
Query Evaluation and Progression inAOL Knowledge Bases
Gerhard Lakemeyer

Department of Computer Science
Aachen University of Technology

D-52056 Aachen
Germany

gerhard@cs.rwth-aachen.de

Hector J. Levesque
Department of Computer Science

University of Toronto
Toronto, Ontario
Canada M5S 3A6

hector@cs.toronto.edu

Abstract

Recently Lakemeyer and Levesque proposed the
logicAOL, which amalgamates both the situation
calculus and Levesque’s logic of only knowing.
While very expressive the practical relevance of the
formalism is unclear because it heavily relies on
second-order logic. In this paper we demonstrate
that the picture is not as bleak as it may seem. In
particular, we show that for large classes ofAOL
knowledge bases and queries, including epistemic
ones, query evaluation requires first-order reason-
ing only. We also provide a simple semantic defini-
tion of progressing a knowledge base. For a partic-
ular class of knowledge bases, adapted from earlier
results by Lin and Reiter, we show that progression
is first-order representable and easy to compute.

1 Introduction
A knowledge-based agent in a dynamic environment needs
powerful facilities to query its knowledge base. In par-
ticular, it does not suffice to only ask what the world is
like after any number of actions have occurred. As has
been argued both in the case of static knowledge bases[6;
9] and in the context of reasoning about action[15; 17;
4], the query language should be able to explicitly refer to
the agent’sknowledge1 in order to make distinctions such as
knowing that versus knowing who[2] which otherwise can-
not be made. This is best illustrated by an example.

Suppose we have a simple, stationary mail sorting robot
whose task it is to pick up only the red letters in front of it.
Initially the robot has no letters and it is told that there are two
lettersC andD and that at least one of them is red. (Let us
also assume that, unbeknownst to the robot, both letters are
red.) Then the robot should be able to answer the following
queries:

1. Is there a red letter? Answer:yes.

2. Do youknowwhich one is red? Answer:no.

3. Assume the robot now senses the colour ofC.
Do you now know of a particular letter that it is red?1While we freely use the term knowledge, we really mean belief,

but the difference is not important for the purposes of this paper.

Answer: yes. (Note that even ifC were not red, the
answer would still beyes.)

4. The robot now picks upC.
Are you holding all the red letters? Answer:unknown.
(For all the robot knows,D could be red or not.)

5. Are you holding all the known red letters? Answer:yes.
(C is the only letter known to be red.)

Recently, Lakemeyer and Levesque[4] have proposed the
logic AOL, which amalgamates the situation calculus[14]
and Levesque’s logic of only-knowing[7] and which has the
expressiveness to handle queries such as the above. However,AOL employs heavy second-order machinery to achieve this
and it is not clear how to use the logic in practice other than
for specification purposes. In this paper we show that the pic-
ture is not as bleak as it may seem. In particular, we show
that inAOL the evaluation of queries like those in the exam-
ple requires first-order reasoning only.

Another important issue is knowledge base progression. In
principle, the only information necessary to answer queries
after a number of actions have occurred is the initial knowl-
edge base together with the action sequence and the outcome
of sensing actions. However, for long sequences of actions
this seems hopelessly unrealistic from a computational point
of view. It seems much more sensible to update the knowl-
edge base appropriately after each action has occurred. Lin
and Reiter[13] studied progression in the context of the sit-
uation calculus without sensing and epistemic notions. They
show that progression can only be represented using second-
order logic in general, but they identify interesting classes of
theories where it remains first-order. Here we show how their
approach can be applied to the more expressive language ofAOL both at the semantic and the representational level. In
particular, we adapt Lin and Reiter’s definition of context-free
action theories and show that progression remains first-order
and efficiently computable in correspondingAOL knowl-
edge bases.

The rest of the paper is organized as follows. In Section 2,
we introduce the logicAOL. In Section 3, we define how to
query and progress an agent’s knowledge at an abstract level.
In Section 4, we consider concrete knowledge bases and dis-
cuss the issue of first-order query evaluation and progression
there. The paper ends with some concluding remarks.22Some preliminary ideas about first-order query processing in

2 The LogicAOL
Here we only give a brief introduction to the semantics ofAOL. The reader is referred to[4] for a more detailed ac-
count including a characterization using foundational axioms,
which we omit here. (We also assume a basic familiarity with
the situation calculus.)

The language ofAOL is a dialect of the second-order pred-
icate calculus with equality and has all the primitives of the
situation calculus, and some more. There are three sorts of in-
dividuals: ordinary objects, actions, and situations. For each
sort there is an infinite supply of variables. The situation vari-
ablenowis reserved for special use. As in the situation calcu-
lus, we have the following primitives: the constantS0 denotes
the situation which corresponds to the real world before any
actions have taken place; ifa is an action ands a situation,
thendo(a; s) denotes the situation resulting from doinga ins; the special predicatePoss(a; s) has the intended meaning
thata is executable ins; fluents likeRed(x; s) are relations,
which have ordinary objects as arguments plus a situation ar-
gument in their final position, and are used to express how
the world evolves from situation to situation; there are only
finitely many fluents and action function symbols.

We also require two new special predicates,SF(a; s) andK0(s), normally not present in the situation calculus, which
are used to model sensing and knowledge and will be dis-
cussed in more detail in Section 2.2.

For simplicity, we also make the following restrictions:
there are no constants or functions of the situation sort other
thanS0 anddo; action functions do not take situations as ar-
guments; there are no function symbols of type object; and
all predicates other than those mentioned above are fluents.

The language also includes a set of so-called standard
namesN = f#1;#2; : : :g. The intended use of a standard
name is to uniquely identify an object across all possible in-
terpretations, which is useful when dealing with concepts like
knowing that versus knowing who. Indeed, the semantics as-
sumes a fixed domain of objects and these are isomorphic
with the standard names. (See[6; 9] for more details.)

Atomic formulas are obtained in the usual way from the
above primitives and formulas are built using the connec-
tives :;^, and8. Other connectives like� and9 will be
used as abbreviations in the usual way. We will use the
following conventions: let~a = a1 � a2 � : : : � an be a se-
quence of actions ands a situation. Thendo(~a; s) stands for
do(an; do(an�1 : : : ; do(a1; s) : : :)). � denotes the empty se-
quence and we sometimes writedo(�; s) for s. Finally, we
useTRUE as an abbreviation for8x:(x = x) andFALSE for:TRUE.

2.1 Semantics

Rather than appealing to the standard semantics of FOL,AOL comes equipped with a nonstandard semantics derived
from possible-world semantics[3], in particular, the seman-
tics of the logicOL [7], which was developed to specify staticAOL first appeared in[5]. Progression was not handled at all in
that paper.

knowledge bases.3 As in possible-world semantics, the ba-
sic semantic building-block is a world. However, unlike the
static case, a world inAOL determines what is true initially
and after any number of actions have occurred. A situation is
then interpreted simply as a worldw indexed by a sequence
of actions~a. In particular, every world “starts” with an ini-
tial situation where no actions have occurred yet. Besides the
real world, whose initial situation serves as the denotation ofS0, a model inAOL also features a set of worldse. As in
modal logics of knowledge likeOL, e should be understood
as the set of worlds which the agent considers epistemically
possible. In Section 2.2, we will see how, using the special
predicateK0, the worlds ine can be accessed and how this
gives us a way to define knowledge in dynamic domains.

To simplify the semantics, we assume that besides the stan-
dard names for objects there are also standard names for ac-
tions. These are terms of the formA(n1; : : : ; nk) whereA is
an action function and eachni is a standard name of an object.
A primitive formula is an atom of the formF (n1; : : : ; nk)
where eachni is a standard name, andF (x1; : : : ; xk ; s) is
a relational fluent, or of the formPoss(A) or SF(A), whereA is a standard name for an action. The set of all primitive
formulas isP .

Let Act� be the set of all sequences of standard names for
actions including the empty sequence�.
Definition 2.1: A worldw is a function:w : P � Act� �! f0; 1g

LetW denote the set of all worlds.

Definition 2.2: A situation is a pair(w;~a), wherew 2 W
and~a 2 Act�. An initial situation is one where~a = �.
Definition 2.3: An action modelM is a pairhe; wi, wherew 2 W ande � W :w is taken to specify the actual world, ande specifies theepis-
temic stateas those worlds an agent has not yet ruled out as
being the actual one. As we will see below, a situation terms
will be interpreted semantically as a situation(w;~a), consist-
ing of a world and a sequence of actions that have happened
so far. A fluentp(s) will be considered true ifw[p;~a] = 1.

A variable map� is a function that maps object, action,
and situation variables into standard names for objects and ac-
tions, and into situations, respectively. In addition,� assigns
relations of the appropriate type4 to relational variables. For
a given�, �xo denotes the variable map which is like� except
thatx is mapped intoo.
The meaning of terms
We write j � jM;� for the denotation of terms with respect to
an action modelM = he; wi and a variable map�. ThenjnjM;� = n, wheren is a standard name;jA(~t)jM;� = A(j~tjM;�), whereA(~t) is an action term;3The reader who prefers classical logic is referred to[4], where
we provide a second-order axiomatization which is sound andcom-
plete with respect to the nonstandard semantics.4Since the type will always be obvious from the context, we leave
this information implicit.

jS0jM;� = (w; �);jdo(ta; ts)jM;� = (w0;~a � a), wherejtsjM;� = (w0;~a),
andjtajM;� = a;jxjM;� = �(x), wherex is any variable, including pred-
icate variables.

Observe that in a modelM = he; wi, the only way to refer
to a situation that does not use the given worldw is to use a
situation variable.

The meaning of formulas
We writeM; � j= � to mean formula� comes out true in
action modelM and variable map�:M; � j= F (~t; ts) iff w0[F (j~tjM;�);~a] = 1, whereF (~t; ts) is a relational fluent, andjtsjM;� = (w0;~a);M; � j= X(~t) iff j~tjM;� 2 �(X)withX a relational var.;M; � j= Poss(ta; ts) iff w0[Poss(jtajM;�);~a] = 1, wherejtsjM;� = (w0;~a);M; � j= SF(ta; ts) iff w0[SF(jtajM;�);~a] = 1, wherejtsjM;� = (w0;~a);M; � j= K0(ts) iff jtsjM;� = (w0; �) andw0 2 e;M; � j= t1 = t2 iff jt1jM;� = jt2jM;� ;M; � j= :� iff M; �j6=�;M; � j= � ^ � iff M; � j= � andM; � j= �;M; � j= 8x:� iff M; �xo j= � for all o of the appropriate

sort (object, action, situation, relation).

If � does not mentionK0, that is, the truth of� does not
depend one, we also writew; � j= � instead ofM; � j=�. Similarly, if � does not mentionS0 and, hence, does not
depend on the real world, we writee; � j= �. If � mentions
neitherS0 norK0, we simply write� j= �. Also, if � is a
sentence, we omit the variable map and write, for example,M j= �.

Finally, a formula� is valid inAOL if for all action mod-
elsM = he; wi and variable maps�, M; � j= �.

2.2 Knowledge and Action
To determine what is known initially (that is, in situationS0),
we only need to considerK0. More precisely, a sentence
is known initially just in case it holds in all situationss for
whichK0(s) holds. To find out what holds in successor situ-
ations, we use the predicatesSFandPoss. First note that the
logic itself imposes no constraints on eitherSFor Poss; it is
up to the user in an application to write appropriate axioms.
For Poss, these are the precondition axioms, which specify
necessary and sufficient conditions under which an action is
executable. So we might have, for example,

Poss(pickup(x); s) � Letter(x; s)
as a way of saying that the robot is able to pick up only letters.
ForSF, the user must writesensed fluent axioms, one for each
action type, as discussed in[8]. The idea is thatSF(A; s)
gives the condition sensed by actionA in situations. So we
might have, for example,

SF(senseRed(x); s) � Red(x; s)

as a way of saying that thesenseRed action in situations
tells the robot whether or notx is red. In case the actionA
has no sensing component (as in simple physical actions, like
dropping an object), we require as a convention that the axiom
states thatSF(A; s) is identicallyTRUE. Actions without a
sensing component are referred to asordinaryactions.

With these terms, we can now defineK(s0; s) as an abbre-
viation for a formula that characterizes when a situations0 is
accessible from an arbitrary situations:5K(s0; s) := 8R[: : : � R(s0; s)]
where the ellipsis stands for the conjunction of8s1; s2: Init(s1) ^ Init(s2) ^K0(s2) � R(s2; s1)8a; s1; s2: R(s2; s1) ^ (SF(a; s2) � SF(a; s1)) ^(Poss(a; s2) � Poss(a; s1)) �R(do(a; s2); do(a; s1)):
HereInit(s) stands for:9a; s0:s = do(a; s0).

If s is an initial situation, then the situations which areK-
related tos are precisely those initial situationss0 for whichK0(s0) holds. The general picture, after some actions have
occurred, is best reflected by the following theorem, which
shows that our definition yields the successor state axiom for
a predicateK proposed in[17] as a solution to the frame
problem for knowledge.6
Theorem 2.4: [4] . The following sentence is valid:8a; s; s0: Poss(a; s) � K(s0; do(a; s)) �9s00: s0 = do(a; s00) ^K(s00; s) ^ Poss(a; s00)^ [SF(a; s) � SF(a; s00)].

In other words,s0 isK-related todo(a; s) just in case there
is some others00 which isK-related tos and from whichs0
can be reached by doinga. Furthermores ands00 must agree
on the values ofSFandPossfor actiona.

GivenK, knowledge can then be defined in a way similar
to possible-world semantics[3; 1; 15] as truth in all acces-
sible situations. Knowing is then denoted using the follow-
ing macro, where� may contain the special situation vari-
ablenow. Let �nows refer to� with all occurrences ofnow
replaced bys. ThenKnows(�; s) := 8s0K(s0; s) � �nows0

wheres0 is a new variable occurring nowhere else in�.

Note that � itself may containKnows with the un-
derstanding that macro expansion works from the inner-
most occurrence ofKnows to the outside. For example,Knows(:Knows(Red(x;now);now); S0) stands for8sK(s; S0) � (:8s0K(s0; s) � Red(x; s0))
and should be read as “the agent knows inS0 that it does not
know thatx is red.”5We could have definedK as a predicate in the language as is
usually done, but we have chosen not to in order to keep the formal
apparatus as small as possible.6Here we follow the notation from[8].

3 Queries and Progression
In this section, we will consider two related ways of answer-
ing queries inAOL. For our purposes, a query is any for-
mula with a single free situation variable,now. An example
is9xRed(x;now)^:Knows(Red(x;now);now), which asks
whether it isnow the case that there is a red object which is
not known yet. Thenow in this query is intended to refer to
a particular situation, either an initial situation or one that is
the result of a sequence of actions. With this view, it is not
possible to answer queries wrt an action modelM = he; wi
alone, since we also need to specify what sequence of actions
to use.

In our first specification of query answering, we are given
an initial M , and a sequence of actions~a, and we answer
according to what would be known in the situation resulting
from doing~a. In other words, we answer a query� with yes
if according toM , � is known indo(~a,S0):

ASK0[�;M;~a] = (yesif M j= Knows(�; do(~a; S0))
no if M j= Knows(:�; do(~a; S0))
unknownotherwise:

Note the difference betweenKnows(�[now]; do(~a; S0)) as
above, andKnows(�[do(~a;now)]; S0): In the former, we are
asking if� would be known after doing~a; in the latter, we
are asking if it is known initially that� would be true after
doing~a. It is not hard to show that the former is implied by
the latter, but not vice-versa.

While this is a simple form of query answering, note that
it needs to use the worldw in M to decide what is known. If~a consists of a single sensing action likesenseRed(C), then
after doing the sensing, the agent should know whetherC is
red or not. But which one is known is determined byw, which
specifies (viaSF) how sensing will turn out.

There is, however, a different view where we only need the
epistemic statee to answer a query. The idea is that while an
agent performs her actions, her epistemic state gets updated
to reflect the changes caused by those actions. In particular,
a sensing action leads to the removal of worlds which con-
tradict the sensed value. We can defineSUCC[e; w;~a] to be
the epistemic state that results from executing~a starting with
initial stateewith sensing as specified byw, by the following:

1. SUCC[e; w; �] = e.
2. If SUCC[e; w;~a] = e0, thenSUCC[e; w;~a�A] =fw0 jw0 2 e0 and�s(w;~a)s0(w0;~a) j= [SF(A; s) � SF(A; s0)] ^[Poss(A; s) � Poss(A; s0)]g

Now given ane that is equal toSUCC[e0; w0;~a], we can de-
fine a new query operation for any query� which does not
mentionS0:ASK[�; e;~a] =8<: yesif for all w 2 e, e; �now(w;~a) j= �.

no if for all w 2 e, e; �now(w;~a) j= :�.
unknownotherwise:

Restricting ourselves to queries that do not mentionS0 is
necessary since ASK does not carry with it the real world,
which is needed as the denotation ofS0. In fact, mentioningS0 within a query does not make much sense in the first place.

Consider, for example,� = P (S0). Asking whether� is
true is completely independent of any epistemic statee and
depends only on the initial state of the real world.

In order to compare our two notions of ASK, it is necessary
to restrict the class of queries even further. In fact, we restrict
ourselves to queries whose only situation term isnow. In
particular, this has the effect that we cannot ask about other
past or future situations.

Definition 3.1: The interaction languageIL.
Atomic formulas whose only situation term isnow areIL-
formulas. If� and� areIL-formulas, then:�, � ^ �, 8x�,
wherex is an object variable, andKnows(�;now) areIL-
formulas. Nothing else is anIL-formula. From now on, un-
less stated otherwise, aqueryis anIL-formula wherenow is
the only free variable.

An example query inIL is9xRed(x;now) ^ :Knows(Red(x;now);now):
The formula9xRed(x;now)^:Knows(Red(x;now); do(senseRed;now));
on the other hand, is not inIL.

The formulas ofIL are interpreted by first converting them
intoAOL-formulas using the definition ofKnows introduced
in the previous section.

We then have the following relationship between ASK0
and ASK:

Theorem 3.2: For any� 2 IL, e, w and~a,

ASK0[�; he; wi;~a] = ASK[�; SUCC[e; w;~a];~a]:
The theorem can be strengthened considerably as it holds

for many queries outside ofIL as well. In a nutshell, the
only restriction needed is that a query does not refer to what
is knownbeforethe actions~a have occurred. Roughly, this is
becauseSUCC[e; w;~a] knows more about the past thane be-
cause it has fewer worlds thane. However, the formulation of
a broader class of queries for which the theorem holds turns
out to be somewhat awkward.IL, on the other hand, is sim-
ple and intuitive. Moreover, it isIL for which we develop a
first-order query evaluation method in Section 4.2.

3.1 Progression
For ASK to make sense, we needed to assume thate reflected
the epistemic changes that occurred during the execution of~a, as reflected in SUCC. In a different context, Lin and Reiter
(LR) [13] have called the process of updating a knowledge
base of an acting agentprogressionand they studied it in de-
tail in the framework of the standard situation calculus.

One major difference between progression and the SUCC
operation above is that in the former we attempt to forget the
history of actions, and treat the resulting knowledge base as
if it were an initial one.7 Indeed, for many applications, it is
sufficient to maintain information about a single “current” sit-
uation. Our definition of progression below adapts the ideas
of LR to the more expressive language ofAOL. In fact, our7See[12] for a formalization of forgetting.

formulation is somewhat simpler, which is possible because
the semantics assumes a fixed set of worlds. It is also more
general because LR do not deal with sensing.

We can define a progression operatorPROG[e; w;~a] anal-
ogous toSUCC that produces a new epistemic state, but
which loses information about the past. Given worldsw andw0, we say thatw0 agrees withw after ~a if for all ~c andp,w0[p;~a � ~c] = w[p;~a � ~c]. Note thatw andw0 may differ ar-
bitrarily in all situations before the last action of~a has been
performed. Then we definePROG by the following:

1. PROG[e; w; �] = e.
2. If PROG[e; w;~a] = e0, thenPROG[e; w;~a�A] =fw00 j 9w0 2 e0; w0 agrees withw00 after~a�A and�s(w;~a)s0(w0;~a) j= [SF(A; s) � SF(A; s0)] ^[Poss(A; s) � Poss(A; s0)]g

Whene = PROG[e0; w0;~a], we say thate is aprogression
at~a wrt he0; w0i.

The following theorem states that progression is faithful
in that it agrees with the original epistemic state for queries
in IL about what is true after a sequence of actions has oc-
curred.

Theorem 3.3: LetM = he; wi andM~a = he~a; wi, wheree~a is a progression at~a wrt M . Then for all queries� 2 IL,

1. ASK0[�;M;~a � ~c] = ASK0[�;M~a;~a � ~c].
2. ASK0[�;M;~a] = ASK[�; e~a;~a].

Note that in the case of the empty sequence of actions,
ASK0[�;M; �] = ASK[�; e; �] follows immediately.

4 AOL Knowledge Bases
So far, we have only talked about the agent’s knowledge in
the abstract, namely as a set of worlds, which include all pos-
sible ways they could evolve in the future. Let us now turn
to representing the agent’s knowledge symbolically and see
how this connects with the semantic view taken so far.

In the situation calculus an application domain is typically
characterized by the following types of axioms: action pre-
condition axioms, successor state axioms, and axioms de-
scribing the current (often initial) situation. Successor state
axioms were proposed by Reiter as a solution to the frame
problem[16]. When there are sensing actions, there is also
a fourth type calledsensed fluent axiomsspecifying what the
outcome of sensing is.AOL-knowledge bases, as we envisage them, consist of
formulas of these types and they have a special syntactic
form. We call a formulaobjectiveif it does not mention the
predicateK0.

A formula � is calledsimple in ts if � is first-order and
objective,ts is the only situation argument occurring in any
of the predicates, and any variable ints occurs only free
in �. (9x:Red(x; do(A; s)) is simple indo(A; s), whereas9s; x:Red(x; do(A; s)) is not.)

In the following, letA be an action andF a fluent. Let�(~u) denote a formula whose free variables are among the
variables in~u.

Lets � s0 denote that situations0 is a successor ofs, which
is defined as:

s � s0 := 8R[: : : � R(s; s0)]
with the ellipsis standing for the conjunction of8s1: R(s1; s1)8a; s1: R(s1; do(a; s1))8s1; s2; s3: R(s1; s2) ^ R(s2; s3) � R(s1; s3)
Action Precondition Axioms:8s8~x:now � s � [Poss(A(~x); s) � �(~x; s)],8

where�(~x; s) is simple ins.
Sensed Fluent Axioms:8s8~x:now � s � [SF(A(~x); s) � �(~x; s)]

where�(~x; s) is simple ins.
Successor State Axioms:8s8a8~x:now � s � [Poss(a; s) � [F (~x; do(a; s)) ��(~x; a; s)]], where�(~x; a; s) is simple ins.
Current State Axioms:�, where� is simple indo(~a;now).

A knowledge base (at~a) is then a collection of formulasKB = KBcur [KBPoss [KBSF [KBss;
whereKBPoss, KBSF , andKBss contain the action pre-

conditions, sensed fuent axioms, and successor state axioms,
respectively, andKBcur is the set of current state axioms for
a fixed~a. A knowledge base at� is called aninitial knowledge
base.

We define the epistemic state corresponding to a KB as the
set of all worlds satisfying the formulas in KB, wherenow is
interpreted by initial situations. Formally,<[[KB]] = fw j w; �now(w;�) j= KBg:

Defining the epistemic state this way reflects the intuition
that the KB isall the agent knows, hence she cannot rule out
any world compatible with the sentences in KB. (See[4] for
how to formalize “all I know” inAOL.)

4.1 An ExampleKB
Here we consider the mail-sorting robot example in more de-
tail. There are letters of different colours laid out in front of
the robot and its task is to pick up only the red letters. To keep
matters simple, there are only two actions,pickup(x), which
is possible ifx is a letter, andsenseRed(x), which tells the
robot whether the sensed object is red and which is always
possible. There are three fluents,Letter, Red, andHoldRLs.
LetterandRednever change andHoldRLs(x; s) is true if the
robot is holding the red letterx in situations.

We can formalize this by defining appropriate precondition
axioms, sensed fluent axioms and successor state axioms, all
parameterized bynow .

Let ALL(now) stand for the set of these formulas:8In the situation calculus without epistemic concepts,s ranges
over all situations, namely those reachable fromS0. Here we need to
relativize quantification wrtnowbecause there are initial situations
other thanS0.

8s; x:now � s � Poss(pickup(x); s) � Letter(x; s)8s; x:now � s � Poss(senseRed(x); s) � TRUE8s; x:now � s � SF(pickup(x); s) � TRUE8s; x:now � s � SF(senseRed(x); s) � Red(x; s)8s; a; x:now � s � Letter(x; do(a; s)) � Letter(x; s)8s; a; x:now � s � Red(x; do(a; s)) � Red(x; s)8s; a; x:now � s � HoldRLs(x; do(a; s)) �[(a = pickup(x) ^ Red(x; s)) _HoldRLs(x; s)]
Initially, the robot knows that there are at least two lettersC andD and that one of them is red. Hence letKBcur = (Letter(C;now); Letter(D;now);(Red(C;now) _ Red(D;now));8x::HoldRLs(x;now):)
LetKB = ALL(now) [KBcur.
Let the real worldw be any world such thatw j=

ALL(now)nowS0 ^Letter(C; S0)^Red(C; S0)^Letter(D;S0)^
Red(D;S0), that is, the actions indeed behave as the robot ex-
pects them to and there are at least two red lettersC andD.
Finally, letM = h<[[KB]]; wi be our action model.

4.2 First-Order Query Evaluation
By lifting results from Levesque[6; 9], we show that answer-
ing epistemic queries for KB’s like the above requires only
first-order reasoning.

For any formula� simple in do(~a;now) let �# be �
with all occurrences ofdo(~a;now) removed. For example,
Red(C;now)#= Red(C). Let SU denote the set of sentences
expressing the unique names assumption for standard names
and actions, and letj=FOL denote classical first-order logical
implication.

The following definition ofRES[�;KB] shows how to
compute in FOL the known instances of� and representing it
as a first-order equality expression.

Definition 4.1: Let KB = KBcur [KBPoss [KBSF [KBss and� an objective query and letn1; : : : ; nk be all the
standard names occurring in KB and� and letn0 be a name
not occurring in KB or�. ThenRES[�;KB] is defined as:

1. If �# has no free variables, thenRES[�;KB] is
TRUE, if KBcur# [SU j=FOL �#, and
FALSE, otherwise.

2. If x is a free variable in�#, thenRES[�;KB] is((x = n1) ^ RES[�xn1 ;KB]) _ : : :((x = nk) ^ RES[�xnk ;KB]) _((x 6= n1) ^ : : : ^ (x 6= nk) ^ RES[�xn0 ;KB]n0x).
If we consider our example KB, thenRES[Letter(x;now)]

reduces (after simplification) to(x = C) _ (x = D) whereasRES[Red(x;now)] reduces toFALSE because there are no
known red things. The next definition applies RES to all
occurrences ofKnows within a query using a recursive de-
scent denoted byjj � jjKB. The idea is that any occurrence ofKnows(�;now) in a query is replaced by an equality expres-
sion describing the known instances of�.

Definition 4.2:
Given a KB as defined above and an arbitrary query�,jj�jjKB is the objective formula simple innowdefined by

jj�jjKB = �, when� is objective;jj:�jjKB = :jj�jjKB;jj(� ^ �)jjKB = (jj�jjKB ^ jj�jjKB);jj8x�jjKB = 8xjj�jjKB;jjKnows(�; now)jjKB = RES[jj�jjKB;KB]:
Theorem 4.3: LetKB be a knowledge base at~a with current
state axiomsKBcur. ThenASK[�;<[[KB]];~a] = yes iffKBcur# [SU j=FOL jj�jjKB# :

In essence, the theorem says that answering an epistemic
query can be achieved by computing a finite number of first-
order implications. Restricting ourselves to queries inIL is
essential in this case.

To illustrate what this theorem says consider the ex-
ample KB and the query� = 9xRed(x; now) ^:Knows(Red(x;now)). ThenASK[�;<[[KB]];now] = yes
because of the following:RES[Red(x;now);KB] simplifies
to FALSE because there are no known instances of red ob-
jects. Hencejj�jjKB# is equivalent to9xRed(x) ^ :FALSE
and, furthermore,KBcur# [SU j=FOL 9xRed(x).

Being able to reduce query evaluation inAOL to first-
order reasoning under certain restrictions is somewhat analo-
gous to a result by Lin and Reiter[13] for the standard (non-
epistemic) situation calculus. They show that, even though
their foundational axioms for the situation calculus include
a second-order axiom to characterize the set of all situations,
this axiom is not needed when doing temporal projection, that
is, when inferring whether a formula� simple indo(~a; S0)
follows from the domain theory together with the founda-
tional axioms. There are also other examples such as[11]
which show that theories which are inherently second-order
nevertheless have interesting special cases where first-order
reasoning alone suffices.

4.3 Context-Free Knowledge Bases
Lin and Reiter showed that in their framework, progression
is not always first-order definable. We conjecture that the
same is true inAOL, but just as in LR’s case there are
interesting classes of knowledge bases which are not only
first-order representable but where progression is also easily
computable. LR discuss in particular the classes they call
relatively-completeandcontext-freeaction theories. Here we
adapt and extend context-free action theories forAOL and
obtain very similar results. (The same is true for relatively
complete theories, but we omit them for space reasons.)

A fluentF is calledsituation independentif its successor
state axiom has the form8s8a8~x:now � s � [Poss(a; s) �[F (~x; do(a; s)) � F (~x; s)]], that is,F never changes. Oth-
erwiseF is called situation dependent. A formula is called
situation independent if it contains only situation independent
fluents.
Definition 4.4: [Lin and Reiter] A KB iscontext-freeif� KBss consists of successor state axioms of the form8s8a8~x:now � s � [Poss(a; s) � [F (~x; do(a; s)) �+F (~x; a; s) _ (F (~x; s) ^ :�F (~x; a; s))]], where+F (~x; a; s) and�F (~x; a; s) are situation independent.99The idea is that+F describes the conditions which causeF to
be true and�F those which cause it to be false.

� KBcur consists of situation independent formulas and
formulas of the form8~x: � F (~x; do(~a;now)) or8~x: � :F (~x; do(~a;now)), where is a situation in-
dependent formula with free variables in~x andnow.� For every action precondition axiom8s8~x:now � s � [Poss(A(~x); s) � �(~x; s)],�(~x; s) is situation independent.� For every sensed fluent axiom8s8~x:now � s � [SF(A(~x); s) � (~x; s)], (~x; s) is situation independent.

The conditions on the sensed fluent and action precondition
axioms are missing in LR’s definition because they do not
deal with sensing and they do not consider the case where an
agent successfully performs an action even though she does
not know that it is possible. In a sense, finding out that an ac-
tion is possible by doing it can be thought of as a special form
of sensing. Note also thatSFandPossare treated completely
symmetricly in our semantic definition of progression.

Definition 4.5: Let KB = KBcur [KBPoss [KBSF [KBss be a context-free knowledge base at~a, w0 a world,A = Act(~n) an action, and lets1 = do(~a;now) ands2 =
do(~a �A;now). Let the action precondition and sensed fluent
axioms forA be8s8~x:now � s � [Poss(Act(~x); s) � �A(~x; s)] and8s8~x:now � s � [SF(Act(~x); s) � A(~x; s)].
Then letKBA = KBAcur [KBPoss [KBSF [KBss, whereKBAcur is constructed as follows:

1. LetA be a sensing action. Then:
- If � 2 KBcur then�s1s2 2 KBAcur;
- if w0 j= Poss(A; do(~a; S0)) then�A(~n; s2) 2 KBAcur

else:�A(~n; s2) 2 KBAcur;
- if w0 j= SF(A; do(~a; S0)) then A(~n; s2) 2 KBAcur

else: A(~n; s2) 2 KBAcur.
2. LetA be an ordinary action. Then:

- If � 2 KBcur is sit. independent, then�s1s2 2 KBAcur;
- for any situation dependent fluentF add toKBAcur8~x:+F (~x;A; s2) � F (~x; s2) and8~x:�F (~x;A; s2) � :F (~x; s2);
- If 8~x: � F (~x; s1) is inKBcur, then add8~x: s1s2 ^ :�F (~x;A; s2) � F (~x; s2);
- If 8~x: � :F (~x; s1) is inKBcur, then add8~x: s1s2 ^ :+F (~x;A; s2) � :F (~x; s2));
- if w0 j= Poss(A; do(~a; S0)) then�A(~n; s2) 2 KBAcur

else:�A(~n; s2) 2 KBAcur.
Note the different treatment depending on whetherA is a

sensing action or not. In the former case, the old contents
of KBcur is simply copied to the new knowledge base with
the new situations2 replacing the olds1. If A is an ordi-
nary action, we need to treat the situation dependent fluents
in KBcur in a special way in order to reflect the changes that
result from doingA. In the case of a sensing action we also
need to record the values of�A and A depending on the

truth value ofPoss(A) andSF(A) at (w0;~a). If A is an or-
dinary action, this needs to be done only for�A because we
assume that A is equivalent toTRUE for ordinary actions.

It is not hard to see that the property of being context-free
is preserved by our syntactic form of progression.

Lemma 4.6: Let KB, KBA, andA be as in Definition 4.5.
ThenKBA is context-free.

In their paper[13], LR describe some very simple (and
reasonable) consistency requirements for context-free knowl-
edge bases.10 We will not repeat those conditions here and
simply refer to them as LR-consistency. We are now ready
to show that syntactic progression of context-free KB’s con-
forms with our semantic definition.

Theorem 4.7: LetKB0 be an initial knowledge base,w0 a
world ande0 = <[[KB0]]. LetKB, KBA andA be as in Defi-
nition 4.5 such that<[[KB]] is a progression at~awrt he0; w0i.

If KB is LR-consistent, then<[[KBA]] is a progression of<[[KB]] at~a wrt he0; w0i.
Note that, by definition,KB0 is itself a progression at�

wrt he0; w0i. Hence, the theorem tells us that, starting in an
initial context-free knowledge base, doing an actionA will
lead to a progression which itself is represented by a context-
free knowledge base, and this process iterates.

To illustrate how progression works, let us consider
the initial KB and the corresponding action modelM =h<[[KB]]; wi from Section 4.1. First, it is easy to verify that it
conforms to the definition of a context-free KB.

1. Let us consider progressing KB byA = senseRed(C)
resulting inKBA with correspondingKBA. Let s1 stand for
do(senseRed(C);now).
SinceA is a sensing action (case (1) of Def. 4.5), we ob-
tainKBAcur simply by replacing every occurrence ofnow inKBcur by s1 and addingRed(C; s1) to it, because we assume
thatM j= SF(senseRed(C); S0). Then<[[KBA]] is a pro-
gression atA.

Let � = 9xRed(x;now) ^ Knows(Red(x;now);now).
ThenASK[�;<[[KBA]]; A] = yesbecause now there is a
known red letter, namelyC.

2. Let us now progressKBA by A0 = pickup(C) result-
ing in KBAA0

with correspondingKBAA0cur . Let s2 stand for
do(pickup(C); s1).

Starting with the empty set we constructKBAA0cur by adding
the following sentences:11
- Letter(C; s2); Letter(D; s2);Red(C; s2)
(The disjunction(Red(C; s2) _ Red(D; s2)) is omitted be-
cause it is clearly subsumed byRed(C; s2).)

Given the successor state axiom forF = HoldRLs, we
obtain�F = FALSE and+F (x;A; s2) = [pickup(C) = pickup(x) ^Red(x; s2)].10One such requirement is that+F and �F may never be true
simultaneously. The example KB is LR-consistent.11For simplicity, we omit adding sentences that turn out to be
valid or subsumed by others.

Hence we add

- 8x:+F (x;A; s2) � HoldRLs(x; s2)
Finally, the last case of Definition 4.5 applies and we add

- 8x::+F (x;A; s2) � :HoldRLs(x; s2)
Given the unique names assumption for standard names of
objects and actions,+F (x;A; s2) is true just in casex = C,
that is, the agent is holding preciselyC in s2.

Given this progressed knowledge base it is then not hard to
show that the robot does not know ins2 whether it is holding
all the red letters. Formally, let� = 8x:Red(x;now) ^ Letter(x;now) �Knows(Red(x;now)^ Letter(x;now);now).
ThenASK[�;<[[KBAA0]]; A � A0] = unknown. This is be-
cause there are worlds in<[[KBAA0]] whereC is the only red
letter and others where there are red letters other thanC after
doingA �A0.
5 Conclusions
Using the second-order logicAOL, we specified a query fa-
cility for knowledge bases in dynamic worlds. Despite the
expressiveness of the logic, we showed that query evaluation
often requires only first-order reasoning. Moreover, by adapt-
ing and extending results by Lin and Reiter, we gave a seman-
tic definition of progression and showed that it is first-order
representable in the case of context-free knowledge bases.

Future work includes finding more powerful classes of
knowledge bases with first-order progressions and applying
the results to the action programming language GOLOG[10].
We defined progression in a way that is very close to the orig-
inal definition by Lin and Reiter. The exact relationship be-
tween the two still needs to be determined. Also, our earlier
definition of SUCC can be thought of as a progression op-
erator in its own right. It is more powerful in that nothing
about the past is forgotten. It is an interesting open problem
to determine syntactic variants of this notion of progression.

References
[1] Hintikka, J.,Knowledge and Belief: An Introduction to

the Logic of the Two Notions. Cornell University Press,
1962.

[2] Kaplan, D., Quantifying In, in L. Linsky (ed.),Refer-
ence and Modality, Oxford University Press, Oxford,
1971.

[3] Kripke, S. A., Semantical considerations on modal
logic. Acta Philosophica Fennica16, 1963, pp. 83–94.

[4] Lakemeyer, G. and Levesque, H. J.AOL: a logic
of acting, sensing, knowing, and only knowing.Proc.
of the Sixth International Conference on Principles
of Knowledge Representation and Reasoning, Morgan
Kaufmann, San Francisco, 1998.

[5] Lakemeyer, G. and Levesque, H. J. QueryingAOL
Knowledge Bases. Preliminary Report. Festschrift in
Honour of W. Bibel, Kluwer Academic Press, to appear.

[6] Levesque, H. J., Foundations of a Functional Approach
to Knowledge Representation,Artificial Intelligence,
23, 1984, pp. 155-212.

[7] Levesque, H. J., All I Know: A Study in Autoepistemic
Logic. Artificial Intelligence, North Holland,42, 1990,
pp. 263–309.

[8] Levesque, H. J., What is Planning in the Presence of
Sensing. AAAI-96, AAAI Press, 1996.

[9] Levesque, H. J. and Lakemeyer, G.,The Logic of
Knowledge Bases, Monograph, forthcoming.

[10] Levesque, H. J., Reiter, R., Lespérance, Y., Lin,F. and
Scherl., R. B., GOLOG: A logic programming language
for dynamic domains.Journal of Logic Programming,
31, 59-84, 1997.

[11] Lifschitz, V., Computing Circumscription,Proceedings
of the 9th International Joint Conference on Artificial
Intelligence, Morgan Kaufmann, San Francisco, 1985,
pp. 121–127.

[12] Lin, F. and Reiter, R., Forget It!, inProc. of the AAAI
Fall Symposium on Relevance, New Orleans, 1994, pp.
154–159.

[13] Lin, F. and Reiter, R., How to Progress a Database.Ar-
tificial Intelligence, 92, 1997, pp.131-167.

[14] McCarthy, J.,Situations, Actions and Causal Laws.
Technical Report, Stanford University, 1963. Also in M.
Minsky (ed.), Semantic Information Processing, MIT
Press, Cambridge, MA, 1968, pp. 410–417.

[15] Moore, R. C., A Formal Theory of Knowledge and Ac-
tion. In J. R. Hobbs and R. C. Moore (eds.),Formal The-
ories of the Commonsense World, Ablex, Norwood, NJ,
1985, pp. 319–358.

[16] Reiter, R., The Frame Problem in the Situation Calcu-
lus: A simple Solution (sometimes) and a Completeness
Result for Goal Regression. In V. Lifschitz (ed.),Artifi-
cial Intelligence and Mathematical Theory of Computa-
tion, Academic Press, 1991, pp. 359–380.

[17] Scherl, R. and Levesque, H. J., The Frame Problem and
Knowledge Producing Actions. inProc. of the National
Conference on Artificial Intelligence (AAAI-93), AAAI
Press, 1993, 689–695.

