On sensing and off-line interpreting in GOLOG

Gerhard Lakemeyer

Department of Computer Science, Aachen University of Technology,
D-52056 Aachen, Germany, Email: gerhard@cs.uni-bonn.de

Abstract. GOLOG is a high-level programming language for the specification of
complex actions. It combines the situation calculus with control structures known
from conventional programming languages. Given a suitable axiomatization of what
the world is like initially and how the primitive actions change the world, the
GOLOG interpreter derives for each program a corresponding linear sequence of
legally executable primitive actions, if one exists. Despite its expressive power,
GOLOG’s applicability is severely limited because the derivation of a linear se-
quence of actions requires that the outcome of each action is known beforehand.
Sensing actions do not meet this requirement since their outcome can only be deter-
mined by executing them and not by reasoning about them. In this paper we extend
GOLOG by incorporating sensing actions. Instead of producing a linear sequence
of actions, the new interpreter yields a tree of actions. The idea is that a particular
path in the tree represents a legal execution of primitive actions conditioned on the
possible outcome of sensing actions along the way.

Prologue

When I left Toronto in late 1990, Ray had just begun to revive the situation
calculus as a serious contender among the various logics of action.! To be
honest, I myself was rather skeptical at first whether his approach and, in
particular, GOLOG would ever be more than just a specification language
for dynamic domains. When Ray gave a talk at my then department at Bonn
in 1994, he was met with even more skeptical questions regarding GOLOG’s
practicability by the “real” roboticists at Bonn. As there were no conclu-
sive answers at the time, I decided it was time to put GOLOG to the test
and, lo and behold, within a year and with the invaluable support of our
robotics group, we conducted the first experiments controlling a real robot
using GOLOG. Again, Ray’s vision proved to be right, and I have since joined
his quest to explore cognitive robotics. This paper? is a small contribution in
this regard. Needless to say, none of this would have been possible without
Ray’s efforts and that of the other members of the Cognitive Robotics Group
at Toronto.

! It is very fitting that Ray’s first paper on the subject appeared in the Festschrift
in honor of John McCarthy [17].
2 An earlier version of this paper appeared in [3].

2 G. Lakemeyer

1 Introduction

When reasoning about action one is often faced with incomplete knowledge.
For example, when trying to achieve a goal such as catching an airplane,
there usually is not enough information at the outset for an agent to come
up with a single course of action which would satisfy the goal. For instance,
I may not know the departure gate of the plane until I actually reach the
airport (or, to be more modern, until I check my airline’s web-site.) What
is needed are sensing actions which, when executed at the appropriate time,
gather relevant information about the world and whose outcome determines
what other actions need to be performed later.

Despite this obvious observation, dealing with sensing in both a princi-
pled and practical way has been surprisingly difficult. On the principled side,
there has been substantial progress in understanding the connection between
knowledge, sensing, and action, see for example [15,16,18,10,9]. There have
also been several proposals to incorporate sensing actions into planning sys-
tems such as [5,6,1]. While planning may be workable in limited domains, we
support the view of Levesque and Reiter [11] that general purpose planning
is not sufficient as the main means for agents such as robots to decide how to
achieve a task. The argument here is mainly one of complexity. The planning
problem without sensing is already highly intractable, and adding sensing
only compounds the problem.

Rather than leaving it completely up to the robot to construct a plan
from a set of primitive actions, an alternative strategy would be to devise
a suitable high-level programming language in which the user specifies not
just a goal but also how it is to be achieved, perhaps leaving small subtasks
to be handled by an automatic planner. An example of such a language is
GOLOG [12], which combines the expressive power of the situation calculus
with control structures known from conventional programming languages. A
key property of GOLOG (or, more precisely, the GOLOG interpreter) is that
it takes a program and verifies off-line whether it is legally executable. In case
the verification succeeds, it also produces a plan in terms of a linear sequence
of primitive actions which can then be immediately executed.

While GOLOG comes with an efficient Prolog implementation, its appli-
cability in real world domains is severely limited because sensing actions are
not handled properly. The problem is that in order to come up with a sequence
of actions GOLOG needs to have all the relevant information beforehand to
decide on a course of actions to achieve a goal, whereas the whole point of
sensing is that some information becomes available only at run-time. This
deficiency became very clear in a recent robotics application [2], where our
group employed GOLOG to specify the actions of a robot who gives guided
tours in a museum. While GOLOG provided more than enough flexibility in

On Sensing in GOLOG 3

terms of the available control structures, not being able to deal with sensing
proved to be rather cumbersome.?

Despite recent arguments against it [4],* we believe that off-line verifica-
tion of a plan is a valuable feature of GOLOG, in particular, during program
development where mistakes are bound to happen, and it seems desirable to
be able to take into account sensing actions as well. This paper provides a
step in this direction.

To illustrate the problem and our proposal, let us consider the airport
example in somewhat more detail. Suppose that the agent is already at the
airport, but she does not know the gate yet. Before boarding the plane, she
wants to buy a newspaper and a coffee. In case the gate number is 90 or up,
it is preferable to buy coffee at the gate, otherwise it is better to buy coffee
before going to the gate. Let us assume, we have the following primitive
actions: buy_paper,buy_coffee, goto_gate, board_plane, and sense_gate, which
senses the value of gate (perhaps by glancing at the departure information
monitor).

In GOLOG one might be tempted to write the following (grossly over-
simplified) procedure to catch a plane.

proc catch_plane
sense_gate;
buy_paper;
if gate > 90 then goto_gate;buy_coffee else buy_coffee;goto_gate
endif;
board_plane
endproc

Let us assume also that we have a set of axioms which suitably char-
acterize what the world is like initially, what the action preconditions
are, and how actions change the world and the agent’s knowledge about
the world (see the next section for hints about how all this is done).
Given these axioms, the GOLOG interpreter then tries to logically de-
rive a linear sequence of primitive actions which are legally executable
and which represent an execution trace of catch_plane. In our case, the
only plausible candidates are sense_gate-buy_papergoto_gate-buy_coffee and
sense_gate-buy_paperbuy_coffee-goto_gate. The problem is that it will only be
known at runtime and after the execution of semse_gate which of the two
sequences is the actual one. Hence GOLOG, running off-line, is bound to fail
since it cannot decide between the two.

3 Here we do not mean sensing as it is needed for safe navigation, which was not
handled at the logical level at all, but was left to lower level components of the
robot. What we do mean is sensing at the abstract task level, which, in this
application, involved mainly the interaction with a visitor during a guided tour.

* We will get back to [4] in Section 7.

4 G. Lakemeyer

If GOLOG allowed for branching in the plans it produces the problem
could be overcome. In the example, we would need a plan that starts with
sense_gate followed by buy_paper and then splits into two branches consisting
of goto_gate followed by buy_coffee and the other way around, depending on
whether gate > 90 or not. This is in fact the main modification of GOLOG
we propose in this paper. We call plans with branches conditional action
trees (CAT’s), which are binary trees whose nodes can be thought of as situ-
ations with the root representing the initial situation. Every edge is labeled
with a primitive action, which indicates how a situation is obtained from
its predecessor. In addition, whenever branching occurs, the corresponding
node/situation is labeled by a formula, whose truth value at execution time
determines which branch is taken. A CAT for the airport example could be
drawn as follows:

buy ¢ ~ board_p o

gat@\:QO O
\\ Q.O\O/
Y
sense g buy p
O O O
N
Yy,
\C O
goto_g board_p

However, we will be writing it as a term using the following notation

sense_gate-buy_paper-[gate > 90,
goto_gate-buy_coffee-board_plane,
buy_coffee- goto_gate-board_plane].

It turns out that the GOLOG interpreter which handles CAT’s has a
simple specification, which is very similar to the original one given in [12]. In
our extension of GOLOG we allow sensing truth values as well as the referent
of terms (as in the above example). Note also that branching need not occur
immediately at the time of sensing. In contrast, [10,4] only consider sensing
truth values and branching happens immediately at the time of sensing.

The rest of the paper is organized as follows. In Sections 2 and 3, we give
very brief introductions into the situation calculus and GOLOG. Section 4
introduces conditional action trees into the situation calculus. In Section 5,
we define sSGOLOG (= GOLOG + sensing) and in Section 6 we present a
simple interpreter implemented in Prolog. In Section 7, we summarize our
results and compare our work to [4].

On Sensing in GOLOG 5
2 The Situation Calculus

One increasingly popular language for representing and reasoning about the
preconditions and effects of actions is the situation calculus [14]. We will only
go over the language briefly here noting the following features: all terms in
the language are one of three sorts, ordinary objects, actions or situations;
there is a special constant Sy used to denote the initial situation, namely
that situation in which no actions have yet occurred; there is a distinguished
binary function symbol do where do(a, s) denotes the successor situation to
s resulting from performing the action a; relations whose truth values vary
from situation to situation, are called relational fluents, and are denoted by
predicate symbols taking a situation term as their last argument; similarly,
functions varying across situations are called functional fluents and are de-
noted analogously; finally, there is a special predicate Poss(a, s) used to state
that action a is executable in situation s. Throughout the paper we write
action and situation variables using the letters a and s, respectively, possibly
with sub- and superscripts. (The same convention applies to meta-variables
for terms of the respective sorts.)

Within this language, we can formulate theories which describe how the
world changes as the result of the available actions. One possibility is a basic
action theory of the following form [17]:

e Axioms describing the initial situation, Sp.

e Action precondition axioms, one for each primitive action a, characteriz-
ing Poss(a, s).

e Successor state axioms, one for each fluent F', stating under what condi-
tions F'(x, do(a, s)) holds as a function of what holds in situation s. These
take the place of the so-called effect axioms, but also provide a solution
to the frame problem [17].

e Domain closure and unique names axioms for the primitive actions.

A collection of foundational, domain independent axioms.

In [13] the following foundational axioms are considered:®

1. VsVa.Sy # do(a, s).

2. Vay,as, s1, $2. do(ay,s1) = do(as, $2) D (a1 = as A s1 = s2).
3. YP. P(Sy) A [VsVa.(P(s) D P(do(a,s)))] D VsP(s).

4. Vs. =(s < Sp).

5. Vs,s',a. (s < do(a, s") = (Poss(a,s') Ns < s)),

where s < s’ is an abbreviation for s < s' Vs = s'.

The first three axioms serve to characterize the space of all situ-
ations, making it isomorphic to the set of ground terms of the form
do(an, -+, do(ar,So)---), which we also abbreviate as do(a,Sy), where a

5 In addition to the standard axioms of equality.

6 G. Lakemeyer

stands for the sequence a; - a2 - ... a,. The third axiom ensures, by second-
order induction, that there are no situations other than those accessible using
do from Sp. The final two axioms serve to characterize a < relation between
situations.

Knowledge and Action So far the language allows us to talk only about
how the actual world evolves starting in the initial situation Sy. With sensing,
we also need an account of what the agent doing the actions knows about
the world initially and in successor situations. Following [18], which in turn
is based on [15], we introduce a binary fluent K (s',s) which can be read as
“in situation s, the agent thinks that s’ is (epistemically) accessible.”®
Given K, knowledge can then be defined in a way similar to possible-world
semantics [8,7] as truth in all accessible situations. We denote knowledge
using the following macro, where @ may contain the special situation symbol
now. Let a}°" refer to a with all occurrences of now replaced by s. Then

Knows(a, s) = Vs'K(s',s) D al’"

Given Knows we introduce further abbreviations which tell us whether the
truth value of a formula or the value of a term is known:

Kwhether(a, s) = Knows(q, s) V Knows(—a, s).
Kref(r, s) = JzKnows(T = x,).

To specify how actions and, in particular, sensing actions change what is
known, we follow [10] and introduce a special function SF with two arguments,
an action and a situation. As in the case of Poss it is assumed that SF is
user-defined, that is, the user writes down sensed fluent azioms, one for each
action type. The idea is that SF(a,s) gives the value sensed by action a in
situation s. So we might have, for example,

SF(sense_gate,s) = gate(s).

In case the action @ has no sensing component (as in simple physical
actions, like moving), the axiom should state that SF(a,s) is some fixed
value. If the action serves to sense whether or not some fluent ¢(s) holds, two
fixed values can be used such as 0 and 1.

n [18], Scherl and Levesque formulate a solution to the frame problem
for knowledge by proposing a successor state axiom for K. Here we use the
variant given in [10]:

Definition 1. Va,s,s'.Poss(a,s) D K(s',do(a, s)) =
3s".s" = do(a,s") N K(s",s) A Poss(a,s")
A[SF(a,s) = SF(a,s")].
6 This view requires, in general, that there are initial situations other than So,

which also means that the above induction axiom no longer holds. See [9] for a
way to handle many initial situations axiomatically.

On Sensing in GOLOG 7

Roughly, after doing action a the agent thinks it could be in situation s’
just in case s’ results from doing a in some previously accessible situation
s", provided a is possible in s” and both s and s” agree on the value being
sensed.

3 GOLOG

GOLOG [12] is a logic-programming language which, in addition to the prim-
itive actions of the situation calculus, allows the definition of complex actions
using programming constructs which are very much like those known from
conventional programming languages. The procedure catch_plane introduced
earlier is an example of such a complex action. Here is a list of the constructs
available in GOLOG:

A primitive action

o7 test a condition

(p1; p2) sequence

(p1]p2) nondeterministic action choice
(rz.p) nondeterministic argument choice
p* nondeterministic iteration

if ¢ then p; else p» endif conditional
while ¢ do p endwhile loop
proc p(x) endproc procedure

What is special about GOLOG is that the meaning of these constructs is
completely defined by sentences in the situation calculus. For this purpose,
a macro Do(p, s, s) is introduced whose intuitive meaning is that executing
the program p in situation s leads to situation s'. Here we provide some of
the definitions needed for Do. See [12] for the complete list.

Do(A,s,s') = Poss(A, s)As' = do(A, s), where A is a primitive action.
Do((p1;p2),s,s") =3s"Do(p1,s,s") A Do(pa,s",s")

Do((pl |p2)7 S, Sl) = DO(/)1, S, Sl) v Do(pg, S, SI)

Do(¢?,s,8') = d(s) ANs=s'

Do(if ¢ then p; else ps endif, s, s') = Do([(#7; p1)|(—d7; p2)], s, s")

Here ¢ is a formula of the situation calculus with all situation arguments
suppressed, which we also call a situation-free formula. ¢(s) is then obtained
from ¢ by reinserting s as the situation argument at the appropriate places.
For example, if ¢ = (gate = A) A am-_at(x, airport) with fluents gate and
am_at, then ¢(s) = (gate(s) = A) A am_at(z,airport, s).

Given a situation calculus theory AX of the domain in question as sketched
in the previous section, executing a program p means to first find a sequence
of primitive actions a such that

AX |: DO(p, 507 do(a, SO))

and then handing the sequence a to an appropriate module that takes
care of actually performing those actions in the real world.

8 G. Lakemeyer
4 Conditional action trees

In this section, we augment the situation calculus with conditional action
trees. The idea is that, instead of having only linear action histories (i.e.
situations), we have a tree of actions, where each path represents a situation.

We begin by introducing two new sorts, a sort formula for situation-free
formulas and a sort CAT for conditional action trees. For each sort we add
infinitely many variables to the language. We write ¢ and ¢ with possible
sub- or superscripts for variables of sort formula and CAT, respectively. Since
there is a standard way of doing this, we gloss over the details of how to reify
formulas as terms in the language. Given a term of sort formula, we even
take the liberty to write ¢(s) in place of a formula, where in fact we would
need to say Holds(¢,s), where Holds is appropriately axiomatized.

CAT terms are made up of a special constant €, denoting the empty CAT,
the primitive actions, and two constructors a - ¢ and [¢, ¢1, c2], where a is an
action, ¢ is a term of sort formula and ¢, ¢;, and ¢, are themselves CAT’s.” ¢
is also called a branch-formula. ¢; and co are called the true- and false-branch
(for ¢), respectively. We saw an example CAT already in Section 1.

We can define CAT’s within the situation calculus by adding the follow-
ing foundational axioms, which are analogues of those introduced earlier in
Section 2 for situations. (In the following, free variables in a formula are con-
sidered to be universally quantified.) The first five axioms make sure that
CAT’s are all distinct. The role of Axiom 6 is the same as the induction
axiom for situations and minimizes the set of CAT’s.

a-c#e.

o 1, 2] # e

a-c=d-dDdDa=d ANe=¢

g1 0]l =19, L, Dd=¢ ANer = Nea =

Cp, e, 0] #a-c.

. YP.P(e) ANYaP(a) A [Va,c.P(c) Nc# € D P(a-c)|A

Vo, c1,c2.P(c1) A P(c2) D P([¢, c1,c2])] D Ve.P(c).

D U LN

It is also convenient to define the following predicate ext, which will be
needed later on to define how GOLOG, having already produced a CAT ¢ in
situation s, extends ¢ by a CAT ¢* to produce ¢'. Informally, ext(c,c,c*,s)
holds if ¢ is a CAT which contains a path p from ¢ extended by the CAT
c*. p is obtained by starting at situation s and then moving down the tree
replacing s by successor situations according to the actions encountered along
the path. p follows a particular branch in the tree depending on the truth
value of the corresponding branch-formula relative to the current situation.
Formally:

" Logically, - and [_, _,_] are binary and ternary functions, respectively. We write
them this way for better readability of CAT’s.

On Sensing in GOLOG 9

ext(c,c,c*,s) =

= [¢, c2,¢3] D Ich, ch.c! = [, ch, N
[QS(S) 2 emt(c"ch;C*: S)/\
-d(s) D ext(ch,cg,c*, s)]

For example, let ¢ = ay - as - [p, as, €] and let p be false at do(as, do(ay, s)).
Then ext(c, ¢, c*, s) holds for ¢* = [g,€,a4] and ¢ = a1 - az - [p, as, [q, €, a4]].
Note that ¢’ can differ arbitrarily in the branches which are not taken, in this
case the true-branch for p.

Lastly, we introduce a two-place function cdo, which takes a CAT ¢ and a
situation s and returns a situation which is obtained from s using the actions
along a particular path in ¢. The idea is that cdo follows a certain branch
in the tree depending on the truth value of the respective branch-formula at
the current situation.

cdo(e, s) = s.
cdo(a, s) = do(a, s).
(
(

cdo(a - ¢, s) = cdo(e, do(a, s)).
cdo([p, c1, c2]), s) = if ¢(s) then cdo(cy, s) else cdo(ca, s).

5 sGOLOG

Programs in sGOLOG are those of GOLOG augmented by sensing actions
for both formulas and terms. The main difference compared to the original
GOLOG is that the interpreter now produces CAT’s instead of situations.
When constructing a CAT, a decision must be made as to when new branches,
that is, constructs of the form [¢, ¢, c2] are introduced. One possibility is to
introduce them automatically whenever a sensing action occurs. This seems
fine if we are sensing the truth value of a formula (like ¢), but what should
we branch on if we are sensing the value of a term, in particular if there are
(infinitely) many potential values for the term? To overcome this problem,
we leave the introduction of new branches under the control of the user by
introducing a new special action branch-on(¢), whose “effect” is to introduce
a new CAT [¢,¢,¢€]. Since we want sSGOLOG to produce CAT’s which are
ready for execution, we need to make sure that the truth value of the formula
which decides on which branch to take is known. This is taken care of by
attaching an appropriate Kwhether-term to the definition of branch_on.

Technically, the sSGOLOG interpreter is defined in a way very similar to
the original GOLOG. We introduce a three place macro Do(p,s,c) which
expands into a formula of the situation calculus augmented by CAT’s. It
may be read as “executing the program p in situation s results in CAT c¢.”
Note the difference compared to the original Do, where the last argument
was a situation rather than a CAT.

10 G. Lakemeyer

We begin with an auxiliary four-place macro Do4. Intuitively,
Do4(p, s,c,c’) may be read as “starting in situation s, executing the CAT
¢ and then the program p leads to ¢’, which is an extension of ¢.”

Do4d(p, s,c,c') = 3c*Do(p, cdo(c, s),c*) A ext(c,c,c*,s).
Do(p, s, c) is then defined as follows:

o(a, s,¢) = Poss(a,s) A ¢ = a for every primitive action a.

o(branch_on(), s, c) = Kwhether(p(now), s) A c = [p, €, €].

o(¢?,s,¢) = P(s) ANec =

O((pl |p2)7 8y C) = Do(ph 8y C) v Do(p27 S, C)'

o((p1; p2),s,c) =3 Do(p1,s,c") A Dod(pa, s, ,c).

o(mzp,s,c) = 3xDo(p, s,c).

o(p*,s,c) =VP[P(e,€) AVey,ca,c3.P(c1,c2) A Dod(p, s, ca,c3)
D P(cy,¢3)] D P(e,c).

Do(proc P p endproc,s,c) = Do(p, s, c)®

SCoOOoObDoU

Note that the definition of the various program constructs are not all that
different from the original ones. In fact, if we confine ourselves to GOLOG
programs without sensing and without occurrences of the special action
branch_on, it is not hard to show that the two interpreters coincide.

Theorem 1. Let Doy, stand for the old definition of Do. Let p be a GOLOG
program without sensing and branch_on-actions and let c=ay -co ... ¢, for
primitive actions a;. Then |= Do(p, s,c) = Doou(p, s, cdo(c, s)).

5.1 The airport example revisited

Let us now see how the airport example could be handled in sGOLOG.
To keep the formalization brief, we make various simplifying assumptions.
For example, we assume implicitly that the agent is at the airport and that
buy_coffee, buy_paper, and sense_gate are always possible. goto_gate requires
the referent of gate to be known and board_plane requires being at the (right)
gate.

Poss(buy_coffee, s) = TRUE
Poss(buy_paper,s) = TRUE
Poss(sense_gate, s) = TRUE
Poss(goto_gate, s) = Kref(gate, s)
Poss(board_plane, s) = am_at_gate(s)

sense_gate is the only sensing action. Hence for the others SF always returns
the same value:

& For simplicity, we only consider simple nonrecursive procedures without param-
eters. See [12] for how to handle general procedures in GOLOG.

On Sensing in GOLOG 11

SF(buy_coffee,s) =1
SF(buy_paper,s) =1
SF(goto_gate,s) = 1
SF(sense_gate, s) = gate(s)

gate and am_at_gate are the only fluents, and gate never changes its value:

Poss(a,s) D gate(do(a, s)) =y = gate(s) = y.
Poss(a,s) D am-at_gate(do(a, s)) = a = goto_gate V am_at_gate(s)
(Assumes that boarding the plane leaves you at the gate.)

Finally, the sGOLOG program to catch the plane is like the one in the
introduction except for the explicit branch_on action:

proc catch_plane
sense_gate;
buy_paper;
branch_on(gate > 90);
if gate > 90 then goto_gate;buy_coffee
else buy_coffee;goto_gate
endif;
board_plane
endproc

Assuming that AX consists of the foundational axioms of our extended
situation calculus, the above airport axioms, and simple arithmetic to com-
pare numbers, we obtain

AX = Do(catch-plane, Sp, ¢) with
¢ = sense_gate - buy_paper - [gate > 90,
goto_gate-buy_coffee-board_plane,
buy_coffee-goto_gate-board_plane].

Note that in the airport example we make use of the fluent K only in a very
limited way, namely in the form of Kref(gate, s) and Kwhether(gate(now) <
90, s). (The latter results from interpreting branch_on(gate > 90).) In par-
ticular, we do not have to deal with nested occurrences of Knows. For this
reason, there is no need to stipulate any special properties of the K-relation
such as reflexivity or transitivity. In principle, there is no problem adding such
restrictions. Indeed Scherl and Levesque [18] have shown that it suffices to
stipulate those for initial situations and that the successor state axiom for K
(Definition 1) guarantees that these properties hold in all successor situations
as well. However, as the work by Scherl and Levesque also shows, reasoning
about K is not easy. Even if we restrict the use of K to the Knows-macro, we
still need some form of modal reasoning to deal with it. When it comes to
implementing sGOLOG, this seems like a high price to pay. Fortunately, as
we will see in a moment, with reasonable restrictions on the use of sensing,
there is a way to avoid this problem by not using the K-fluent at all.

12

6

G. Lakemeyer

A simple implementation

In this section we present a very simple implementation of sGOLOG in
Eclipse-Prolog. Besides the usual constraints that come with the use of Pro-
log, like negation-as-failure and atomic facts only to describe the initial situ-
ation, we restrict sensing actions and their use as follows:

1.

w

Only the truth value of atomic facts can be sensed. In particular, sensing
actions have the form sense(P), where P is a fluent.

. The truth value of a sensed fluent is never tested before the corresponding

sensing action has been performed.

. branch_on(P) actions are only allowed in case P is a sensed fluent.
. Whenever a branch_on(P) action is reached, both truth values are con-

ceivable for P.

Some remarks regarding each of these assumptions:

. While restricting ourselves to atomic facts is essential, there is no problem

in principle to allow for sensing the referent of a term as well. However,
it would add some overhead to the implementation, and we have chosen
to ignore this issue here for the sake of simplicity.

. This is what De Giacomo and Levesque [4] call the dynamic closed world

assumption. It lets us deal with incomplete information even in Prolog,
which makes the closed world assumption. The idea is that whenever a
fluent F' is tested for the first time, complete information about F' has
been achieved.

. Applying branch_on only to sensed fluents enables us to avoid having to

work explicitly with a K-fluent in a very simple way. Testing whether a
sensed fluent P is known can be reduced to testing whether the action
sense(P) was performed earlier. This test is easily implementable by in-
troducing a new fluent sensed(P, s) which becomes true when sense(P)
is executed and remains true from then on. In essence, under the above
assumptions the truth value of sensed(P,s) keeps track of whether P is
known. Of course, the use of sensed(P,s) to simulate Kwhether(P,s) is
not restricted to branch-on. For example, it may also be part of a defini-
tion of Poss(a, s).

. If it is possible that P can take on either truth value, we can safely use

hypothetical reasoning for both cases when evaluating branch_on(P).?

The idea is that the true-branch C1 of the CAT [P, C1, C2], which results
from branch_on(P), is constructed by assuming that P is true in the
current situation. Similarly, the false-branch C2 is developed by assuming
that P is false in the current situation.

We implement this by introducing new primitive actions assm(P, 1) and
assm(P,0) whose only effect is to turn P true and false, respectively.

9 If it would follow that P is, say, true, then considering the case where P is false

might lead to failure, even though that case never arises.

On Sensing in GOLOG 13

(See the definition of do4 below.) Note that that actions occurring after
assm are allowed to change the truth value of P. An example previously
discussed in De Giacomo and Levesque [4] is an elevator controller, which
first senses the value of a button and, if it is “on,” resets it to “off”
afterwards.

We now turn to the actual implementation. The reader familiar with the
original paper on GOLOG [12] will notice the close similarity between the
Prolog implementation of GOLOG and the one below for sGOLOG. Note, in
particular, that the definitions of do in GOLOG and sGOLOG are practically
identical except for sequence (:) and, of course, branch_on, which does not
exist in GOLOG.

:— dynamic(holds/2).
:- op(970,xfy, [:1). /* Sequence.*/
:— op(950, xfy, [#]). /* Nondeterministic action choice.*/

/* do4(P,S,C,C1) recursively descends the CAT C (first two clauses). */
/* Once a leaf of the CAT is reached (third clause), "do" is called, */
/* which then extends this branch according to P */
do4(E,S,[A|C],C1) :- primitive_action(A),C1=[A|C2],do4(E,do(A,S),C,C2).
do4(E,S,[[P,C1,C2]]1,C) :- do4(E,do(assm(P,1),S),C1,C3),
do4(E,do(assm(P,0),S),C2,C4),
c = [[P,C3,C4]].
do4(E,S,[]1,C) :- do(E,S,C).

do(E1 : E2, S, C) :- do(E1,S,C1), do4(E2,S5,C1,C). /* sequence */
do(?(P),S,C) :- C=[]1,holds(P,S). /* test */

do(E1 # E2, S, C) :- do(E1,S5,C) ; do (E2,S,C). /* nond. act. choice */
do(if (P,E1,E2),S,C) :- do((?(P) : E1) # (?(neg(P)) : E2),S,0).
do(star(_),_,[]). /* nondet. iteration */

do(star(E),S,C) :- do(E : star(E),S,C).

do(while(P,E),S,S1):- do(star(?(P) : E) : 7(neg(P)),S,S1).
do(pi(V,E),S,81) :- sub(V,_,E,E1), do(E1,S,S1)./* nond. arg. choice */
do(E,S,C) :- proc(E,E1), do(E1,S,C). /* procedure */

/* the base cases: primitive actions and branch_on(P) */
do(E,S,[E]) :- primitive_action(E), poss(E,S).
do (branch_on(P),S,[[P,[1,[]1]1]) :- holds(sensed(P),S).

/* sub and sub_list are auxiliary predicates */

/* sub(Name,New,Terml,Term2): */

/* Term2 is Terml with Name replaced by New. */
sub(_,_,T1,T2) :- var(T1), T2 = T1.
sub(X1,X2,T1,T2) :- not var(T1), T1
sub(X1,X2,T1,T2) :- not T1 = X1, T1
T2 =..[F|L2].

sub_list(_,_,[1,[1).

X1, T2 = X2.
..[FIL1], sub_list(X1,X2,L1,L2),

14 G. Lakemeyer

sub_list(X1,X2,[T1|L1], [T2|L2]) :- sub(X1,X2,T1,T2),
sub_list(X1,X2,L1,L2).

/* Definition of holds for arbitrary nonatomic formulas */
holds(and(P1,P2),S) :- holds(P1,S), holds(P2,S).
holds(or(P1,P2),S) :- holds(P1,S); holds(P2,S).

holds (neg(P),S) :- not holds(P,S). /* Negation by failure */
holds(some(V,P),S) :- sub(V,_,P,P1), holds(P1,S).

/* the successor state axiom for sensed */
holds(sensed(P) ,do(A,S)) :- A = sense(P) ; holds(sensed(P),S).

Let us now consider an implementation of the airport example. Since we
restrict ourselves to sensing the truth values of fluents, we need to adapt the
example accordingly. For simplicity, let us assume that there are only two
gates, gate_A and gate_B. We introduce a fluent it_is_gate_A, whose truth
value can be sensed and which then tells us which gate to take. In contrast to
the original example, we also use the slightly more general action goto(x) and
fluent am_at(x) instead of goto_gate and am_at_gate, respectively. The general
definition of sSGOLOG requires the use of SF(a,s) to define the result of a
sensing action. However, SF'is only needed for the definition of the epistemic
K-fluent. Since the implementation does not use K, there is no need to use
SF either.

/* declare the primitive actions */
primitive_action(goto(_)).
primitive_action(buy_paper) .
primitive_action(buy_coffee).
primitive_action(board_plane) .
primitive_action(sense(_)).

/* all actions are always possible except board_plane, */
/* which requires being at the right gate */
poss(goto(_),_).
poss (buy_paper,_) .
poss (buy_coffee,_).
poss(sense(_),_).
/* boarding requires being at the right gate */
poss(board_plane,S) :- holds(it_is_gate_A,S) ->
holds (am_at (gate_A),S) ; holds(am_at(gate_B),S).

/* successor state axioms */

/¥ I am at X if I just went there or */

/* if I was there and did not go anywhere else */

/* (assumes that boarding the plane leaves you at the gate) */
holds (am_at(X) ,do(A,S)) :- A = goto(X) ;

On Sensing in GOLOG 15

(holds(am_at(X),S), not (A = goto())).

holds(it_is_gate_A,do(A,S)) :- holds(it_is_gate_A,S) ;
A = assm(it_is_gate_A,1).

/* facts about the initial situation sO */
/* none necessary here */

proc(catch_plane,
(sense(it_is_gate_A):
buy_paper:
branch_on(it_is_gate_A):
if (it_is_gate_A,
goto(gate_A) :buy_coffee,
buy_coffee:goto(gate_B)):
board_plane)
).

/* sample run, slightly reformatted for better readability */
[eclipse 3]: do(catch_plane,s0,C).

C = [sense(it_is_gate_A), buy_paper, [it_is_gate_A,
[goto(gate_A), buy_coffee, board_plane],
[buy_coffee, goto(gate_B), board_plane]ll]l More? (;)

no (more) solution.

One might object that the implementation requires that the user is aware
of the internals of the interpreter because the pseudo-action assm occurs in
the user’s code. In the example, it is part of the successor state axiom of
holds(it_is_gate_A,do(A,S)). The objection can be dealt with by allowing
the user to write successor state axioms without assm and then modifying
the axioms automatically in the following way. Let F' be a fluent whose truth
value can be sensed. According to Reiter [17], the general form of the successor
state axiom of F' is (provided Poss(a, s) holds):

Holds(F,do(a, s)) = &} V (Holds(F,s) A ~®}),

where SP;C and @, describe the conditions which lead to F' being true and
false, respectively. We can compile the “effects” of the pseudo-action assm
into the successor state axiom by replacing the above axiom by

Holds(F,do(a, s)) = [#4 V a = assm(F, 1)]V
(Holds(F,s) A =[@g V a = assm(F,0)]).
Another issue that needs to be addressed is that of correctness. In other

words, is the interpreter a faithful implementation of the specification of
sGOLOG? Here the answer may not be that easy to come by. A reasonable

16 G. Lakemeyer

intermediate step would be to first give a purely logical specification of our
way to avoid the K-fluent using sensed and assm and then prove that the
two formalizations coincide under the restrictions laid out at the beginning
of this section. We leave this to future work.

7 Summary and discussion

In this paper we proposed sGOLOG, which extends GOLOG by adding sens-
ing actions for sensing the truth values of formulas as well as the referents
of terms. We provided an off-line interpreter for sGOLOG, whose definition
is simple and remarkably similar to the original one proposed for GOLOG.
Instead of producing a linear sequence of primitive actions, the sGOLOG in-
terpreter generates a tree of actions, if one exists, with the idea that branching
is conditioned on the outcome of sensing actions.

In [4], De Giacomo and Levesque propose a different version of GOLOG
with sensing. They advocate a combination of off-line and on-line interpre-
tation. On-line interpretation means, roughly, that instead of verifying that
the whole program is executable, the interpreter finds the next executable
primitive action and commits to it by immediately executing it. The advan-
tage is that, whenever a sensing action occurs, the outcome is immediately
known and no branching is necessary. The authors argue that it is infeasi-
ble to verify very large programs off-line, in particular those that contain
many nondeterministic actions and sensing actions. The authors certainly
have a point here. In particular, programs with loops such as while ¢ do

. sense(d) ... endwhile generally lead to infinite CAT’s in our approach.
Despite these shortcomings, we think there is a place for off-line interpre-
tation of programs with sensing. For one, many programs with a moderate
number of sensing actions can very well be handled by our approach. Also, as
we have seen, sensing does not necessarily lead to branching. Furthermore,
we believe that off-line interpreting is a valuable tool during program devel-
opment, since we want to have some confidence that a program works before
running it on an expensive robot. De Giacomo and Levesque seem to believe
in off-line interpretation as well, at least partly. They allow a user to specify
which parts of a program are to be handled off-line. Their version of off-line
interpretation, however, is somewhat limited compared to ours. For one, they
only verify that for all outcomes of sensing the program is executable without
actually constructing a plan (like our CAT’s), which could then be executed
without further processing. Moreover, they do not handle sensing terms. It
seems interesting to try and combine our ideas with theirs to have the best
of both worlds.

References

1. Baral, C. and Son, T. C., Approximate reasoning about actions in presence
of sensing and incomplete information., Proc. of the International Logic Pro-

10.

11.

12.

13.

14.

15.

16.

17.

18.

On Sensing in GOLOG 17

gramming Symposium (ILPS’97), 1997.

. Burgard, W., Cremers, A. B., Fox, D., Hahnel, D., Lakemeyer, G., Schulz, D.,

Steiner, W., Thrun, S.,; The Interactive Museum Tour-Guide Robot, AAAI-98.
De Giacomo, G. (ed.) Proceedings of the AAAI Fall Symposium on Cognitive
Robotics, AAAI Technical Report FS-98-02, AAAT Press, 1998.

. De Giacomo, G. and Levesque, H.J., An incremental interpreter for high-

level programs with sensing. in: Proceedings of the AAAI Fall Symposium on
Cognitive Robotics, AAAI Technical Report FS-98-02, AAAT Press, 1998, pp.
28-34.

Etzioni, O., Hanks, S., Weld, D., Draper, D., Lesh, N., and Williamsen, M.,
An approach to planning with incomplete information. Proc. KR’92, Morgan
Kaufmann, 1992, pp. 115-125.

Golden, K. and Weld, D., Representing sensing actions: the middle ground
revisited. Proc. KR’96, Morgan Kaufmann, 1996, pp. 174-185.

Hintikka, J., Knowledge and Belief: An Introduction to the Logic of the Two
Notions. Cornell University Press, 1962.

Kripke, S. A., Semantical considerations on modal logic. Acta Philosophica
Fennica 16, 1963, pp. 83-94.

Lakemeyer, G. and Levesque, H. J., AOL: a logic of acting, sensing, knowing,
and only knowing, Proc. of the 6th International Conference on Principles of
Knowledge Representation and Reasoning (KR’98), Morgan Kaufmann, 1998,
pp. 316-327.

Levesque, H. J., What is Planning in the Presence of Sensing. AAAI-96, AAAI
Press, 1996.

Levesque, H. J. and Reiter, R., High-level robotic control: beyond planning.
Position Statement. Working Notes of the AAAI Spring Symposium on Inte-
grating Robotic Research: Taking the Next Leap, AAAI Press, 1998.

H. J. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. B. Scherl. GOLOG: A
logic programming language for dynamic domains. Journal of Logic Program-
maing, 31, 59-84, 1997.

Lin, F. and Reiter, R., State constraints revisited. J. of Logic and Computation,
spectal 1ssue on actions and processes, 4, 1994, pp. 665-678.

McCarthy, J., Situations, Actions and Causal Laws. Technical Report, Stanford
University, 1963. Also in M. Minsky (ed.), Semantic Information Processing,
MIT Press, Cambridge, MA, 1968, pp. 410-417.

Moore, R. C., A Formal Theory of Knowledge and Action. In J. R. Hobbs
and R. C. Moore (eds.), Formal Theories of the Commonsense World, Ablex,
Norwood, NJ, 1985, pp. 319-358.

Morgenstern, L., Knowledge preconditions for actions and plans. Proc. IJCAI-
87, pp. 867-874.

Reiter, R., The Frame Problem in the Situation Calculus: A simple Solution
(sometimes) and a Completeness Result for Goal Regression. In V. Lifschitz
(ed.), Artificial Intelligence and Mathematical Theory of Computation, Aca-
demic Press, 1991, pp. 359-380.

Scherl, R. and Levesque, H. J., The Frame Problem and Knowledge Producing
Actions. in Proc. of the National Conference on Artificial Intelligence (AAAI-
93), AAAT Press, 1993, 689—695.

