96] has also pro-
posed an amalgamation of only knowing and the situation
calculus. There are obvious differences between his logic
OLS and AOL. For one,OLS considers real knowledge
rather than belief, that is, whatever is believedJd.sS is
also true inSy. For another, while? LS has a formal se-
mantics, there is no axiomatization. In addition, there are
deeper differences as well, which give rise to anomalies
when reasoning about only knowing@.S which are not
present inAOL.

To start with, only knowing irODLS does have reasonable
properties quite similar todOL if it is confined to sen-
tences of the forndKnows(a(now), t;), wherea contains

5There is a trivial nonrecursive “axiom system”, which is sim
ply the set of all valid sentences 6fC. The interesting question,
of course, is whether there is a system with a finite set ofraxio
schemas.



no situation terms other tharow andt is a closed situa- Finally, as a side-benefit we obtained a complete axiomati-
tion term. Intuitively, here we are looking only at what is zation ofOL.

known about one particular situation, which is very S|m|IarAO£ should be understood as a specification of only

tq Oﬁ. except that we can now ask queries about success?(rnowing within a theory of action. We do not expet®© L
situations as well.

to be implemented in its full generality. On the other hand,
Problems arise when we allow arbitrary sentences as argmote that the second-order situation calculus forms the ba-
ments of only knowing irOLS, in particular those where sis of the high-level control language GOLOG [LRL97],
we talk about more than one situation as in precondition axwhich is used in real robots as in [BCF98]. We believe that
ioms. The difficulty is thatD LS models have, in a sense, AOL has a role to play in future extensions of GOLOG.

far fewer situations than there are AOL. In particular,

Other future work includes extensions. 4L itself such

in OLS there are only as many initial situations as thereas a generalization to the multi-agent case.

are different valuations of the fluents (with the situation ar-

gument suppressed). This means that any two distinct iniacknowledgements

tial situations inOLS must differ in the value of at least

one primitive expression. In other words, it is impossibleWe are indebted to Fangzhen Lin for his idea how to ax-
to represent within at®LS model two different courses iomatically characterize the set of all situations in second-
of events which have completely identical initial situations order logic.

and only diverge after some actions have been performed.
In addition, Possis handled as a function from situations
and actions intd0, 1}, which further restricts the range of
possibilities. For example, there af®.S models where

no actions are possible anywhere. [BCF98]

Without going into any further detail of the formalism, let
us consider again the example of Section 6. It is possi-
ble to construct aD LS model M such that)M satisfies

ALL(S,) A wdistSy) = 6, M does not satishALL(s)  [dVS94]
for any other initial situations (for example, by choos-

ing Posgrev, s) to be false), andS, is the only situa-

tion epistemically accessible frosy. Then M satisfies
0Knows(ALL(now), Sp) since Sy is the only initial sit- [HL95]

uation whereALL holds. In addition,M also satisfies
Knows(Closg Sy) since the distance to the wall is 6 8
and there are no other epistemic alternatives. This is clearly
unintuitive since the robot has neither been told what its po-

sition is nor has it read its sensors. Moreover, the probIeanMgz]
arises precisely because there are not enough situations. 1n
particular, there are no initial situations whekeL holds

and the distance to the wall is greater than 9.

We believe thatdOL fixes the problems o LS in just

the right way. [Hin62]

9 Conclusion
[HC68]

In summary, we have introduced the logh® L which
amalgamates both the situation calculus and the logic of

only knowingOL. Besides a semantics we have provided[kap71]
a sound and complete set of axiomd4OL is compatible
with earlier work on knowledge and action and improves
on a previous approach to only knowing in the situation
calculus. By way of examples we demonstrated théx,
allows us to make distinctions which are intuitive and, as
far as we know, cannot be handled by other formalisms.

[Kri63]

References

Burgard, W., Cremers, A. B., Fox, D., Hahnel,
D., Lakemeyer, G., Schulz, D., Steiner, W.,
Thrun, S., The Interactive Museum Tour-Guide
Robot, to appearAAAI-98

del Val, A. and Shoham, Y., A Unified View of
Belief Revision and Updatelournal of Logic
and Computatiorspecial Issue on Actions and
Processegt, 1994, pp. 797-810.

Halpern, J. Y. and Lakemeyer, G., Levesque’s
Axiomatization of Only Knowing is Incom-
plete. Artificial Intelligence 74(2), 1995, pp.
381-387.

Halpern, J. Y. and Moses, Y. O., A Guide to
Completeness and Complexity for Modal Log-
ics of Knowledge and BeliefArtificial Intelli-
genceb54, 1992, pp. 319-379.

Hintikka, J.,Knowledge and Belief: An Intro-
duction to the Logic of the Two NotiorSornell
University Press, 1962.

Hughes, G. E. and Cresswell, M. &n Intro-
duction to Modal LogicMethuen and Company
Ltd., London, England, 1968.

Kaplan, D., Quantifying In, in L. Linsky (ed.),
Reference and ModalityOxford University
Press, Oxford, 1971.

Kripke, S. A., Semantical considerations on
modal logic. Acta Philosophica Fennicd.,
1963, pp. 83-94.



[Lak95] A Logical Account of Relevance&lroc. of the [Rei93]
14th International Joint Conference on Arti-
ficial Intelligence (IJCAI-95) Morgan Kauf-

mann, 1995, pp. 853-859.
[SL93]

[Lak96] Lakemeyer, G., Only Knowing in the Situation
Calculus,Proc. of the Fifth International Con-
ference on Principles of Knowledge Represen-
tation and Reasoningiorgan Kaufmann, San
Francisco, 1996, pp. 14-25.

[LL98] Lakemeyer, G. and Levesque, H. .40L: a
logic of acting, sensing, knowing, and only
knowing. In preparation.

[LevB4] Levesque, H. J., Foundations of a Functional
Approach to Knowledge Representatidirti-
ficial Intelligence 23, 1984, pp. 155-212.

[LevO0] Levesque, H. J., All | Know: A Study in Au-
toepistemic LogicAtrtificial Intelligence North
Holland,42, 1990, pp. 263-3009.

[Lev96] Levesque, H. J., What is Planning in the Pres-
ence of Sensing. AAAI-96, AAAI Press, 1996.

[LL9X] Levesque, H. J. and Lakemeyer, Ghe Logic
of Knowledge Base#/1onograph, forthcoming.

[LRL97] H.J.Levesque, R. Reiter, Y. Lespérance, F. Lin,
and R. B. Scherl. GOLOG: A logic program-
ming language for dynamic domaingournal
of Logic Programming31, 59-84, 1997.

[LR94] Lin, F. and Reiter, R., State constraints revis-
ited. J. of Logic and Computatiqispecial issue
on actions and processel 1994, pp. 665-678.

[McC63] McCarthy, J.,Situations, Actions and Causal
Laws. Technical Report, Stanford University,
1963. Also in M. Minsky (ed.),Semantic In-
formation ProcessingMIT Press, Cambridge,
MA, 1968, pp. 410-417.

[Moo85a] Moore, R. C., A Formal Theory of Knowledge
and Action. In J. R. Hobbs and R. C. Moore
(eds.), Formal Theories of the Commonsense
World, Ablex, Norwood, NJ, 1985, pp. 319—-
358.

[Moo85b] Moore, R. C., Semantical Considerations on
Nonmonotonic LogicAtrtificial Intelligence25,
1985, pp. 75-94.

[Rei91] Reiter, R., The Frame Problem in the Situation
Calculus: A simple Solution (sometimes) and a
Completeness Result for Goal Regression. In V.
Lifshitz (ed.), Artificial Intelligence and Math-
ematical Theory of ComputatipnAcademic
Press, 1991, pp. 359-380.

Reiter, R., Proving Properties of States in the
Situation CalculusArtificial Intelligence 64,
1993, pp. 337-351.

Scherl, R. and Levesque, H. J., The Frame
Problem and Knowledge Producing Actions.
in Proc. of the National Conference on Atrtifi-
cial Intelligence (AAAI-93)AAAI Press, 1993,
689—695.



