
On sensing and o�-line interpreting in GOLOGGerhard LakemeyerDepartment of Computer Science, Aachen University of Technology,D-52056 Aachen, Germany, Email: gerhard@cs.uni-bonn.deAbstract. GOLOG is a high-level programming language for the speci�cation ofcomplex actions. It combines the situation calculus with control structures knownfrom conventional programming languages. Given a suitable axiomatization of whatthe world is like initially and how the primitive actions change the world, theGOLOG interpreter derives for each program a corresponding linear sequence oflegally executable primitive actions, if one exists. Despite its expressive power,GOLOG's applicability is severely limited because the derivation of a linear se-quence of actions requires that the outcome of each action is known beforehand.Sensing actions do not meet this requirement since their outcome can only be deter-mined by executing them and not by reasoning about them. In this paper we extendGOLOG by incorporating sensing actions. Instead of producing a linear sequenceof actions, the new interpreter yields a tree of actions. The idea is that a particularpath in the tree represents a legal execution of primitive actions conditioned on thepossible outcome of sensing actions along the way.PrologueWhen I left Toronto in late 1990, Ray had just begun to revive the situationcalculus as a serious contender among the various logics of action.1 To behonest, I myself was rather skeptical at �rst whether his approach and, inparticular, GOLOG would ever be more than just a speci�cation languagefor dynamic domains. When Ray gave a talk at my then department at Bonnin 1994, he was met with even more skeptical questions regarding GOLOG'spracticability by the \real" roboticists at Bonn. As there were no conclu-sive answers at the time, I decided it was time to put GOLOG to the testand, lo and behold, within a year and with the invaluable support of ourrobotics group, we conducted the �rst experiments controlling a real robotusing GOLOG. Again, Ray's vision proved to be right, and I have since joinedhis quest to explore cognitive robotics. This paper2 is a small contribution inthis regard. Needless to say, none of this would have been possible withoutRay's e�orts and that of the other members of the Cognitive Robotics Groupat Toronto.1 It is very �tting that Ray's �rst paper on the subject appeared in the Festschriftin honor of John McCarthy [17].2 An earlier version of this paper appeared in [3].

2 G. Lakemeyer1 IntroductionWhen reasoning about action one is often faced with incomplete knowledge.For example, when trying to achieve a goal such as catching an airplane,there usually is not enough information at the outset for an agent to comeup with a single course of action which would satisfy the goal. For instance,I may not know the departure gate of the plane until I actually reach theairport (or, to be more modern, until I check my airline's web-site.) Whatis needed are sensing actions which, when executed at the appropriate time,gather relevant information about the world and whose outcome determineswhat other actions need to be performed later.Despite this obvious observation, dealing with sensing in both a princi-pled and practical way has been surprisingly di�cult. On the principled side,there has been substantial progress in understanding the connection betweenknowledge, sensing, and action, see for example [15,16,18,10,9]. There havealso been several proposals to incorporate sensing actions into planning sys-tems such as [5,6,1]. While planning may be workable in limited domains, wesupport the view of Levesque and Reiter [11] that general purpose planningis not su�cient as the main means for agents such as robots to decide how toachieve a task. The argument here is mainly one of complexity. The planningproblem without sensing is already highly intractable, and adding sensingonly compounds the problem.Rather than leaving it completely up to the robot to construct a planfrom a set of primitive actions, an alternative strategy would be to devisea suitable high-level programming language in which the user speci�es notjust a goal but also how it is to be achieved, perhaps leaving small subtasksto be handled by an automatic planner. An example of such a language isGOLOG [12], which combines the expressive power of the situation calculuswith control structures known from conventional programming languages. Akey property of GOLOG (or, more precisely, the GOLOG interpreter) is thatit takes a program and veri�es o�-line whether it is legally executable. In casethe veri�cation succeeds, it also produces a plan in terms of a linear sequenceof primitive actions which can then be immediately executed.While GOLOG comes with an e�cient Prolog implementation, its appli-cability in real world domains is severely limited because sensing actions arenot handled properly. The problem is that in order to come up with a sequenceof actions GOLOG needs to have all the relevant information beforehand todecide on a course of actions to achieve a goal, whereas the whole point ofsensing is that some information becomes available only at run-time. Thisde�ciency became very clear in a recent robotics application [2], where ourgroup employed GOLOG to specify the actions of a robot who gives guidedtours in a museum. While GOLOG provided more than enough
exibility in

On Sensing in GOLOG 3terms of the available control structures, not being able to deal with sensingproved to be rather cumbersome.3Despite recent arguments against it [4],4 we believe that o�-line veri�ca-tion of a plan is a valuable feature of GOLOG, in particular, during programdevelopment where mistakes are bound to happen, and it seems desirable tobe able to take into account sensing actions as well. This paper provides astep in this direction.To illustrate the problem and our proposal, let us consider the airportexample in somewhat more detail. Suppose that the agent is already at theairport, but she does not know the gate yet. Before boarding the plane, shewants to buy a newspaper and a co�ee. In case the gate number is 90 or up,it is preferable to buy co�ee at the gate, otherwise it is better to buy co�eebefore going to the gate. Let us assume, we have the following primitiveactions: buy paper,buy co�ee, goto gate, board plane, and sense gate, whichsenses the value of gate (perhaps by glancing at the departure informationmonitor).In GOLOG one might be tempted to write the following (grossly over-simpli�ed) procedure to catch a plane.proc catch planesense gate;buy paper;if gate � 90 then goto gate;buy co�ee else buy co�ee;goto gateendif;board planeendprocLet us assume also that we have a set of axioms which suitably char-acterize what the world is like initially, what the action preconditionsare, and how actions change the world and the agent's knowledge aboutthe world (see the next section for hints about how all this is done).Given these axioms, the GOLOG interpreter then tries to logically de-rive a linear sequence of primitive actions which are legally executableand which represent an execution trace of catch plane. In our case, theonly plausible candidates are sense gate�buy paper�goto gate�buy co�ee andsense gate�buy paper�buy co�ee�goto gate. The problem is that it will only beknown at runtime and after the execution of sense gate which of the twosequences is the actual one. Hence GOLOG, running o�-line, is bound to failsince it cannot decide between the two.3 Here we do not mean sensing as it is needed for safe navigation, which was nothandled at the logical level at all, but was left to lower level components of therobot. What we do mean is sensing at the abstract task level, which, in thisapplication, involved mainly the interaction with a visitor during a guided tour.4 We will get back to [4] in Section 7.

4 G. LakemeyerIf GOLOG allowed for branching in the plans it produces the problemcould be overcome. In the example, we would need a plan that starts withsense gate followed by buy paper and then splits into two branches consistingof goto gate followed by buy co�ee and the other way around, depending onwhether gate � 90 or not. This is in fact the main modi�cation of GOLOGwe propose in this paper. We call plans with branches conditional actiontrees (CAT's), which are binary trees whose nodes can be thought of as situ-ations with the root representing the initial situation. Every edge is labeledwith a primitive action, which indicates how a situation is obtained fromits predecessor. In addition, whenever branching occurs, the correspondingnode/situation is labeled by a formula, whose truth value at execution timedetermines which branch is taken. A CAT for the airport example could bedrawn as follows:
gate>=90

buy_p

buy_c board_p

goto_g board_p

sense_g Y
goto_g

N buy_cHowever, we will be writing it as a term using the following notationsense gate�buy paper�[gate � 90,goto gate�buy co�ee�board plane,buy co�ee�goto gate�board plane].It turns out that the GOLOG interpreter which handles CAT's has asimple speci�cation, which is very similar to the original one given in [12]. Inour extension of GOLOG we allow sensing truth values as well as the referentof terms (as in the above example). Note also that branching need not occurimmediately at the time of sensing. In contrast, [10,4] only consider sensingtruth values and branching happens immediately at the time of sensing.The rest of the paper is organized as follows. In Sections 2 and 3, we givevery brief introductions into the situation calculus and GOLOG. Section 4introduces conditional action trees into the situation calculus. In Section 5,we de�ne sGOLOG (= GOLOG + sensing) and in Section 6 we present asimple interpreter implemented in Prolog. In Section 7, we summarize ourresults and compare our work to [4].

On Sensing in GOLOG 52 The Situation CalculusOne increasingly popular language for representing and reasoning about thepreconditions and e�ects of actions is the situation calculus [14]. We will onlygo over the language brie
y here noting the following features: all terms inthe language are one of three sorts, ordinary objects, actions or situations;there is a special constant S0 used to denote the initial situation, namelythat situation in which no actions have yet occurred; there is a distinguishedbinary function symbol do where do(a; s) denotes the successor situation tos resulting from performing the action a; relations whose truth values varyfrom situation to situation, are called relational
uents , and are denoted bypredicate symbols taking a situation term as their last argument; similarly,functions varying across situations are called functional
uents and are de-noted analogously; �nally, there is a special predicate Poss(a; s) used to statethat action a is executable in situation s: Throughout the paper we writeaction and situation variables using the letters a and s, respectively, possiblywith sub- and superscripts. (The same convention applies to meta-variablesfor terms of the respective sorts.)Within this language, we can formulate theories which describe how theworld changes as the result of the available actions. One possibility is a basicaction theory of the following form [17]:� Axioms describing the initial situation, S0.� Action precondition axioms, one for each primitive action a, characteriz-ing Poss(a; s).� Successor state axioms, one for each
uent F , stating under what condi-tions F (x; do(a; s)) holds as a function of what holds in situation s: Thesetake the place of the so-called e�ect axioms, but also provide a solutionto the frame problem [17].� Domain closure and unique names axioms for the primitive actions.� A collection of foundational, domain independent axioms.In [13] the following foundational axioms are considered:51. 8s8a:S0 6= do(a; s).2. 8a1; a2; s1; s2: do(a1; s1) = do(a2; s2) � (a1 = a2 ^ s1 = s2).3. 8P: P (S0) ^ [8s8a:(P (s) � P (do(a; s)))] � 8sP (s).4. 8s: :(s < S0).5. 8s; s0; a: (s < do(a; s0) � (Poss(a; s0) ^ s � s0));where s � s0 is an abbreviation for s < s0 _ s = s0.The �rst three axioms serve to characterize the space of all situ-ations, making it isomorphic to the set of ground terms of the formdo(an; � � � ; do(a1; S0) � � �), which we also abbreviate as do(a; S0), where a5 In addition to the standard axioms of equality.

6 G. Lakemeyerstands for the sequence a1 � a2 � : : : � an. The third axiom ensures, by second-order induction, that there are no situations other than those accessible usingdo from S0: The �nal two axioms serve to characterize a < relation betweensituations.Knowledge and Action So far the language allows us to talk only abouthow the actual world evolves starting in the initial situation S0. With sensing,we also need an account of what the agent doing the actions knows aboutthe world initially and in successor situations. Following [18], which in turnis based on [15], we introduce a binary
uent K(s0; s) which can be read as\in situation s, the agent thinks that s0 is (epistemically) accessible."6GivenK, knowledge can then be de�ned in a way similar to possible-worldsemantics [8,7] as truth in all accessible situations. We denote knowledgeusing the following macro, where � may contain the special situation symbolnow. Let �nows refer to � with all occurrences of now replaced by s. ThenKnows(�; s) := 8s0K(s0; s) � �nows0Given Knows we introduce further abbreviations which tell us whether thetruth value of a formula or the value of a term is known:Kwhether(�; s) := Knows(�; s) _ Knows(:�; s).Kref(�; s) := 9xKnows(� = x; s).To specify how actions and, in particular, sensing actions change what isknown, we follow [10] and introduce a special function SF with two arguments,an action and a situation. As in the case of Poss it is assumed that SF isuser-de�ned, that is, the user writes down sensed
uent axioms, one for eachaction type. The idea is that SF(a; s) gives the value sensed by action a insituation s. So we might have, for example,SF(sense gate; s) = gate(s).In case the action a has no sensing component (as in simple physicalactions, like moving), the axiom should state that SF(a; s) is some �xedvalue. If the action serves to sense whether or not some
uent �(s) holds, two�xed values can be used such as 0 and 1.In [18], Scherl and Levesque formulate a solution to the frame problemfor knowledge by proposing a successor state axiom for K. Here we use thevariant given in [10]:De�nition 1. 8a; s; s0:Poss(a; s) � K(s0; do(a; s)) �9s00:s0 = do(a; s00) ^K(s00; s) ^ Poss(a; s00)^[SF(a; s) = SF(a; s00)].6 This view requires, in general, that there are initial situations other than S0,which also means that the above induction axiom no longer holds. See [9] for away to handle many initial situations axiomatically.

On Sensing in GOLOG 7Roughly, after doing action a the agent thinks it could be in situation s0just in case s0 results from doing a in some previously accessible situations00, provided a is possible in s00 and both s and s00 agree on the value beingsensed.3 GOLOGGOLOG [12] is a logic-programming language which, in addition to the prim-itive actions of the situation calculus, allows the de�nition of complex actionsusing programming constructs which are very much like those known fromconventional programming languages. The procedure catch plane introducedearlier is an example of such a complex action. Here is a list of the constructsavailable in GOLOG:A primitive action�? test a condition(�1; �2) sequence(�1j�2) nondeterministic action choice(�x:�) nondeterministic argument choice�� nondeterministic iterationif � then �1 else �2 endif conditionalwhile � do � endwhile loopproc �(x) endproc procedureWhat is special about GOLOG is that the meaning of these constructs iscompletely de�ned by sentences in the situation calculus. For this purpose,a macro Do(�; s; s0) is introduced whose intuitive meaning is that executingthe program � in situation s leads to situation s0. Here we provide some ofthe de�nitions needed for Do. See [12] for the complete list.Do(A; s; s0) := Poss(A; s)^s0 = do(A; s), whereA is a primitive action.Do((�1; �2); s; s0) := 9s00Do(�1; s; s00) ^ Do(�2; s00; s0)Do((�1j�2); s; s0) := Do(�1; s; s0) _Do(�2; s; s0)Do(�?; s; s0) := �(s) ^ s = s0Do(if � then �1 else �2 endif; s; s0) := Do([(�?; �1)j(:�?; �2)]; s; s0)Here � is a formula of the situation calculus with all situation argumentssuppressed, which we also call a situation-free formula. �(s) is then obtainedfrom � by reinserting s as the situation argument at the appropriate places.For example, if � = (gate = A) ^ am at(x; airport) with
uents gate andam at, then �(s) = (gate(s) = A) ^ am at(x; airport; s).Given a situation calculus theoryAX of the domain in question as sketchedin the previous section, executing a program � means to �rst �nd a sequenceof primitive actions a such thatAX j= Do(�; S0; do(a; S0))and then handing the sequence a to an appropriate module that takescare of actually performing those actions in the real world.

8 G. Lakemeyer4 Conditional action treesIn this section, we augment the situation calculus with conditional actiontrees. The idea is that, instead of having only linear action histories (i.e.situations), we have a tree of actions, where each path represents a situation.We begin by introducing two new sorts, a sort formula for situation-freeformulas and a sort CAT for conditional action trees. For each sort we addin�nitely many variables to the language. We write � and c with possiblesub- or superscripts for variables of sort formula and CAT, respectively. Sincethere is a standard way of doing this, we gloss over the details of how to reifyformulas as terms in the language. Given a term of sort formula, we eventake the liberty to write �(s) in place of a formula, where in fact we wouldneed to say Holds(�; s), where Holds is appropriately axiomatized.CAT terms are made up of a special constant �, denoting the empty CAT,the primitive actions, and two constructors a � c and [�; c1; c2], where a is anaction, � is a term of sort formula and c; c1, and c2 are themselves CAT's.7 �is also called a branch-formula. c1 and c2 are called the true- and false-branch(for �), respectively. We saw an example CAT already in Section 1.We can de�ne CAT's within the situation calculus by adding the follow-ing foundational axioms, which are analogues of those introduced earlier inSection 2 for situations. (In the following, free variables in a formula are con-sidered to be universally quanti�ed.) The �rst �ve axioms make sure thatCAT's are all distinct. The role of Axiom 6 is the same as the inductionaxiom for situations and minimizes the set of CAT's.1. a � c 6= �.2. [�; c1; c2] 6= �.3. a � c = a0 � c0 � a = a0 ^ c = c04. [�; c1; c2] = [�0; c01; c02] � � = �0 ^ c1 = c01 ^ c2 = c02.5. [�; c1; c2] 6= a � c.6. 8P:P (�) ^ 8aP (a) ^ [8a; c:P (c) ^ c 6= � � P (a � c)]^[8�; c1; c2:P (c1) ^ P (c2) � P ([�; c1; c2])] � 8c:P (c).It is also convenient to de�ne the following predicate ext, which will beneeded later on to de�ne how GOLOG, having already produced a CAT c insituation s, extends c by a CAT c� to produce c0. Informally, ext(c0; c; c�; s)holds if c0 is a CAT which contains a path p from c extended by the CATc�. p is obtained by starting at situation s and then moving down the treereplacing s by successor situations according to the actions encountered alongthe path. p follows a particular branch in the tree depending on the truthvalue of the corresponding branch-formula relative to the current situation.Formally:7 Logically, � and [; ;] are binary and ternary functions, respectively. We writethem this way for better readability of CAT's.

On Sensing in GOLOG 9ext(c0; c; c�; s) � (c = � � c0 = c�)^(c = a � c0 = a � c�)^(c = a � c1 � 9c01:c0 = a � c01 ^ ext(c01; c1; c�; do(a; s)))^(c = [�; c2; c3] � 9c02; c03:c0 = [�; c02; c03]^[�(s) � ext(c02; c2; c�; s)^:�(s) � ext(c03; c3; c�; s)]For example, let c = a1 �a2 � [p; a3; �] and let p be false at do(a2; do(a1; s)).Then ext(c0; c; c�; s) holds for c� = [q; �; a4] and c0 = a1 � a2 � [p; a5; [q; �; a4]].Note that c0 can di�er arbitrarily in the branches which are not taken, in thiscase the true-branch for p.Lastly, we introduce a two-place function cdo, which takes a CAT c and asituation s and returns a situation which is obtained from s using the actionsalong a particular path in c. The idea is that cdo follows a certain branchin the tree depending on the truth value of the respective branch-formula atthe current situation.cdo(�; s) = s.cdo(a; s) = do(a; s).cdo(a � c; s) = cdo(c; do(a; s)).cdo([�; c1; c2]); s) = if �(s) then cdo(c1; s) else cdo(c2; s).5 sGOLOGPrograms in sGOLOG are those of GOLOG augmented by sensing actionsfor both formulas and terms. The main di�erence compared to the originalGOLOG is that the interpreter now produces CAT's instead of situations.When constructing a CAT, a decision must be made as to when new branches,that is, constructs of the form [�; c1; c2] are introduced. One possibility is tointroduce them automatically whenever a sensing action occurs. This seems�ne if we are sensing the truth value of a formula (like �), but what shouldwe branch on if we are sensing the value of a term, in particular if there are(in�nitely) many potential values for the term? To overcome this problem,we leave the introduction of new branches under the control of the user byintroducing a new special action branch on(�), whose \e�ect" is to introducea new CAT [�; �; �]. Since we want sGOLOG to produce CAT's which areready for execution, we need to make sure that the truth value of the formulawhich decides on which branch to take is known. This is taken care of byattaching an appropriate Kwhether-term to the de�nition of branch on.Technically, the sGOLOG interpreter is de�ned in a way very similar tothe original GOLOG. We introduce a three place macro Do(�; s; c) whichexpands into a formula of the situation calculus augmented by CAT's. Itmay be read as \executing the program � in situation s results in CAT c."Note the di�erence compared to the original Do, where the last argumentwas a situation rather than a CAT.

10 G. LakemeyerWe begin with an auxiliary four-place macro Do4. Intuitively,Do4(�; s; c; c0) may be read as \starting in situation s, executing the CATc and then the program � leads to c0, which is an extension of c."Do4(�; s; c; c0) := 9c�Do(�; cdo(c; s); c�) ^ ext(c0; c; c�; s).Do(�; s; c) is then de�ned as follows:Do(a; s; c) := Poss(a; s) ^ c = a for every primitive action a.Do(branch on(�); s; c) := Kwhether(�(now); s) ^ c = [�; �; �].Do(�?; s; c) := �(s) ^ c = �.Do((�1j�2); s; c) := Do(�1; s; c) _ Do(�2; s; c).Do((�1; �2); s; c) := 9c0Do(�1; s; c0) ^Do4(�2; s; c0; c).Do(�x�; s; c) := 9xDo(�; s; c).Do(��; s; c) := 8P [P (�; �) ^ 8c1; c2; c3:P (c1; c2) ^Do4(�; s; c2; c3)� P (c1; c3)] � P (�; c).Do(proc P � endproc; s; c) := Do(�; s; c)8Note that the de�nition of the various program constructs are not all thatdi�erent from the original ones. In fact, if we con�ne ourselves to GOLOGprograms without sensing and without occurrences of the special actionbranch on, it is not hard to show that the two interpreters coincide.Theorem 1. Let DoOld stand for the old de�nition of Do. Let � be a GOLOGprogram without sensing and branch on-actions and let c = a1 � c2 : : : � cn forprimitive actions ai. Then j= Do(�; s; c) � DoOld(�; s; cdo(c; s)).5.1 The airport example revisitedLet us now see how the airport example could be handled in sGOLOG.To keep the formalization brief, we make various simplifying assumptions.For example, we assume implicitly that the agent is at the airport and thatbuy co�ee, buy paper, and sense gate are always possible. goto gate requiresthe referent of gate to be known and board plane requires being at the (right)gate.Poss(buy co�ee; s) � TRUEPoss(buy paper; s) � TRUEPoss(sense gate; s) � TRUEPoss(goto gate; s) � Kref(gate; s)Poss(board plane; s) � am at gate(s)sense gate is the only sensing action. Hence for the others SF always returnsthe same value:8 For simplicity, we only consider simple nonrecursive procedures without param-eters. See [12] for how to handle general procedures in GOLOG.

On Sensing in GOLOG 11SF(buy co�ee; s) = 1SF(buy paper; s) = 1SF(goto gate; s) = 1SF(sense gate; s) = gate(s)gate and am at gate are the only
uents, and gate never changes its value:Poss(a; s) � gate(do(a; s)) = y � gate(s) = y.Poss(a; s) � am at gate(do(a; s)) � a = goto gate _ am at gate(s)(Assumes that boarding the plane leaves you at the gate.)Finally, the sGOLOG program to catch the plane is like the one in theintroduction except for the explicit branch on action:proc catch planesense gate;buy paper;branch on(gate � 90);if gate � 90 then goto gate;buy co�eeelse buy co�ee;goto gateendif;board planeendprocAssuming that AX consists of the foundational axioms of our extendedsituation calculus, the above airport axioms, and simple arithmetic to com-pare numbers, we obtainAX j= Do(catch plane; S0; c) withc = sense gate � buy paper � [gate � 90;goto gate�buy co�ee�board plane;buy co�ee�goto gate�board plane].Note that in the airport example we make use of the
uentK only in a verylimited way, namely in the form of Kref(gate; s) and Kwhether(gate(now) �90; s). (The latter results from interpreting branch on(gate � 90).) In par-ticular, we do not have to deal with nested occurrences of Knows. For thisreason, there is no need to stipulate any special properties of the K-relationsuch as re
exivity or transitivity. In principle, there is no problem adding suchrestrictions. Indeed Scherl and Levesque [18] have shown that it su�ces tostipulate those for initial situations and that the successor state axiom for K(De�nition 1) guarantees that these properties hold in all successor situationsas well. However, as the work by Scherl and Levesque also shows, reasoningabout K is not easy. Even if we restrict the use of K to the Knows-macro, westill need some form of modal reasoning to deal with it. When it comes toimplementing sGOLOG, this seems like a high price to pay. Fortunately, aswe will see in a moment, with reasonable restrictions on the use of sensing,there is a way to avoid this problem by not using the K-
uent at all.

12 G. Lakemeyer6 A simple implementationIn this section we present a very simple implementation of sGOLOG inEclipse-Prolog. Besides the usual constraints that come with the use of Pro-log, like negation-as-failure and atomic facts only to describe the initial situ-ation, we restrict sensing actions and their use as follows:1. Only the truth value of atomic facts can be sensed. In particular, sensingactions have the form sense(P), where P is a
uent.2. The truth value of a sensed
uent is never tested before the correspondingsensing action has been performed.3. branch on(P) actions are only allowed in case P is a sensed
uent.4. Whenever a branch on(P) action is reached, both truth values are con-ceivable for P .Some remarks regarding each of these assumptions:1. While restricting ourselves to atomic facts is essential, there is no problemin principle to allow for sensing the referent of a term as well. However,it would add some overhead to the implementation, and we have chosento ignore this issue here for the sake of simplicity.2. This is what De Giacomo and Levesque [4] call the dynamic closed worldassumption. It lets us deal with incomplete information even in Prolog,which makes the closed world assumption. The idea is that whenever a
uent F is tested for the �rst time, complete information about F hasbeen achieved.3. Applying branch on only to sensed
uents enables us to avoid having towork explicitly with a K-
uent in a very simple way. Testing whether asensed
uent P is known can be reduced to testing whether the actionsense(P) was performed earlier. This test is easily implementable by in-troducing a new
uent sensed(P; s) which becomes true when sense(P)is executed and remains true from then on. In essence, under the aboveassumptions the truth value of sensed(P; s) keeps track of whether P isknown. Of course, the use of sensed(P; s) to simulate Kwhether(P; s) isnot restricted to branch on. For example, it may also be part of a de�ni-tion of Poss(a; s).4. If it is possible that P can take on either truth value, we can safely usehypothetical reasoning for both cases when evaluating branch on(P).9The idea is that the true-branch C1 of the CAT [P;C1; C2], which resultsfrom branch on(P), is constructed by assuming that P is true in thecurrent situation. Similarly, the false-branch C2 is developed by assumingthat P is false in the current situation.We implement this by introducing new primitive actions assm(P; 1) andassm(P; 0) whose only e�ect is to turn P true and false, respectively.9 If it would follow that P is, say, true, then considering the case where P is falsemight lead to failure, even though that case never arises.

On Sensing in GOLOG 13(See the de�nition of do4 below.) Note that that actions occurring afterassm are allowed to change the truth value of P . An example previouslydiscussed in De Giacomo and Levesque [4] is an elevator controller, which�rst senses the value of a button and, if it is \on," resets it to \o�"afterwards.We now turn to the actual implementation. The reader familiar with theoriginal paper on GOLOG [12] will notice the close similarity between theProlog implementation of GOLOG and the one below for sGOLOG. Note, inparticular, that the de�nitions of do in GOLOG and sGOLOG are practicallyidentical except for sequence (:) and, of course, branch on, which does notexist in GOLOG.:- dynamic(holds/2).:- op(970,xfy, [:]). /* Sequence.*/:- op(950, xfy, [#]). /* Nondeterministic action choice.*//* do4(P,S,C,C1) recursively descends the CAT C (first two clauses). *//* Once a leaf of the CAT is reached (third clause), "do" is called, *//* which then extends this branch according to P */do4(E,S,[A|C],C1) :- primitive_action(A),C1=[A|C2],do4(E,do(A,S),C,C2).do4(E,S,[[P,C1,C2]],C) :- do4(E,do(assm(P,1),S),C1,C3),do4(E,do(assm(P,0),S),C2,C4),C = [[P,C3,C4]].do4(E,S,[],C) :- do(E,S,C).do(E1 : E2, S, C) :- do(E1,S,C1), do4(E2,S,C1,C). /* sequence */do(?(P),S,C) :- C=[],holds(P,S). /* test */do(E1 # E2, S, C) :- do(E1,S,C) ; do (E2,S,C). /* nond. act. choice */do(if(P,E1,E2),S,C) :- do((?(P) : E1) # (?(neg(P)) : E2),S,C).do(star(_),_,[]). /* nondet. iteration */do(star(E),S,C) :- do(E : star(E),S,C).do(while(P,E),S,S1):- do(star(?(P) : E) : ?(neg(P)),S,S1).do(pi(V,E),S,S1) :- sub(V,_,E,E1), do(E1,S,S1)./* nond. arg. choice */do(E,S,C) :- proc(E,E1), do(E1,S,C). /* procedure *//* the base cases: primitive actions and branch_on(P) */do(E,S,[E]) :- primitive_action(E), poss(E,S).do(branch_on(P),S,[[P,[],[]]]) :- holds(sensed(P),S)./* sub and sub_list are auxiliary predicates *//* sub(Name,New,Term1,Term2): *//* Term2 is Term1 with Name replaced by New. */sub(_,_,T1,T2) :- var(T1), T2 = T1.sub(X1,X2,T1,T2) :- not var(T1), T1 = X1, T2 = X2.sub(X1,X2,T1,T2) :- not T1 = X1, T1 =..[F|L1], sub_list(X1,X2,L1,L2),T2 =..[F|L2].sub_list(_,_,[],[]).

14 G. Lakemeyersub_list(X1,X2,[T1|L1],[T2|L2]) :- sub(X1,X2,T1,T2),sub_list(X1,X2,L1,L2)./* Definition of holds for arbitrary nonatomic formulas */holds(and(P1,P2),S) :- holds(P1,S), holds(P2,S).holds(or(P1,P2),S) :- holds(P1,S); holds(P2,S).holds(neg(P),S) :- not holds(P,S). /* Negation by failure */holds(some(V,P),S) :- sub(V,_,P,P1), holds(P1,S)./* the successor state axiom for sensed */holds(sensed(P),do(A,S)) :- A = sense(P) ; holds(sensed(P),S).Let us now consider an implementation of the airport example. Since werestrict ourselves to sensing the truth values of
uents, we need to adapt theexample accordingly. For simplicity, let us assume that there are only twogates, gate A and gate B. We introduce a
uent it is gate A, whose truthvalue can be sensed and which then tells us which gate to take. In contrast tothe original example, we also use the slightly more general action goto(x) and
uent am at(x) instead of goto gate and am at gate, respectively. The generalde�nition of sGOLOG requires the use of SF(a; s) to de�ne the result of asensing action. However, SF is only needed for the de�nition of the epistemicK-
uent. Since the implementation does not use K, there is no need to useSF either./* declare the primitive actions */primitive_action(goto(_)).primitive_action(buy_paper).primitive_action(buy_coffee).primitive_action(board_plane).primitive_action(sense(_))./* all actions are always possible except board_plane, *//* which requires being at the right gate */poss(goto(_),_).poss(buy_paper,_).poss(buy_coffee,_).poss(sense(_),_)./* boarding requires being at the right gate */poss(board_plane,S) :- holds(it_is_gate_A,S) ->holds(am_at(gate_A),S) ; holds(am_at(gate_B),S)./* successor state axioms *//* I am at X if I just went there or *//* if I was there and did not go anywhere else *//* (assumes that boarding the plane leaves you at the gate) */holds(am_at(X),do(A,S)) :- A = goto(X) ;

On Sensing in GOLOG 15(holds(am_at(X),S), not (A = goto(_))).holds(it_is_gate_A,do(A,S)) :- holds(it_is_gate_A,S) ;A = assm(it_is_gate_A,1)./* facts about the initial situation s0 *//* none necessary here */proc(catch_plane,(sense(it_is_gate_A):buy_paper:branch_on(it_is_gate_A):if(it_is_gate_A,goto(gate_A):buy_coffee,buy_coffee:goto(gate_B)):board_plane))./* sample run, slightly reformatted for better readability */[eclipse 3]: do(catch_plane,s0,C).C = [sense(it_is_gate_A), buy_paper, [it_is_gate_A,[goto(gate_A), buy_coffee, board_plane],[buy_coffee, goto(gate_B), board_plane]]] More? (;)no (more) solution.One might object that the implementation requires that the user is awareof the internals of the interpreter because the pseudo-action assm occurs inthe user's code. In the example, it is part of the successor state axiom ofholds(it is gate A,do(A,S)). The objection can be dealt with by allowingthe user to write successor state axioms without assm and then modifyingthe axioms automatically in the following way. Let F be a
uent whose truthvalue can be sensed. According to Reiter [17], the general form of the successorstate axiom of F is (provided Poss(a; s) holds):Holds(F; do(a; s)) � �+F _ (Holds(F; s) ^ :��F);where �+F and ��F describe the conditions which lead to F being true andfalse, respectively. We can compile the \e�ects" of the pseudo-action assminto the successor state axiom by replacing the above axiom byHolds(F; do(a; s)) � [�+F _ a = assm(F; 1)]_(Holds(F; s) ^ :[��F _ a = assm(F; 0)]):Another issue that needs to be addressed is that of correctness. In otherwords, is the interpreter a faithful implementation of the speci�cation ofsGOLOG? Here the answer may not be that easy to come by. A reasonable

16 G. Lakemeyerintermediate step would be to �rst give a purely logical speci�cation of ourway to avoid the K-
uent using sensed and assm and then prove that thetwo formalizations coincide under the restrictions laid out at the beginningof this section. We leave this to future work.7 Summary and discussionIn this paper we proposed sGOLOG, which extends GOLOG by adding sens-ing actions for sensing the truth values of formulas as well as the referentsof terms. We provided an o�-line interpreter for sGOLOG, whose de�nitionis simple and remarkably similar to the original one proposed for GOLOG.Instead of producing a linear sequence of primitive actions, the sGOLOG in-terpreter generates a tree of actions, if one exists, with the idea that branchingis conditioned on the outcome of sensing actions.In [4], De Giacomo and Levesque propose a di�erent version of GOLOGwith sensing. They advocate a combination of o�-line and on-line interpre-tation. On-line interpretation means, roughly, that instead of verifying thatthe whole program is executable, the interpreter �nds the next executableprimitive action and commits to it by immediately executing it. The advan-tage is that, whenever a sensing action occurs, the outcome is immediatelyknown and no branching is necessary. The authors argue that it is infeasi-ble to verify very large programs o�-line, in particular those that containmany nondeterministic actions and sensing actions. The authors certainlyhave a point here. In particular, programs with loops such as while � do: : : sense(�) : : : endwhile generally lead to in�nite CAT's in our approach.Despite these shortcomings, we think there is a place for o�-line interpre-tation of programs with sensing. For one, many programs with a moderatenumber of sensing actions can very well be handled by our approach. Also, aswe have seen, sensing does not necessarily lead to branching. Furthermore,we believe that o�-line interpreting is a valuable tool during program devel-opment, since we want to have some con�dence that a program works beforerunning it on an expensive robot. De Giacomo and Levesque seem to believein o�-line interpretation as well, at least partly. They allow a user to specifywhich parts of a program are to be handled o�-line. Their version of o�-lineinterpretation, however, is somewhat limited compared to ours. For one, theyonly verify that for all outcomes of sensing the program is executable withoutactually constructing a plan (like our CAT's), which could then be executedwithout further processing. Moreover, they do not handle sensing terms. Itseems interesting to try and combine our ideas with theirs to have the bestof both worlds.References1. Baral, C. and Son, T. C., Approximate reasoning about actions in presenceof sensing and incomplete information., Proc. of the International Logic Pro-

On Sensing in GOLOG 17gramming Symposium (ILPS'97), 1997.2. Burgard, W., Cremers, A. B., Fox, D., H�ahnel, D., Lakemeyer, G., Schulz, D.,Steiner, W., Thrun, S., The Interactive Museum Tour-Guide Robot, AAAI-98.3. De Giacomo, G. (ed.) Proceedings of the AAAI Fall Symposium on CognitiveRobotics, AAAI Technical Report FS-98-02, AAAI Press, 1998.4. De Giacomo, G. and Levesque, H.J., An incremental interpreter for high-level programs with sensing. in: Proceedings of the AAAI Fall Symposium onCognitive Robotics, AAAI Technical Report FS-98-02, AAAI Press, 1998, pp.28{34.5. Etzioni, O., Hanks, S., Weld, D., Draper, D., Lesh, N., and Williamsen, M.,An approach to planning with incomplete information. Proc. KR'92, MorganKaufmann, 1992, pp. 115{125.6. Golden, K. and Weld, D., Representing sensing actions: the middle groundrevisited. Proc. KR'96, Morgan Kaufmann, 1996, pp. 174{185.7. Hintikka, J., Knowledge and Belief: An Introduction to the Logic of the TwoNotions. Cornell University Press, 1962.8. Kripke, S. A., Semantical considerations on modal logic. Acta PhilosophicaFennica 16, 1963, pp. 83{94.9. Lakemeyer, G. and Levesque, H. J., AOL: a logic of acting, sensing, knowing,and only knowing, Proc. of the 6th International Conference on Principles ofKnowledge Representation and Reasoning (KR'98), Morgan Kaufmann, 1998,pp. 316{327.10. Levesque, H. J., What is Planning in the Presence of Sensing. AAAI-96, AAAIPress, 1996.11. Levesque, H. J. and Reiter, R., High-level robotic control: beyond planning.Position Statement. Working Notes of the AAAI Spring Symposium on Inte-grating Robotic Research: Taking the Next Leap, AAAI Press, 1998.12. H. J. Levesque, R. Reiter, Y. Lesp�erance, F. Lin, and R. B. Scherl. GOLOG: Alogic programming language for dynamic domains. Journal of Logic Program-ming, 31, 59-84, 1997.13. Lin, F. and Reiter, R., State constraints revisited. J. of Logic and Computation,special issue on actions and processes, 4, 1994, pp. 665{678.14. McCarthy, J., Situations, Actions and Causal Laws. Technical Report, StanfordUniversity, 1963. Also in M. Minsky (ed.), Semantic Information Processing,MIT Press, Cambridge, MA, 1968, pp. 410{417.15. Moore, R. C., A Formal Theory of Knowledge and Action. In J. R. Hobbsand R. C. Moore (eds.), Formal Theories of the Commonsense World, Ablex,Norwood, NJ, 1985, pp. 319{358.16. Morgenstern, L., Knowledge preconditions for actions and plans. Proc. IJCAI-87, pp. 867{874.17. Reiter, R., The Frame Problem in the Situation Calculus: A simple Solution(sometimes) and a Completeness Result for Goal Regression. In V. Lifschitz(ed.), Arti�cial Intelligence and Mathematical Theory of Computation, Aca-demic Press, 1991, pp. 359{380.18. Scherl, R. and Levesque, H. J., The Frame Problem and Knowledge ProducingActions. in Proc. of the National Conference on Arti�cial Intelligence (AAAI-93), AAAI Press, 1993, 689{695.

