
Landmark-based Representations for

Navigating Holonomic Soccer Robots

Daniel Beck, Alexander Ferrein, and Gerhard Lakemeyer

Knowledge-based Systems Group
Computer Science Department

RWTH Aachen
Aachen, Germany

{dbeck, ferrein, gerhard}@cs.rwth-aachen.de

Abstract. For navigating mobile robots the central problems of path
planning and collision avoidance have to be solved. In this paper we
propose a method to solve the (local) path planning problem in a reactive
fashion given a landmark-based representation of the environment. The
perceived obstacles define a point set for a Delaunay tessellation based on
which a Traversal graph containing possible paths to the target position
is constructed. By applying A* we find a short and safe path through the
obstacles. Although the Traversal graph is recomputed in every iteration
in order to achieve a high degree of reactivity the method guarantees
stable paths in a static environment; oscillating behavior known from
other local methods is precluded. This method has been successfully
implemented on our Middle-size robots.

1 Introduction

One fundamental problem which has to be addressed for a mobile robot is the
problem of navigation and path planning while avoiding to collide with obstacles
in the environment. In a dynamic environment a navigation scheme with the
ability to rapidly incorporate changes in the environment into the navigation
process is required to safely and quickly navigate to the given target location.
The navigation problem is often divided into two problems, which are solved
independently from each other: path planning and collision avoidance. Whereas
collision avoidance is regarded as a local problem, the path planning problem is
often examined at a more global scale. In contrast to local methods which solely
plan on the basis of the information gained from the current sensor readings,
global methods rely on a global map of the environment, say, a floor plan of a
building. Usually, those maps cover an area that exceeds the limited perception
range of the sensors by far. As a consequence thereof the path can be planned
from the start to the target position and not only around the next obstacles as it
is the case for the local setting. Due to this fact, local methods often suffer from
oscillating behavior. Drawbacks of global methods are that they do not account
for avoiding obstacles and need a global map of the environment. Examples of
global path planning are methods using probabilistic road maps [1] or dynamic

programming-based approaches [2]; examples of local path planning (collision
avoidance) are curvature-velocity methods [3] or potential fields [4, 5].

In this paper we propose a method which combines features from both, local
as well as global path planning. The obstacles around the robot as they are per-
ceived by means of its sensors are entered into a local map. As such, our method
is local. We employ a geometric, landmark-based representation of the environ-
ment as opposed to many collision avoidance algorithms which are density-based
and make use of a grid map for the perceived obstacles. Based on a Delaunay tes-
sellation over the obstacles we construct a traversal graph. This traversal graph
is a topological representation of all paths through the perceived obstacles to
the target position. On this space we apply A* for finding a short and safe path.
The safety of a path is accounted for by incorporating the distances between
obstacles passed along the path into A*’s cost function.

This way we obtain a path from the current position of the robot, around the
detected obstacles to the target position, i.e., the search cannot get trapped in
certain obstacle configurations—potential field methods, for example, get stuck
in local minima. Nevertheless, we reach a degree of reactivity that is comparable
to other collision avoidance schemes, which is due to the fact that the traversal
graph is re-computed and a new path is searched for after every sensor update.
This is feasible since the traversal graph can be efficiently constructed and its
size is linear in the number of obstacles. Furthermore, it is shown that the re-
computation does not lead to an oscillating behavior but yields stable paths in a
static environment. These characteristics make this a very well-suited approach
for robotic soccer applications where the number of obstacles is rather small and
new obstacle information extracted from camera images usually arrive with 20 –
30 Hz. Since holonomic robot platforms are the de-facto standard in the Middle-
size league we describe how a path through the traversal graph as it is found by
A* can be realized with such a robot. This means that, though path planning
is involved, we keep up the reactivity of a local collision avoidance method,
just like with potential fields. We show that the landmark-based representation
is much more suited to scenarios like RoboCup and yield much smaller search
problems. We compare the size of the path planning problems for landmark-
based and density-based approaches and show that the branching factor as well
as the solution length are smaller by an order of magnitude.

This paper is organized as follows. In Sect. 2 we discuss the large body
of related approaches to the collision avoidance and path planning problem of
mobile robots. In Sect. 3 we show our method in detail. We start with a concise
description of the construction of the traversal graph and how A* is applied on
the traversal graph to find a short and safe path. We show the optimality of the
calculated path and that it is stable. Then, we discuss in detail how a Bézier
curve is constructed based on the previously calculated path, before we show
how we combine this approach with a potential field method to avoid nearby
obstacles. Sect. 4 shows experimental results of our method. We conclude with
Sect. 5.

2 Related Work

The problems of path planning and collision avoidance are essential for mobile
robotics and the techniques developed to solve those problems are also of great
importance for a multitude of applications of industrial robots, for animating
digital actors, and also for studying the problem of protein folding. Therefore, a
rich body of work exists in this area. A comprehensive overview of the subject
is given in the excellent textbooks [6] and [7].

Since we developed our approach with the robot soccer scenario in mind
and implemented it on our Middle-size league robots we concentrate the dis-
cussion of related work on the robot soccer domain and, additionally, also some
other landmark-based approaches which are related to ours. In the robot soccer
domain, most of the methods rely on density-based represenations; the most
popular kind of such representations are occupancy grid maps. For example,
potential field methods [4] make, in general, use this kind of representation. At
sample points, scattered over the environment, a force is computed which is the
combination of the repelling forces of the obstacles and the attracting force of
the target. The idea is that the resulting force then guides the robot to the tar-
get. In [8] an in-depth discussion of the limitations of potential field methods is
presented. A major drawback is the problem of getting stuck in local minima. In
our approach we compute a path to the target position and, therefore, are not
affected by such problems. Nevertheless, potential field-based methods appeal
due to their simplicity and high degree of reactivity which is achieved by con-
stantly re-comuputing the forces. Various extensions to the basic potential field
approach have been proposed. For instance, in [9], a collision avoidance method
is presented which combines artificial potential fields with a simulated annealing
strategy to circumvent the problem of getting stuck in local minima. A similar
approach is followed in [10] and [11].

Other grid based methods rely on search alogrithms to find a path to the
target as it was presented in [12] for path planning with a humanoid robot on
2.5 D grid and in [13]. In [14] the authors define a cellular automaton on top of the
grid representation. Similar to value iteration approaches the cellular automaton
computes a lowest cost path to the target. Especially in sparsely populated
environments a uniform resolution of the grid cell size, as it is commonly used,
provokes unnecessary computations since the path is computed with the same
precision regardless of the size of the free space around the robot. A (partial)
remedy for this problem was proposed in [13] where the resolution of the grid
decreases with the distance to the robot.

Generally, landmark-based approaches are better suited for sparsely popu-
lated environments because the length of the path is dependent on the number
of obstacles and not on the resolution of the grid. Although, sensor-based vari-
ants of those approaches exist they are mostly intended for scenarios where a
global map is available. Besides probabilistic roadmap methods, landmark-based
and geometrical methods have in commmon that they rely on some kind of cell
decomposition to sub-divide the free space into faces. One such example is given
in [15]. There, the Voronoi diagram around the obstacles is constructed and a

path is defined as a sequence of edges in the Voronoi diagram. The Voronoi di-
agram is dual to the Delaunay tessellation and as such the approach mentioned
above is similar to ours. With our approach, however, a trade-off between the
riskiness of a path and its length can be implemented in a natural way which
is not possible for Voronoi based approaches. This is because the obstacles are
not part of the Voronoi diagram and in order to obtain the distances between
the obstacles their position needs to be reconstructed from the given Voronoi
diagram.

3 Triangulation-based Path Planning

We now describe our landmark-based traversal graph in detail. With this repre-
sentation and the cost function we use for planning, we found a good trade-off
between shortness and the safety of the path. We prove that, for every point
on the path, the calculated optimal path is stable given that the configuration
of obstacles stays unchanged. Further, we show how a suchlike calculated path
can be realized on a holonomic robot platform. In order to achieve the greatest
possible reactivity, we moreover check if obstacles are very close to the robot
and calculate, similar to the potential field methods, an avoidance course.

3.1 The Triangulation and the Traversal Graph

For the rest of the paper we assume that the robot is equipped with sensors that
allows it to detect obstacles located in a circular perception field area around the
robot using, say, an omnidirectional camera. The perceived obstacles are then
represented in one of the following ways:

– Smaller obstacles (e.g., other robots) are represented by a point P denot-
ing the obstacle’s center and an associated radius r indicating the equi-
directional extent of the obstacle. We write ||P || = r to denote the extension
of obstacle P to be r.

– Obstacles which do not have an equi-directional extent (e.g., walls) are repre-
sented by a set of points and edges connecting the perceived contour points.
Such points have no associated extent and the edges are explicitly marked
as not passable. Generally, only the front-side contour can be perceived since
no information about the extent of the obstacles on its rear side is available.

We construct a Delaunay tessellation for all such points which are perceived as
obstacles. (See Fig. 1(a) for an example.)

Definition 1 (Delaunay Tessellation). The Delaunay tessellation DT (S) of
a set S of points in the plane is a graph with the vertices VDT (S) and the edges
EDT (S). It is obtained by connecting any two points p, q ∈ S with a straight line
segment such that a circle C exists which passes through p and q but no other
point of S lies within the circle C.

A face f (i) of the tessellation is defined by the three vertices v
(i)
0 , v

(i)
1 , v

(i)
2 . The

edge e
(i)
j connects the vertices v

(i)
j−1 and v

(i)
j+1 (indices mod 3). A concise overview

of Delaunay tessellations can be found in [16]. Due to the circumcircle criterion
the triangulation as it is given by DT (S) ensures that if the robot is located in

the triangle f (i) the obstacles represented by v
(i)
0 , v

(i)
1 , v

(i)
2 are the next obstacles

surrounding the robot. This implies that whenever the robot passes through any
two obstacles it also crosses the edge in the triangulation DT (S) between the
vertices representing these two obstacles. Clearly, the safest way to pass through
two obstacles is to drive right through the middle between them. This is why we
choose the midpoints of the triangulation edges as way points. Then, the edges
between the midpoints of a particular triangle represent, in a topological way, all
possibilities to traverse the triangle in question. With this in mind, the problem
of path planning now can be defined as finding a short and safe path through
DT (S) along those midpoints leading from the current position of the robot to
the given target position. We thus construct a traversal graph T (S) based on
Delaunay tessellation DT (S) over the set of points S representing the obstacles.

Algorithm 1 (Traversal Graph) Let S be a set of points in the plane and
DT (S) =

〈

VDT (S), EDT (S)

〉

a Delaunay tessellation of S (as shown in Fig. 1(a))

with F = {f (0), . . . , f (m)} the set of faces of DT (S) and v
(i)
0 , v

(i)
1 , v

(i)
2 the vertices

of a face f (i) and e
(i)
0 , e

(i)
1 , and e

(i)
2 its edges as above. Let R, T be points in

the plane denoting the robot’s position and the target position, respectively. Let
T (S) =

〈

VT (S), ET (S)

〉

be the traversal graph of DT (S). VT (S) and ET (S) are
constructed as follows:

1. Add the midpoints of all edges in EDT (S) to VT (S). For all triangles f (i) in
DT (S) that neither contain R nor T add the edges connecting the midpoints
of f (i)’s edges to ET (S). In case, R or T are located inside f (i) add further
edges between the respective point and the midpoints of the circumjacent
triangulation edges ET (S). (See Fig. 1(b).)

2. If neither R nor T are enclosed by DT (S), we extend it in the following way:
(a) determine the set of outer edges of DT (S), i.e., the edges in EDT (S) that

are not shared by any two adjacent triangles;
(b) consider all outer edges (cf. arrows in Fig. 1(b)) for which no direct

connection between the respective midpoint and R or T exists. (A direct
connection exists if the straight line segment between the midpoint and
R or T does not intersect with another outer edge);

(c) for each such outer edge e define line segments sv1
, sv2

starting in v1, v2,
resp., which are incident to e. The svi

are angle bisectors of the outer an-
gles between e and the neighboring outer edges and are of length | svi

| =
2 · (|| vi || + ||R ||). Construct three further line segments hv1

, hv2
, and

hm, all perpendicular to e. The hv1
, hv2

start in v1, v2, resp. ; hm starts
in the midpoint m of edge e; |hvi

| = | svi
| and |hm | = max{|hvi

|}.
Fig. 1(c) illustrates this step;

(d) let S′ be S extended by the endpoints of these line segments. Re-establish
DT (S′) and T (S′). Fig. 1(d) shows the resulting graph.

(a) (b)

s1

s2

hm

h1

h2

(c) (d)

Fig. 1. An illustration of the construction of the traversal graph. The dashed circle
around the robot depicts the perception border of the robot’s sensors; the black dot on
the right side is the target. The contour of non-circular obstacles is modeled by sub-
dividing it into linear pieces which are represented by edges marked as not passable
(cf. L-shaped obstacle to the right).

Every edge in ET (S) describes one possibility to traverse a triangle in DT (S)
by moving from the midpoint between two obstacles to the safest point to pass
through the next two obstacles on the path. In order to also take into account
paths that leave the area which is covered by the triangulation DT (S) over an
edge from which no direct path to the target exists, a construction as it is given
in step 2 of the above construction algorithm is required. This construction guar-
antees that, topologically speaking, all possible paths through and also around
the perceived obstacles can be represented. The traversal graph can be efficiently
established. Note that the Delaunay tessellation can be established in O(n log n)
with n = |S| (cf. [16]). The number of faces of DT (S) and, consequently, also the
size of VT (S) and ET (S) are in O(n). It can be shown that the whole algorithm
runs in O(n).

3.2 Searching for a Short and Safe Path

The task is now to find a path between the robot R and the target T in the
traversal graph T (S). To find such a path, we use A* for two reasons: (1) it is
known to be optimal efficient with an admissible heuristic, and (2) even though
the worst-case complexity is O(bd), where b denotes the branching factor and d

the depth of the search tree, we have in our case a branching factor of at most

2. To apply A* we have to define an admissible heuristic and a cost function.
With the cost function we can influence the optimality criteria and furthermore
prohibit edges with too few clearance.

Definition 2 (Heuristic and Cost Function). For a Delaunay tessellation
DT (S) =

〈

VDT (S), EDT (S)

〉

and its traversal graph T (S) =
〈

VT (S), ET (S)

〉

for
a set S of points in the plane, R the robot’s position, and T the position of the
target point, define a heuristic function h : VT (S) → IR as h(p) = dist(p, T) as
the straight line Euclidean distance between a vertex p in T (S) and the target
position T . The cost function g : VT (S) × · · · × VT (S) → IR of a path p0, . . . , pn

is defined as:

g(p0, . . . , pn) =
n−1
∑

i=0

dist(pi, pi+1) +
n−1
∑

j=1

clear(pj)

with clear(pi) = α·||ei||
−1+π, where ||ei|| denotes the length of the triangulation

edge ei ∈ EDT (S) on which pi ∈ VT (S) is located, and π is a term punishing edges
which are too short for the robot to cross. π is defined as

π =







∞, if ||ei|| < ||R|| + ||vi−1|| + ||vi+1||
or if ei is marked as not passable

0, otherwise

with ||R|| denoting the robot’s diameter, ||vi−1|| and ||vi+1|| the extent of the
obstacles vi−1, vi+1 ∈ VDT (S) incident to ei.

The result of the search will be a short and safe path through the graph that
leads form the current position of the robot to the given target position.

Theorem 1. Let S be a set of points in the plane, let DT (S) =
〈

VDT (S), EDT (S)

〉

be a Delaunay tessellation of S with T (S) =
〈

VT (S), ET (S)

〉

its traversal graph as
constructed by Alg. 1. Let P ∗ = 〈p0, . . . , pn〉 be the optimal path from p0 to pn in
T (S) according to the cost function f = h + g as given in Def. 2, and let R be a

point on the edge 〈pi, pi+1〉 of P ∗. Let P̃ = 〈pi+1, . . . , pn〉 ⊂ P ∗ and P =
〈

R, P̃
〉

be a path starting in R and following the optimal way points thereafter. Then,
there exists no path starting in R with lower costs than P .

Proof. Assume the opposite, i.e., there exists a path P̃ ′ =
〈

p′i+1, . . . , p
′

m

〉

with

p′m = pn as depicted in Fig. 2 such that P ′ =
〈

R, P̃ ′

〉

is the optimal path from

R to the target position, but P ′ 6⊂ P ∗. Since, for all points on the edges of the
path 〈p0, . . . , pi〉, a path continuing with 〈pi+1, . . . , pn〉 after pi has been chosen
instead of one continuing with

〈

p′i+1, . . . , p
′

m

〉

, it must hold that: g(pi, . . . , pn) <

g(pi, p
′

i+1, . . . , p
′

m) Under the assumption that the optimal path starting in R

follows the way points
〈

p′i+1, . . . p
′

m

〉

, it must hold that g(pi, p
′

i+1, . . . , p
′

m) −

(d′ − d′ǫ) < g(pi, . . . , pn) − ǫ because otherwise
〈

p′i+1, . . . , p
′

m

〉

would not have
been selected as the optimal path from R to the target. Since it holds for every

p0

pi

pn = p′

m

ǫ
pi+1

p′

i+1

d′

d

R

d′

ǫ

Fig. 2. Sketch of the proof of Theorem 1.

triangle that each side of the triangle is longer than the absolute difference of the
lengths of the other two sides, d′−d′ǫ has to be less than ǫ. This is in contradiction
to the initial assumption, hence the claim follows. ⊓⊔

Corollary 1. The cost function of Def. 2 yields stable paths in T (S).

The corollary states that the decision which path to take does not oscillate
for any point on the optimal path in the traversal graph T (S). This makes
the traversal graph a well-suited representation for the reactive path planning
problem.

3.3 Realizing a Path on a Robot

After having found a path in T (S), we have to realize this path on the
robot. Let P = 〈p0, p1, . . . , pn−1, pn〉 where p0 = R denotes the robot’s location,
the pi denote the points on the path, and pn = T the target position. As the
path given through the path
points is very angled, we aim
at smoothing it. To this end,
we approximate the path by
a set of cubic Bézier patches.
The parametrized represen-
tation of a Bézier curve of de-
gree n is given by C(τ) =
∑n

i=0

(

n
i

)

(1−τ)n−iτ iCi, where

0 ≤ τ ≤ 1 is the curve pa-
rameter, and the Ci are the
control points of the curve.
For our path approximation
we make use of cubic Bézier
patches with n = 3. Fig. 3

C
(1)
0 = p0

C
(1)
1

C
(1)
2

C
(1)
3 = C

(2)
0

C
(2)
1

C
(2)
2

C
(2)
3 = p2

p1

t = 0

t = 1

t = 2
t = 3

v1

v2

v3

v
(1)
1 v

(1)
2 = v

(2)
1

v
(1)
3 = v

(2)
3

v
(2)
2

e
(1)
1

e
(1)
2 = e

(2)
3

e
(1)
3

e
(2)
2

e
(2)
3

f(1)

f(2)

Fig. 3: Bézier curve of the path.

shows an example. The path through the faces f1 and f2 is given by the points

p0, p1, and p2 from which the control points C
(i)
j , 0 ≤ j ≤ 3, 1 ≤ i ≤ 2, of

the two Bézier patches, can be constructed. The construction ensures that the
curve consisting of several Bézier patches is C2 continuous at the junctures. This
property is very helpful for planning the robot’s velocity. A detailed overview
can be found, for example, in [17].

Now, for demonstrating how the robot drives along this curve, assume that,

at time t = 0 the robot, located in C
(1)
0 , is given the path through the points

p0, p1, p2. With these path points it derives the black curve given by the control

points C
(1)
j . The robot now derives its next driving command by adding the

difference quotient of the curve point at the next time step to its own movement
vector. At time t = 1 the robot advanced to the depicted position. Its movement
is described by its movement vector v1, depicted in the figure. At this time step
the robots checks if it diverted too much from the curve calculated at t = 0 due to
slippage or other imprecisions in executing the previous motion command. The
dashed lines left and right to the curve depict how much the robot might divert
from the curve. To construct the black curve at t = 1, we must derive the first

control point C
(1)
0 from where the robot started, as the Bézier curve is uniquely

defined by its control points. This can be done by subtracting movement vector
v1 from the robot’s current position. At t = 2, we again check whether our actual
position is near the original curve, which was calculated based on p0, p1, p2. Note

that in order to regain C
(1)
0 , we project back the vector sum v1 + v2 to time

t = 0. At t = 3 the robot’s location diverted too much from the curve in our
example. Consequently, we have to compute a new curve (depicted with the dark
gray curve in Fig. 3) to reach path point p2 in face f2.

Generally, it is only necessary to project the robot’s position back to the last
juncture since only this point is necessary to compute the current Bézier patch,

i.e., after passing C
(1)
3 we do not have to go back to p0 = C

(1)
0 .

3.4 The Fallback: Collision Avoidance with nearby Obstacles

Although the aspect of the path’s safeness was addressed during the search, it
might nevertheless happen, under certain circumstances, that the robot gets too
close to one of the obstacles. This might be due to the high dynamics of the
environment (an obstacles approaches the robot very fast) or motion errors due
to, say, slippage such that the robot ends up at another position than the in-
tended one. To be on the safe side, we avoid bumping into the obstacle by using
an additional reactive collision avoidance scheme which borrows fundamental
ideas from the potential field method. If the robot’s distance to an obstacle is
less than a specified safety clearance, we compute a repelling force vector keep-
ing the robot away from the obstacle and an attracting force vector guiding
the robot to the next way point on the optimal path. These force vectors are
computed in the same fashion as the force vectors in the potential field method.
The intention behind this is to steer towards the next way point while increas-
ing the distance between the robot and the obstacle in order to continue on the
previously computed path. In contrast to a pure potential field approach not all
detected obstacles have to be taken into account but only the closest. Further-
more, the drawback of potential fields, i.e., getting stuck in local minima, cannot
occur here since it is guaranteed that no other obstacle is located in the area
between the obstacle and the next way point. Thus, we do not run into the risk
of oscillating motion behaviors.

20.

10.

30.

(a)

150.

5.

10.

15.

20.

30.

50.

100.

(b)

Fig. 4. Comparison of the Traversal graph with a grid-based solution. Note: very small
triangles are omitted in Fig. 4(a); length of path is correct, nevertheless.

4 Evaluation

In comparison to grid-based approaches a considerable speed-up in the search
for an optimal path is achieved with our triangulation-based method. The reason
for this lies, in general, in the lower number of triangles compared to the number
of cells, which have to be searched. Moreover, the number of triangles depends
on the number of obstacles and their relative positions to each other in contrast
to a non-adaptive sub-division of the area in cells with constant size.1 Finally,
the triangulation guides the search into the right direction in a natural way, i.e.,
it is not possible to stray too far from the optimal path.

In the following we give an example underlining this intuitive considerations.
The example is a kind of a worst-case example which, nevertheless, is not unlikely
to happen in reality. The situation is depicted in Fig. 4. The robot is surrounded
by a number of obstacles arranged in an U-shaped fashion. The target is on
the opposite side of the opening of the U such that the robot, at first, has to
move away from the target to get out of the U-shape, and then needs to navigate
around the obstacles to reach the target, eventually. For the following comparison
we assume that perception radius is 4 m; the obstacles have a distance of 3 m
to the robot’s initial position; the robot has to keep a security distance of 50 cm
to the obstacles; the cell size is 10 × 10 cm2.

As can be seen in Fig. 4(a) the path from the initial position to the target
traverses 30 triangles. The branching factor of the search tree is two (possible
successors are the two other midpoints of the edges of the triangle the robot
is entering) and consequently the size of the search tree is in O(230). For the
grid-based approach the search depth depends on the length of the path. The
path leads around the obstacles which occupy the gray shaded cells. Note, the
the security distance is added by the common method of obstacle growing, as
depicted in Fig. 4(b). We now can estimate that the path, as it is depicted in

1 As described in Sect. 2, there also exist adaptive methods. Nevertheless, we compare
our representation to non-adaptive grids as even an adaptive grid size does not
remedy the basic problem of much longer paths.

R

T

Fig. 5. (Top row from left to right): Omni-vision image of the scene, white boxes are
the obstacles; undistorted image; the remaining images show a detailed view of the
triangulation over the perceived obstacles, R denotes the robot, T the target. For the
sake of clarity only the nearest obstacles are marked.

black in the Fig. 4(b), traverses roughly 180 cells. Even if we assume that the
branching factor is only four, i.e., no diagonal movements are allowed, the size of
the search tree is in O(4180). Of course, these measures are both upper bounds
which are hardly reached in practice—the effective branching factor of the search
tree as it is generated by A* is in both cases smaller. Nevertheless, for the grid-
based representation, nearly the whole inner of the U has to be searched before
cells outside are taken into account. This shows that the search space is much
larger than with our representation. Also, the length of the path gives a good
impression of this fact.

Fig. 5 shows a real-world example. The top left image shows an omni-vision
view of the scenario; the same view, though undistored this time, is shown in the
middle. In the remaining images details of the undistorted views while navigating
around the obstacles are depicted. The middle image in the bottom row pictures
the nearby collision avoidance as it is mentioned in Sect. 3.4.

5 Conclusion

In this paper we presented a solution to the problem of reactive path planning.
We introduce the Traversal graph, a compact, landmark-based representation
for sparsely populated environments like the robotic soccer domain. The Traver-
sal graph defines possible traversals of faces in a Delaunay tessellation leading
through the midpoints of the Delaunay edges between two obstacles. In this
graph we search for a path deploying A* with a heuristics and a cost function
which yields a good trade-off between shortness and safety of the path. This path
can be proved to be stable, that is, the optimal path does not change for any
point on the path, under the assumption that the environment is static. This is a
major improvement over local path planning methods like potential fields which
cannot guarantee non-oscillating behaviors. Finally, we compare our method
with a standard grid-based local path planning approaches and show that the

solution can be computed much faster as the search problem is much smaller.
This allows us to search for a new path each time, a new sensor update arrives.
The compactness of the representation as well as the stable path property make
it possible to apply reactive path planning to the robot.

Acknowlegments. This work was partially supported by the German Science
Foundation (DFG) in the Priority Program 1125 and by the Bonn-Aachen Inter-
national Center for Information Technology (B-IT). We thank the anonymous
reviewers for their comments.

References

1. Canny, J.: Computing roadmaps of general semi-algebraic sets. The Computer
Journal 36(5) (1993) 504–514

2. Buhmann, J.M., Burgard, W., Cremers, A.B., Fox, D., Hofmann, T., Schneider,
F.E., Strikos, J., Thrun, S.: The mobile robot rhino. AI Mag. 16(2) (1995) 31–38

3. Simmons, R.: The curvature-velocity method for local obstacle avoidance. In:
Proc. ICRA-96, IEEE Computer Society Press (1996)

4. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots.
International Journal on Robotics Research 5(1) (1986) 90–98

5. Borenstein, J., Koren, Y.: The vector field histogram - fast obstacle avoidance for
mobile robots. IEEE Trans. on Robotics and Automation 3(7) (1991) 278–288

6. LaValle, S.: Planning Algorithms. Cambridge University Press (2006)
7. Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G.A., Burgard, W., Kavraki,

L.E., Thrun, S.: Principles of Robot Motion: Theory, Algorithms, and Implemen-
tations. MIT Press (June 2005) ISBN 0-262-03327-5.

8. Koren, Y., Borenstein, J.: Potential field methods and their inherent limitations
for mobile robot navigation. In: Proc. ICRA-91. (1991) 1398–1404

9. Park, M.G., Jeon, J.H., Lee, M.C.: Obstacle avoidance for mobile robots using
artificial potential field approach with simulated annealing. In: Proc. ISIE-01.
Volume 3. (2001) 1530–1535

10. Zhang, P.Y., Lü, T.S., Song, L.B.: Soccer robot path planning based on the artificial
potential field approach with simulated annealing. Robotica 22(5) (2004) 563–566

11. Zhu, Q., Yan, Y., Xing, Z.: Robot path planning based on artificial potential field
approach with simulated annealing. In: Proc. ISDA-06. (2006) 622–627

12. Gutman, J., Fukuchi, M., Fujita, M.: Real-time path planning for humanoid robot
navigation. In: Proc. IJCAI-05. (2005) 1232–1238

13. Behnke, S.: Local multiresolution path planning. In Polani, D., Browning, B.,
Bonarini, A., Yoshida, K., eds.: RoboCup 2003: Robot Soccer World Cup VII.
Volume 3020 of Lecture Notes in Computer Science. Springer (2004) 332–343

14. Behring, C., Bracho, M., Castro, M., Moreno, J.A.: An algorithm for robot path
planning with cellular automata. In: Proc. ACRI 2000, Springer (2000) 11–19

15. Sahraei, A., Manzuri, M.T., Razvan, M.R., Tajfard, M., Khoshbakht, S.: Real-Time
Trajectory Generation for Mobile Robots. In: AI*IA 2007: Artificial Intelligence
and Human-Oriented Computing. Springer (2007) 459–470

16. Aurenhammer, F., Klein, R.: Voronoi diagrams. In Sack, J.R., Urrutia, J., eds.:
Handbook of Computational Geometry. Elsevier Science Publishers (2000)

17. Foley, J.D., Phillips, R.L., Hughes, J.F., van Dam, A., Feiner, S.K.: Introduction
to Computer Graphics. Addison-Wesley Longman Publishing Co., Inc. (1994)

