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Abstract

In this paper we present the robot programming and planning language Readylog,
a Golog dialect which was developed to support the decision making of robots
acting in dynamic real-time domains like robotic soccer. The formal framework of
Readylog, which is based on the situation calculus, features imperative control
structures like loops and procedures, allows for decision-theoretic planning, and
accounts for a continuously changing world. We developed high-level controllers in
Readylog for our soccer robots in RoboCup’s Middle-size league, but also for
service robots and for autonomous agents in interactive computer games. For a
successful deployment of Readylog on a real robot it is also important to account
for the control problem as a whole, integrating the low-level control of the robot
(such as localization, navigation, and object recognition) with the logic-based high-
level control. In doing so our approach can be seen as a step towards bridging the
gap between the fields of robotics and knowledge representation.
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1 Introduction

Research on autonomous mobile robots has developed highly successful meth-
ods for tasks like localization, mapping, or navigation. In general, these meth-
ods rely heavily on techniques such as probabilistic state estimation, and there
seems to be little if any need for ideas from logic-based knowledge representa-
tion (KR). On the other hand, the planning and reasoning-about-action com-
munities in KR have made significant advances in modeling and reasoning
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about the dynamics of the world. While there is perhaps little question that
reasoning is useful when a robot needs to make decisions on how to achieve
its goals, few KR techniques have actually found their way into robotic sys-
tems. One of the reasons is that these techniques are perceived as being far
too computationally demanding. In this paper we want to demonstrate that
this need not be so and that it is possible and indeed very fruitful to inte-
grate state-of-the-art logical reasoning mechanisms into a robot. As we will
see, this is even possible in domains like robotic soccer, where tight real-time
constraints need to be taken into account. Enabling a robot to represent part
of its environment using logic also forces one to take seriously the idea that
symbolic representations need to be semantically grounded in how the robot’s
sensors perceive the world, an aspect usually ignored in the KR community.
It is in this sense that we feel that the paper fits into the theme of semantic

knowledge in robotics. Another aspect dealt with in the paper is that one can-
not ignore that the world changes constantly, even when the robot is thinking
about what to do next.

Here we present the robot programming and planning language Readylog,
a derivative of Golog (Levesque et al., 1997), which is based on the situ-
ation calculus (McCarthy, 1963), a first-order logic to reason about actions
and change. Readylog was designed to support high-level decision making
for robots acting in dynamic real-time domains like robotic soccer. The idea
of Readylog is to combine planning with programming. It features con-
trol structures known from imperative programming languages, but also non-
standard constructs for decision-theoretic planning employing MDP theories
in the logical framework. Readylog supports reasoning under uncertainty
and continuous change. It accounts for problems like gathering sensor values
and integrating them into the high-level controller, or monitoring the execu-
tion of previously established behavior plans. It was successfully applied for
controlling (soccer) robots in RoboCup competitions (Ferrein et al., 2005; Fer-
rein, 2008) and service robotics tasks (Schiffer et al., 2006a), and it showed
its usefulness as a behavior representation language (Dylla et al., 2008). With
the embedding of the Readylog high-level controller on a real robot and
integrating it into the overall robotic system, we demonstrate an approach
to bridge the gap between robotics and logic-based methods from the field of
reasoning about actions. We want to emphasize that, for our work, the com-
bination of the low-level control of the robot (localization, navigation, object
recognition) with the logic-based high-level control was of great importance
to come up with an overall efficient and flexible robot controller.

The paper is organized as follows. In the next section we discuss related work.
In Section 3, we show the robotics side of this work. We describe the hardware
platform of our robots and their software system. In Section 4 we present
some of the theoretical background of the situation calculus and Golog,
which Readylog is based on. Section 5 addresses our approach to the control
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problem for robots acting in dynamic domains. Readylog makes extensive
use of decision-theoretic (DT) planning, and we show how DT planning works
in the Readylog framework. We further address the problem of monitoring
the execution of the behavior policies, and the problem of integrating sensor
values in an efficient way. At the end of this section, we present an approach
to macro actions in the decision-theoretic context to speed up planning. In
our examples we show how Readylog is used for controlling soccer robots in
RoboCup’s Middle-size league. Other Readylog applications are discussed
in Section 6. Then we conclude.

2 Related Work

For the problem of high-level decision making a rich body of related approaches
exist. These comprise work on decision making in general, but also on appli-
cations from various fields. Here, we restrict ourselves to research on applying
decision making techniques to mobile robots. Some examples are the Procedu-

ral Reasoning System (PRS) (Ingrand et al., 1996), PRS-lite (Myers, 1996),
the Saphira architecture (Konolige et al., 1997), Reactive Action Packages

(RAP) (Bonasso et al., 1997), or the Reactive Plan Language (RPL) (McDer-
mott, 1991) and Structured Reactive Controller (SRC) (Beetz, 2001). Although
these approaches follow different directions, they have often influenced each
other. For example, language constructs which express that a process waits
for certain conditions to become true have been incorporated in many lan-
guages, including RPL and also Readylog. There are other approaches that
use Markov Decision Processes (MDPs) for decision making of a robot. One
impressing example for deploying this techniques is Nursebot (Pineau et al.,
2003). The robot was applied in nursing homes to help the elderly with their
daily life, reminding to take medicine or to go the doctor’s.

Another interesting and related field for robot control is the high-level control
of autonomous rovers which fulfill planetary missions. The goals of a mission
planner are different from ours. The domain is generally less dynamic, but re-
source allocation and run-time plan adaptation need to be taken into account.
Further, the terrain the robot is operating in is rough and unknown. For ex-
ample, Lemai and Ingrand (2004) report on a partial order planner which also
accounts for plan repair. In (Finzi et al., 2004) the authors describe a rover de-
ploying a model-based planning approach based on the Intelligent Distributed
Execution Architecture (Muscettola et al., 2004). A similar approach is fol-
lowed by Carbone et al. (2008) where a model-based high-level controller for
rescue robots is presented. They also concentrate on integrating sensor values
into the model-based controller of the robot. They tested their architecture
on real robots in search & rescue scenarios.
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On the side of logic-based action formalisms a closely related approach is the
work of Pirri et al. (2003), where an architecture for a domestic robot is pre-
sented. They also make use of Golog for their high-level control, and stress
the importance of representing the knowledge about the environment and of
integrating sensing results into the high-level controller as well as of moni-
toring the execution of the robot’s action. However, they do not deal with
domains where real-time decision making is as important as in our case. The
first realistic large-scale application of Golog was the tour-guide robot in the
Deutsches Museum Bonn in the Rhino project (Burgard et al., 1998). Over
several days a RWI B21 robot served as museum tour-guide and explained the
exhibits. Funge (2000) makes use of Golog for modeling animated creatures
in a cognitive way. He uses the possibility of non-determinism in Golog for his
creatures to fill in details in sketch plans based on their background domain
knowledge. Levesque and Pagnucco (2000) report on Legolog, their implemen-
tation of Golog on a Lego Mindstorm robot. They connected an IndiGolog
interpreter implemented in Prolog to the Lego Mindstorm Robotics Invention
System (RIS). Pham (2006) describes an interface between DTGolog and the
Sony Aibo ERS-7. The interface is based on the framework Tekkotsu (Tira-
Thompson, 2004). For example, an application that the Aibo is used for is to
fulfill navigation tasks for which an optimal policy was calculated.

The Fluent calculus (Thielscher, 1998) is an approach to reasoning about ac-
tions and change similar to the situation calculus. With FLUX (Thielscher,
2005), which stands for FLUent eXecutor, Thielscher introduces a run-time
system for the fluent calculus. FLUX was applied to mobile service robots
(Thielscher, 2000), but also showed its strength at the 2006 AAAI General
Game Playing Project Competition (Genesereth et al., 2005) by winning the
competition (Schiffel and Thielscher, 2007). Other approaches for reasoning
about actions are (Pednault, 1989; Gelfond and Lifschitz, 1993; Doherty et al.,
1998; Sandewall, 1998), to name but a few. Sandewall (1998) proposes the Cog-

nitive Robotics Logic (CRL). He presents a meta-theory for reasoning about
actions. The language allows for expressing durative actions, composite ac-
tions, nondeterministic actions, nondeterministic timing of actions and their
effects, continuous time and piecewise continuous fluents, imprecise sensors
and actuators, and action failures. Similar to CRL, the temporal action logic
TAL (Doherty et al., 1998; Kvarnström et al., 2000) makes use of a surface
language representing narratives, and a base language allowing the agent to
reason about narratives. The language TAL is also applied to deliberative
tasks for unmanned aerial vehicles (Doherty, 2005).

Another recent paper underlining the importance of integrating semantic
knowledge into the robot controller is (Bouguerra et al., 2007), where de-
scription logics was chosen to represent the knowledge the robot has about
its environment. They propose a monitoring scheme where sensor values are
verified against the semantic background knowledge. An early approach which
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Fig. 1. The AllemaniACs System.

makes use of description logics for controlling robots is (Giacomo et al., 1997).
The authors describe an approach to high-level control similar to the situa-
tion calculus. Many other papers concentrate on integrating knowledge into
the robot system or use logic-based approaches to control a robot and to inte-
grate semantic knowledge of the environment into the controller. For further
reference on logic-based approaches to robot control, we refer to (Levesque
and Lakemeyer, 2007). In this recent paper, a concise overview of the cur-
rent developments and streams in the field of reasoning about actions and the
Cognitive Robotics community is given.

3 Robot Platform and Software Architecture

As we pointed out in the introduction, there are three parts involved in our
work, one of which is the robot system with its sensors and actuators and its
low-level control software. In this section we briefly go over our robot system.

3.1 The Robot Platform

The hardware platform of our Middle-size RoboCup Team AllemaniACs has
a size of 39 cm × 39 cm × 80 cm (Figure 1(a)) with a weight of 70 kg. The
robot has a differential drive, each motor has 2.4 kW power. The motors were
originally developed for electric wheel chairs. They provide the robot with a
translational top speed of about 2.5 to 3 m/sec. The two 12 V lead-gel batter-
ies with 15 Ah allow for 2 hours operation time. Fig. 1(a) shows the hardware
platform. Directly above the base a 360◦ laser range finder (LRF) is mounted

5



which provides data at 10 Hz. A Sony EVI-D100P camera (marked as (b) in
Fig. 1(a)) is installed yielding images in PAL resolution with 25 Hz. Behind the
camera, parts of the air tank for our pneumatic kicking device becomes visible
(Item (c) in Fig. 1(a)). On top, the IEEE 802.11a/b/g access point for wire-
less communication and an omni-directional camera, pointing to a hyperbolic
mirror, is mounted ((d) and (e) in the figure). The robot has two on-board Pen-
tium III PCs at 933 MHz running Linux, one equipped with a frame-grabber
for the Sony EVI-D100P camera. This platform allows for soccer playing, but
is also used for service robotics applications as in RoboCup@Home (Schiffer
et al., 2006a).

3.2 Robot Control Software

In this section we take a closer look at the low-level control software of the Alle-
maniACs robots. The system uses a classical three layered architecture with
an interface layer between the hardware and the control modules on the mid-
dle layer, which in turn builds the interface to our high-level decision making
with Readylog. The middle layer features modules like navigation, localiza-
tion, or object recognition. The third layer of the system architecture consists
of the world model and the reasoning component Readylog, which we will
introduce in Section 5. The software architecture is shown in Figure 1(b). The
control flow is, as is usual in layered hierarchical architectures, from bottom
to top concerning data, and from top to bottom w.r.t. control commands (cf.
e.g. (Murphy, 2000)). For communication between control modules we make
use of a blackboard system. Each module connects to the blackboard system
and is able to read data provided by other modules from the blackboard. In-
side the blackboard several data sections are separated and access rights are
regulated.

The low-level interfaces are basically hardware drivers with access to the black-
board. The motor driver provides data like odometry information which are
calculated from the wheel encoders and estimates about the velocity of the
robot on the one hand, on the other hand it takes driving commands from
modules of upper levels. The laser driver takes commands for starting or
stopping the LRF, and provides 360 distance measurements per sweep. As the
directed camera is with its pan/tilt unit also an actuator it can take commands
like move(ϕ, θ). It provides the vision module with camera images. The omni-
vision camera only yields raw images. Finally, we have the kicker interface
which takes commands actuating the pressure valves of the pneumatic kicking
device.

The modules on the middle layer work on the data provided by the sensors.
A central task especially with fast heavy-weight robots is an effective colli-
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sion avoidance strategy. With the data from the LRF we create an occupancy
grid map, and then search for a collision-free path in it. For successful com-
plex robot operations in dynamic environments, moreover, good localization is
needed. Here we make use of a Monte Carlo approach (Strack et al., 2006). To
endow the robot’s world model with a rich representation of the environment,
one further needs good object classification. We use the information provided
by the vision module, and further we make use of the fact that the robot is
localized in its given environment map. Thus, it is able to distinguish between
static and dynamic obstacles. The dynamic obstacles are classified by their
laser signature. For the soccer application, an important feature is the ball.
The vision module inspects a camera image on several scan lines of a color
segmented image. For finding the ball we apply randomized circle fitting. The
circle fitting is implemented as an any-time algorithm which returns the best
fitted circle. With a geometric model of the robot the position of the ball is
estimated.

Above the middle layer, Figure 1(b) shows the modules world model, and skills.
These are the modules with which our high-level framework Readylog is con-
nected. From the point of view of high-level decision making, the skill module
encapsulates actuators, the world model encapsulates sensor data. The skill
module provides the basic actions for Readylog. These are for example ac-
tions like drive to global position or turn with angle θ or more sophisticated
ones like dribble around opponents. While the basic actions are clearly influ-
enced by the soccer application, they are nonetheless useful for service robotics
applications as well. As our high-level controller, which we present in detail in
Section 5 is implemented in Prolog and the rest of the software is implemented
in C++, we need another interface between Readylog and the low-level con-
trol software. This function has the module HLI, the high-level interface. It
translates Prolog calls to appropriate C++ function calls.

4 The Situation Calculus and Golog

4.1 Situation Calculus

The situation calculus is a second order language with equality which allows
for reasoning about actions and their effects. The world evolves from an initial
situation due to primitive actions. Possible world histories are represented by
sequences of actions. The situation calculus distinguishes three sorts: actions,
situations, and domain dependent objects. A special binary function symbol
do : action × situation → situation exists, with do(a, s) denoting the situa-
tion which arises after performing action a in the situation s. The constant
S0 denotes the initial situation, i.e. the situation where no actions have yet
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occurred. The state the world is in is characterized by functions and relations
with a situation as their last argument. They are called functional and rela-

tional fluents, respectively. As an example, consider the position of a robot
navigating in an office environment. One aspect of the world state is the robot’s
location robotLoc(s). Suppose the robot is in an office with room number 6214
in the initial situation S0. The robot now travels to office 6215. The position
of the robot then changes to robotLoc(do(goto(6215), S0)) = 6215. goto(6215)
denotes the robot’s action of traveling to office 6215, and the situation the
world is in after the action is described by do(goto(6215), S0).

For each action one has to specify a precondition axiom stating under which
conditions it is possible to perform the respective action and an effect axiom

formulating how the action changes the world in terms of the specified fluents.
An action precondition axiom has the form Poss(a(~x), s) ≡ Φ(~x, s) where the
binary predicate Poss ⊆ action × situation specifies when an action can be
executed, and ~x stands for the arguments of action a. For our travel action the
precondition axiom may be Poss(goto(room), s) ≡ robotLoc(s) 6= room. After
having specified when it is physically possible to perform an action it remains
to state how the respective action changes the world. In the situation calculus
the effects of actions are formalized by so-called successor state axioms of the
form F (~x, do(a, s)) ≡ ϕ+

F (~x, a, s) ∨ F (~x, s) ∧ ¬ϕ−F (~x, a, s), where F denotes a
fluent, ϕ+

F and ϕ−F are formulas describing under which conditions F is true,
or false resp. This axiom simply states that F is true after performing action
a if ϕ+

F holds, or the fluent keeps its former value if it was not made false.
Successor state axioms describe Reiter’s solution to the frame problem (Reiter,
2001), the problem that all the non-effects of an action have to be formalized
as well. As an example, consider the following successor state axiom for the
fluent robotLoc(s) : robotLoc(do(a, s)) = y ≡a = goto(room) ∧ y = room ∨
a 6= goto(room) ∧ y = robotLoc(s). Note that free variables in the occurring
formulas are meant to be implicitly universally quantified. The background
theory is a set of sentences D consisting of D = Σ ∪Dssa ∪Dap ∪Duna ∪DS0

,
where Dssa contains sentences about the successor state axioms, Dap contains
the action precondition axioms, Duna states sentences about unique names
for actions, and DS0

consists of axioms what holds in the initial situation.
Additionally, Σ contains a number of foundational axioms defining situations.
For details we refer to (Pirri and Reiter, 1999; Reiter, 2001).

4.2 Golog

The high-level programming language Golog (Levesque et al., 1997) is based
on the situation calculus. As planning is known to be computationally very
demanding in general, which makes it impractical for deriving complex behav-
iors with hundreds of actions, Golog finds a compromise between planning
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and programming. The robot or agent is equipped with a situation calculus
background theory. The programmer can specify the behavior just like in ordi-
nary imperative programming languages but also has the possibility to project
actions into the future. The amount of planning (projection) used is in the
hand of the programmer. With this, one has a powerful language for specify-
ing the behaviors of a cognitive robot or agent. While the original Golog is
well-suited to reason about actions and their effects, it has the drawback that
a program has to be evaluated up to the end before the first action can be
performed. It might be that the world changed between plan generation and
plan execution so that the plan is not appropriate or is invalid. To overcome
this problem, De Giacomo et al. (2000) proposed an incremental interpreter
with conGolog. The program is interpreted in a step-by-step fashion where
a transition relation defines the transformation from one step to another. In
this so-called transition semantics a program is interpreted from one config-
uration 〈σ, s〉, a program σ in a situation s, to another configuration 〈δ, s′〉
which results after executing the first action of σ, where δ is the remaining
program and s′ the situation resulting of the execution of the first action of
σ. The one-step transition function Trans defines the successor configuration
for each program construct. In addition, another predicate Final is needed to
characterize final configurations, which are those where a program is allowed
to legally terminate.

To illustrate the transition semantics, let us consider the definition of Trans

for some of the language constructs:

(1) Trans(nil, s, δ, s′) ≡ false

(2) Trans(α, s, δ, s′) ≡ Poss(α, s) ∧ δ = nil ∧ s′ = do(α, s)
(3) Trans([σ1; σ2], s, δ, s

′) ≡ Final(σ1, s)∧
Trans(σ2, s, δ, s

′) ∨ ∃δ′.δ = (δ′; σ2) ∧ Trans(σ1, s, δ
′, s)

(4) Trans(σ1 ||σ2, s, δ, s
′) ≡

∃γ.δ = (γ ||σ2)∧Trans(σ1, s, γ, s′)∨∃γ.δ(σ1 || γ)∧Trans(σ2, s, γ, s′)

(1) Here nil is the empty program, which does not admit any further transi-
tions.

(2) For a primitive action α we first test if its precondition holds. The suc-
cessor configuration is 〈nil, do(α, s)〉, that is, executing α leads to a new
situation do(α, s) with the nil program remaining.

(3) The next definition concerns an action sequence [δ1; δ2], where it is checked
whether the first program is already final and a transition exists for the
second program δ2, otherwise a transition of δ1 is taken.

(4) σ1 ||σ2 denotes that σ1 and σ2 can be executed concurrently. Here the
definition of Trans makes sure that one of the two programs is allowed
to make a transition without specifying which. This corresponds to the
usual interleaved semantics of concurrency.
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We only sketched the transition semantics here. In the next section, some
more examples are given. For a concise overview of the transition semantics
we refer the interested reader for example to (De Giacomo et al., 2000, 2001).
We remark that the transition semantics allows for a natural integration of
sensing and on-line execution of programs.

5 Readylog – Real-time and Dynamic Golog

5.1 Introduction

The aim of designing the language Readylog was to create a Golog dialect
which supports the programming of the high-level control of agents or robots
in dynamic real-time domains. Our primary application was robotic soccer.
The robotic soccer domain has some specific characteristic which made the
development of Readylog necessary and influenced several design decisions:
the robotic soccer domain is an unpredictable adversarial dynamic real-time
domain. This means that decisions have to be taken quickly and making plans
for future courses of actions have a mid-term horizon. Planning ahead for the
next minute does not make sense as the world changes unpredictably due to
the uncertainty of the outcomes of the own actions and the behaviors of the
opponent players. The unpredictability of the actions of the agent demands
for some notion of uncertainty. The idea of Golog to combine planning with
programming was accounted for by integrating decision-theoretic planning;
only partially specified programs which leave certain decisions open, which
then are taken by the controller based on an optimization theory, are needed.
Readylog borrows ideas from (Levesque et al., 1997; Grosskreutz and Lake-
meyer, 2001; De Giacomo et al., 2000; Grosskreutz, 2000; Boutilier et al., 2000)
and features the constructs given in Fig. 2. We will not introduce the whole
semantics of Readylog, here. Some of the constructs have already been in-
troduced in the previous section. Other constructs like the solve statement will
be discussed in detail in the next section. While the aforementioned extensions
were integrated into one framework, this was not enough to deploy Golog

in dynamic real-time domains as robotic soccer. In particular, one needs an
efficient implementation accounting for the real-time constraints posed by the
environment. Therefore, the Readylog framework features

(1) a novel on-line version of the decision-theoretic planning method pro-
posed by Boutilier et al. (2000), which allows for execution monitoring of
policies;

(2) an enhanced version of passive sensing which allows for updating the
world model in the background;

(3) the introduction of macro actions, so-called options, for decision-theoretic
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nil empty program

α primitive action

ϕ? wait/test action

waitFor(τ) event-interrupt

[σ1; σ2] sequence

if ϕ then σ1 else σ2 endif conditional

while ϕ do σ endwhile loop

withCtrl ϕ do σ endwithCtrl guarded execution

σ1 ||σ2 prioritized execution

forever do σ endforever infinite loop

whenever(τ, σ)
interrupt triggered by continuous

function
withPol(σ1, σ2) prioritized execution until σ2 ends

prob(p, σ1, σ2)
probabilistic execution of either σ1

or σ2

interrupt interrupts

pproj(c, σ) probabilistic (off-line) projection

{proc P1(~ϑ1)σ1 endproc; · · · ;proc Pn(~ϑn)σn endproc}; σ0 procedures

solve(h, f, σ)
initiate decision-theoretic

optimization over σ

σ1 |σ2
nondeterministic (dt) choice of

programs

pickBest(~x, σ, h)
nondeterministic (dt) choice of

arguments

Fig. 2. Overview of Readylog constructs

planning, based on Precup et al. (1998);
(4) several speed-ups for policy generation such as making use of caching

previously computed results in the forward decision-theoretic search for
an optimal policy;

(5) a useful any-time approach for decision-theoretic planning to overcome
fixed horizons when searching for a policy and by this to better exploit
the computational resources of the agent or robot, and

(6) a progression method based on Lin and Reiter (1997).

We address issues 1–3 in the following. For reasons of space we cannot discuss
the issues 4, 5 and 6 here. For more details about these topics we refer to
(Ferrein, 2008).

5.2 DT Planning in Readylog

One of the most important features to model the behavior of our robots is
the use of decision-theoretic planning. It is very convenient, as the domain
axiomatizer may leave open several choices in her behavior specification. The
Readylog interpreter chooses the best action alternative based on the un-
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Fig. 3. The Maze66 domain from Hauskrecht et al. (1998).

derlying utility theory. To illustrate how Readylog calculates an optimal
policy from a given input program we give a navigation example from a toy
maze domain. A robot wants to navigate from its start position S to a goal
position G. It can perform one of the actions from the set A = {go right ,
go left , go up, go down}. Each of the actions brings the robot to one of its
neighboring locations. The actions are stochastic, that is there exists a proba-
bility distribution over the effects of the action. Each action takes the agent to
the intended field with probability of p, with probability 1 − p the robot will
arrive at any other adjacent field. The maze shown in Fig. 3 is the well-known
Maze66 domain from (Hauskrecht et al., 1998). The robot cannot go through
the walls, if it tries, though, the effect is that it does not change its position
at all.

The fluent goal defines the goal position (goal = (7, 5)), and the fluent loc

denotes the current position of the robot in the maze. The reward function
is defined as reward(s) = +1 if loc(s) = goal and −1 otherwise. To find the
optimal path from S to G the robot is equipped with the program

proc navigate
solve(h, reward ,while loc 6= goal do

(go right | go left | go up | go down)
endwhile, h)

endproc

With the solve statement decision-theoretic planning is initiated. The inter-
preter switches into an off-line mode and optimizes the program given as the
argument of the solve-statement up to horizon (number of actions) h. The
“ | ” represent a nondeterministic action choice. At these choice points the in-
terpreter selects the best action alternative. The Readylog interpreter does
this via predicates BestDo which implement the forward-search algorithm
(Fig. 4). For space reasons we will not show the whole definition of the algo-
rithm here. For a detailed discussion of BestDo we refer to (Boutilier et al.,
2000; Ferrein, 2008). As long as the robot is not at the goal location (and the
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Fig. 4. Decision tree search in Readylog

horizon is not reached), Readylog loops over the nondeterministic choice
statement. At each iteration the interpreter expands a sub-tree for each of
the actions inside the choice statement. As each of the actions are stochastic,
again for each outcome of each action the interpreter branches over all pos-
sible nature’s choices. This process iterates until either the agent is located
at the goal position or the horizon is reached. At the leaves of the compu-
tation tree over BestDo (at the end of the recursion) the agent receives the
reward for these final situations. Then, “going up” the computation tree for
nondeterministic choices, the best alternative is evaluated and chosen for the
policy. An illustration of the computation tree is given in Fig. 4. Since it is not
known in advance which outcome is chosen by nature at execution time, the
policy needs to cover all possibilities, which is realized by nested conditionals.
Coming up to the root node, the computation terminates returning the policy,
the value for the policy, and its probability of success.

5.3 Execution Monitoring for Policies

As we remarked in the introduction to this section, our specification language
should not only be able to calculate a policy, but should also be able to execute
the previously established policy. Therefore, we need a run-time environment
for executing policies on-line. Soutchanski (2001) proposed an on-line variant
of dtGolog, the decision-theoretic variant of Golog. In an earlier paper we
showed that his approach is in general not feasible in real-time domains (see
(Ferrein et al., 2004; Ferrein, 2008) for a detailed discussion on that matter).
In our approach, we introduce the operator solve(h, f, p) for a program p, a
reward function f , and a fixed horizon h, which initiates decision-theoretic
planning in the on-line transition semantics.

Trans(solve(h, f, p), s, δ, s′) ≡

∃π, v, pr .BestDo(p, s, h, π, v, pr , f) ∧ δ = applyPol(π) ∧ s′ = s
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The predicate BestDo first calculates the policy for the whole program p. The
policy π is then scheduled for on-line execution as the remaining program.
We remark that policy generation assumes that the program does not contain
explicit sensing actions. As we will see in the next subsection this accounts
for so-called passive sensing. In the case of the robot’s position, for example,
policy generation works with an abstract model of the robot’s movements so
that robot positions in future states can simply be computed without having
to appeal to actual sensing. Making use of such models during plan generation
requires that we monitor whether π remains valid during execution as discrep-
ancies between the model and the real-word situation might arise. Monitoring
is handled within applyPol , which is defined below. Note that the solve state-
ment never reaches a final configuration as further transitions are needed to
execute the calculated policy. To keep track of the model assumptions we made
during planning, we introduce special markers into the policy. Hence, in the
definition of BestDo we have to store the truth values of logical formulas. For
conditionals this means:

BestDo(if ϕ then p1 else p2 endif ; p,s, h, π, v, pr)
.
=

ϕ[s] ∧ ∃π1.BestDo(p1; p, s, h, π1, v, pr) ∧ π = M(ϕ, true); π1 ∨

¬ϕ[s] ∧ ∃π2.BestDo(p2; p, s, h, π2, v, pr) ∧ π = M(ϕ, false); π2

Thus, for conditionals we introduce a marker into the policy that keeps track of
the truth value of the loop condition at planning time. We prefix the generated
policy with a marker M(ϕ, true) in case ϕ turned out to be true in s and
M(ϕ, false) otherwise. While-loops are treated in a similar way. The treatment
of a test action ϕ? is even simpler, since only the case where ϕ is true matters.
If ϕ is false, the current branch of the policy is terminated, which is indicated
by the Stop action.

BestDo(ϕ?; p, s, h, π, v, pr)
.
=

ϕ[s] ∧ ∃π′.BestDo(p, s, h, π′, v, pr) ∧ π = M(ϕ, true); π′ ∨

¬ϕ[s] ∧ π = Stop ∧ pr = 0 ∧ v = reward(s)

Next, we will show how our annotations will allow us to check at execution
time whether the truth value of conditions in the program at planning time
are still the same and what to do about it when they are not. In case a marker
was inserted into the policy we have to check whether the test performed at
planning time still yields the same result. If this is the case we are happy
and continue executing the policy, that is, applyPol remains in effect in the
successor configuration. But what should we do if the test turns out different?
We have chosen to simply abort the policy in our current formalization, that
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is, the successor configuration has Nil as its program. Expressed formally, this
means:

Trans(applyPol(M(ϕ, v); π), s, δ, s′) ≡ s = s′∧

(v = true ∧ ϕ[s] ∧ δ = applyPol(π) ∨ v = true ∧ ¬ϕ[s] ∧ δ = Nil ∨

v = false ∧ ¬ϕ[s] ∧ δ = applyPol(π) ∨ v = false ∧ ϕ[s] ∧ δ = Nil)

Note that in the above formula ϕ[s] stands for the logical formula where pre-
viously suppressed situation arguments in fluents are restored. The applyPol

transition further has to be defined for primitive and stochastic action as well
as for conditionals. Due to changes in the world it may be the case that ac-
tion a has become impossible to execute. In this case we again abort the rest
of the policy with the successor configuration 〈Nil, s〉. For an if-construct,
which was inserted into the policy due to a stochastic action, we determine
which branch of the policy to choose and go on with the execution of that
branch. If we reach the horizon we have to stop the execution of the policy,
which, if nothing went wrong, has reached a final configuration by then, i.e.
Final(applyPol(p, h), s) ≡ Final(p, s) ∨ h = 0. With the above definitions we
are able to detect when a policy becomes invalid during execution. As stated
above, currently, we handle invalid policies by simply invoking re-planning.
For the complete definition and thorough discussion of applyPol as well as of
BestDo we refer again to (Ferrein, 2008).

5.4 On-line Passive Sensing

To deal with incomplete knowledge about the environment Golog was ex-
tended with sensing actions (Lakemeyer, 1999; De Giacomo and Levesque,
1999). These special actions allow an agent to query its sensors to gather
information about the environment. This approach has, under certain cir-
cumstances, several drawbacks. When sensor values must be updated very
frequently, acquiring world information through explicit sensing actions is not
feasible. The agent would simply be overwhelmed with executing sensing ac-
tions. Another problem exists when off-line planning is interleaved with on-line
execution. If the plan relies on the on-line information the result of planning
might be inconsistent due to wrong sensing results. So, in general, with an ac-

tive sensing approach it is not possible to plan ahead of sensing actions. What
is needed is a passive sensing approach which performs updates of the sensor
values in the background. Proposals for passive sensing approaches can be
found in (Poole, 1997; Grosskreutz and Lakemeyer, 2001). Note the difference
between active and passive sensing: with a passive sensing approach, there is
no need to explicitly query sensors in the control program. (Here sensors may
refer to quite abstract notions like a robot’s position.) When deliberating, the
robot would use (probabilistic) models of sensor values, and during execution
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these are substituted by the actual values, usually supplied automatically at
regular intervals. Active sensing, on the other hand, refers to explicit sens-
ing actions which are part of a control program or plan and where reasoning
usually involves a costly case analysis of the possible outcomes.

Updating a complete world model in simulated soccer domain, for example,
takes more than 100 ms which is longer than the decision cycle in RoboCup’s
simulation league. To deal with this problem we extended the system archi-
tecture proposed in (Grosskreutz and Lakemeyer, 2001) with an explicit world
model. They proposed a system architecture where the high-level controller
starts low-level processes via a so-called action register. To initiate an action
the high-level controller sends a command to the register. This command is
passed through to the execution module which in turn cares for the execu-
tion of the action in the real world. From now on, the high-level controller
is no longer concerned with monitoring the execution of the action. This is
done asynchronously by the execution layer of the robotic system. When the
execution of the action is finalized, the low-level control indicates this by send-
ing a reply message to the high-level controller via the action register. The
high-level controller can now react on this specific message. Between a send

and a reply message the high-level controller could care for other things. The
communication between high-level and low-level system is realized through
a special fluent register and the two actions send and reply . The high-level
controller invokes the low-level process with a send action, and the low-level
process answers with a reply message when the low-level process is finished. In
Figure 5 we present the extended system architecture. As in (Grosskreutz and
Lakemeyer, 2001) we use the special register fluent and the message passing
between high-level and low-level control. The presence of an explicit world
model extends the architecture. The special action exogfUpdate which is sent
via the register initiates an update of the world model of the agent. The shaded
arc “world” denotes the connection to the real world. One should think of this
in terms of the layered system architecture as shown in Section 3, which has
access to the actuators and can gather data from the sensors. The possibility
to asynchronously update sensor values allows for on-line passive sensing.
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5.5 Controllers for the Robotic Soccer Domain

In this section, we present a Readylog example from the soccer domain.
We used the controller code shown below on our Middle-size robots at sev-
eral competitions. As presented in Section 3, the skill module encapsulates
the primitive actions including actions like goto, intercept, dribble, or shoot.
The world model of the soccer robot comprises fluents like the agent posi-
tion, the position of the ball, and the opponents. All this information comes
together with confidences or visibility flags (which is true if the ball is seen),
and come with two flavors: the agent could query the positions gathered lo-
cally from its sensors, or ask the information from the global world model.
The information coming from the global world model are most of the times
more accurate, though, they have some latency. The robot must also store
tactical information, like its tactical role. Further, a predicate bestInterceptor

calculates which player is best located to the ball and shall gain control over
the ball. In the following we show an example from our attacking player from
RoboCup’s Middle-size league.

proc attackerBestInterceptor

if scoringSituation then scoreDirectly(own)
else if ¬haveBall then interceptBall(own, fast) endif

endif

5 solve(4, reward ,
continueSkill(currentSkill); (haveBall)?; (kickTo(own)
| dribbleAndKick(own)
| dribbleToPoints(own)
| if isKickable(own) then

10 pickBest(angle, {−3.1,−2.3, 2.3, 3.1}, / ∗ in rad ∗ /
(turnRelative(own, angle,medium);
(intercepBall(own, slow); dribbleOrMoveKick(own)
| interceptBall(numberByRole(supporter)

dribbleOrMoveKick(numberByRole(supporter)
15 )/ ∗ end pickBest ∗ /

else

interceptBall(own); dribbleOrMoveKick(own)
| interceptBall(own, 0.0)

endif)/ ∗ end solve ∗ /
20 endproc

In line 5, decision-theoretic planning is initiated using the reward function
reward . The reward function, basically, gives a high reward for positions in
front of the opponent goal, and high negative reward for situations in front
of the own goal. The agent has the choice to calculate the best action among
kickTo (l. 6), dribbeMoveKick (l. 7), the dribbleToPoint (l. 8), and a multi-
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Fig. 6. A scene from the RoboCup 2004 against the Osaka team (right-hand side).
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agent plan (ll. 9–14) which we address below. The kickTo action directly
kicks the ball, dribbleMoveKick action combines a dribbling with a goal shot
if possible, dribbleToPoints stands for an action which lets the agent dribble
to certain defined positions on the field. Fig. 7(a) shows the effect of the kick
action (according to its action model), Fig. 7(b) shows the dribbleMoveKick
model, while Fig. 7(c) shows the effect of the multi-agent plan from the lines
9–14 in the program above. With the pickBest statement several angles are
chosen which serves as an argument for the following turn action. With this
turn action, the robot plays a pass to its teammate, which in turn plans to
intercept the ball and try a goal shot.

5.6 A DT Plan Library for Abstracted Plans

Empirical results from several RoboCup competitions showed that decision-
theoretic planning using the above program took between 0.17 and 2.1 seconds,
with an overall average of 0.5 seconds. While an average reasoning time of
0.5 seconds may be acceptable in robotic soccer, 2 seconds are probably not
because of the high risk that an opponent will attempt a tackle and intercept
the ball. One possibility to speed up the computation is to make use of macro
actions in the DT context. The idea is to define a sub-task, calculate an
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optimal policy for the sub-task, and use the solution like a primitive action
when solving more complex tasks later on. We proposed the use of such macro
actions, or options, in the Readylog framework in (Ferrein et al., 2003)
leading to an exponential speed-up in the computation time. For dynamic
domains like robotic soccer, however, this approach has some drawbacks, which
are mainly related to the fact that the state space of the MDP has to be
enumerated explicitly. To overcome these problems, we propose to calculate
policies in an abstract way and store these abstract policies in a DT plan
library. Later, when the agent can apply a policy from the plan library, it has
just to instantiate the abstract policy without the need to plan from scratch.

The basic procedure to calculate a policy for a macro action is the following:

(1) Off-line pre-processing

(a) Calculate an abstract policy for each solve statement occurring in
the behavior specification.

(b) Replace each solve statement with its abstract policy in the specifi-
cation.

(2) On-line execution

(a) Look up the policy, value, and probability of success for the option
in the plan library.

(b) If the option is not contained in the library, instantiate the option
in the particular situation and store the value and the probability of
success together with the current world state in the library.

An abstract policy is calculated as follows. In a run of the forward-search
value iteration algorithm (Readylog’s DT planning algorithm), we do not
calculate explicit numeric values for the reward function but keep them as
abstract terms. Basically, we store the whole computation tree for a respec-
tive input program without optimizing away the agent’s choices. Later, when
instantiating a plan from the plan library, we can establish the optimal pol-
icy, the values and probabilities of all outcomes of the policy by evaluat-
ing this abstract policy. As an example for an abstract value for a policy,
consider the maze domain where the agent wants to leave the first room
through the northern door. The location at the northern door will have a high
value, as this is the goal of the agent. But instead of calculating the concrete
value, the value function is kept as the term v = +(−(reward(do(go up, s)),
cost(do(go up, s))), ·(prob(go up, up, s), . . . . Later, we only have to fill in a con-
crete world situation to get the respective value for leaving the room through
the northern door. Similarly, we keep the policy as an abstract term, as well as
the probability of its success. In the source code of our robot control program,
we then replace every occurrence of a solve statement with the name of the
macro action. Thus, we can avoid calls to initiate decision-theoretic planning,
just inserting the new abstract policy. When executing an option in a partic-
ular situation we first query our plan library if for the current world situation

19



an instantiated policy for the option currently to be executed exists. If so, we
simply take this policy from the library and execute it. If there does not exist a
policy for the option in the current world situation, we have to generate it. We
take the situation independent abstract policy for the option and substitute
the situation terms with the actual situation. Similarly, we evaluate the value
and success probability of the option given the current world situation. With
a particular situation we can re-evaluate the precondition axioms of actions,
if-conditions, and nondeterministic choices of the abstract policy and obtain
one fully instantiated policy which is the same as if we would have calculated
it on the fly. To gain computation speed for the next time when the agent
wants to execute the option in this particular situation, we store the fully
instantiated policy, the value, and the success probability together with the
world state. Thus, the next time the option is to be executed in the very same
situation, we simply look up the policy without the need to calculate anything
at all. We remark that the option concept is different from explanation-based
learning (Mitchell et al., 1986), where single examples lead to generalizations.
Here we compute the generalization first and then instantiate it when needed,
also caching the instance for future re-use.

The Readylog code to execute a macro action on-line is illustrated below.
The predicate getState calculates the current world state based on fluent val-
ues as described above. The predicate get bestPolicy performs the look-up
operation, the predicate evaluate assesses the abstract plan tree returning
a fully instantiated policy πs, which is then executed with execute(πs). The
store predicate saves the instantiated policy, the value, and the success prob-
ability together with the current world situation in the plan library for the
next time it is needed. The action asense is a sensing action which is executed
to sense the actual state the agent is in, when trying to execute the option.
The logical formula ϕm is a condition which checks if the option is executable.
This condition can be viewed as a precondition for the option. This precon-
dition is part of the specification of the option and must be provided by the
user.

getState;
while ϕm do

if DT Plan Library has entry for current state s then

get bestPolicy(s,DT Plan Library, π);
execute(πs);

else

evaluate(s, AbstractV alues, πs);
execute(πs);
store((s, πs, v, pr),DT Plan Library);

endif

execute(asense)
endwhile
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Next, we give an example of DT macro actions in simulated soccer. For re-
stricting the state space of the soccer domain we make use of a qualitative
world model which abstracts from the infinite quantitative state space (Schif-
fer et al., 2006b). The playing field is divided into grid cells, where each cell of
a grid contains infinitely many coordinates. For each of these cells one quanti-
tative representative (the center of this cell) is provided. Several other useful
qualitative abstractions for the soccer domain are defined in (Schiffer et al.,
2006b). We used two macro action, outplay opponent and create good scoring

opportunity in our test runs in the simulation league. The first macro works
as follows: facing attacking opponents, the ball leading agent either dribbles
or passes the ball to a teammate. If the macro action chooses the pass, the
agent afterwards moves to a free position to be a pass receiver again. The
second action aims to create a good scoring opportunity to shoot a goal. The
agent in ball possession can dribble with the ball if the distance to the op-
ponent’s goal is too far. Near the goal the agent can shoot directly to the
goal or pass to a teammate that is in a better scoring position. We considered
three strategies: (a) using DT planning to cope with the task, (b) using the
macro action, but only by evaluating a policy in each step 1 , and (c) using the
macro action with the plan library that was generated in the last step. Using
the planning approach the agent needed 0.1 seconds on average to calculate a
policy. With the evaluation strategy (b) only 0.08 seconds are needed. This is
a speed-up compared to planning of about 20 %. The time for off-line compu-
tations in this example was about 0.02 seconds for each macro. Even taking
this pre-processing time into account our macro approach yields reasonable
speed-ups. Of course, pre-processing more and more complex macro actions
consumes more off-line computation time. But as this time does not need to
be spent on-line, this off-line computation time can be justified. The macro
action based on the plan library clearly outperforms DT planning. In each
test run, for both macro actions, the executing system constantly returns the
minimum of measurable time of 0.01 seconds for searching the best plan in
the plan library, which corresponds to a mean time saving of over 90%.

6 Beyond Robotic Soccer

In the examples above we concentrated on the soccer domain. But we applied
Readylog also to other domains. One application domain for Readylog is
the service robotics domain (Sect. 6.1), the second very demanding application
is the interactive computer game Unreal Tournament 2004 (Sect. 6.2).

1 Each policy evaluated in this step is stored in the plan library, so we can use this
stored knowledge in the next step (c).
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Fig. 8. Our service robot Caesar (RoboCup@Home World Champion 2006, 2007)
and a map of a local bank building.

6.1 Service Robotics Application

Our Readylog approach is very suitable for service robotics application be-
cause of the easy way, how semantic information about the environment can
be integrated into the control of the robot. For example, in our engagement
in the RoboCup@Home service robotics competition, we annotate items and
furniture of an home environment with semantic tags (Schiffer et al., 2006a).
These tags can be easily integrated into the Readylog high-level controller
in order to navigate to them or manipulate them. In the following, we show
an example of a simple path planner in Readylog.

Figure 8 shows the occupancy grid map of a local bank where the robot oper-
ated as a tour-guide. As in the RoboCup@Home scenario, several sight-seeing
spots which the robot should guide visitors to can be defined. The nodes of
this map are available for Readylog by the fluent mapNode, and the rela-
tions childrenOf (mapNode). The program the robot then uses is the procedure
pathPlan given below. In order to find optimal tours, we used the Readylog’s
solve and pickBest statement. Here, the pickBest statement chooses the cost-
optimal next child node in the map.

proc pathPlan(Goal , H)
solve(H, reward at(goal)

while¬mapNode = goal do

pickBest(child , childrenOf (mapNode), gotoMapNode(child))
endwhile

endproc
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The action gotoMapNode is in fact a procedure which initiates the robot to
drive to the respective coordinate and announce the exhibit. The reward func-
tion for the planning task was quite simple. At the goal node the robot receives
a high positive reward and zero for all other nodes. When defining a metric
on the graph and giving discounts for longer edges one easily can ensure that
the robot will take the shortest path to the goal.

function reward at(goal)
∃v.mapNode = goal ∧ v = 100 ∨ mapNode 6= goal ∧ v = 0)

return v

Several other such applications demonstrated the robustness of our approach.
It is also very easy to specify new service robotics tasks for applications in
RoboCup@Home competitions, for example.

6.2 Readylog Game Bots

Besides service robotics and soccer application we deployed Readylog also
in interactive computer games. In particular, we developed so-called game
bots for the interactive computer game Unreal Tournament 2004 (Epic
Games Inc., 2008), which is a state-of-the-art interactive computer game. The
engine itself is mainly written in C++ and cannot be modified. On the other
hand, the complete Unreal Script (in the following UScript) code controlling
the engine is publicly available and modifiable for each game. For instance,
introducing new kinds of game play like playing soccer in teams or the game
of Tetris have been implemented on the basis of the Unreal Engine. All this
can be defined easily in UScript, a simple, object-oriented, Java-like language
which is publicly available. Several different types of game-play or game modes
have been implemented for this game. The ones relevant for our work are:
(1) Deathmatch, (2) Team Deathmatch, and (3) Capture the Flag. The idea for
the first two types of games is to disable as many opponent players as possible
without getting disabled oneself. To be successful in this type of game one
has to know the world, react quickly, and recognize the necessity to make
a strategic withdrawal to recharge. Games where only two players or bots
compete against each other in much smaller arenas are especially interesting,
as one can compare the fitness of different agents easily in these settings. In the
case of Capture the Flag, two teams try to score by stealing the flag from the
opponent’s base. To win such a game the players of a team have to cooperate,
to delegate offensive or defensive tasks, and to communicate with each other.
This game type is one that rewards strategic defense and coordinated offense
maneuvers.
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proc agent dm(Horizon)
while true do

solve(Horizon, rewardDM

if ¬sawOpponent then roam(own)
else if sawOpponent

then moveattack(own)) endif . . .

| if itemTypeAvailable(healthPack)
then collect(healthPack) endif

| if ¬hasGoodWeapon ∧ itemAvail .(weapon)
then collect(weapon) endif

) /*end solve*/

endwhile

endproc

(b) Readylog code for the game bot

Fig. 9. Readylog bots for Unreal Tournament 2004

In order to develop Readylog game bots, we first had to develop a frame-
work which allows an agent to receive data from the game engine and issue
actions like stop, celebrate, moveto, roam, attack, charge, moveattack, or re-

treat. The world model our agents have is different from what the built-in bots
have available. The built-in bots are omniscient, that is, they have complete
knowledge of their environment. Our game bots, on the other hand, can only
sense objects visible to them. The world model consists of a large number of
fluents from different categories like bot parameter fluents (health status, or
armor), and item and bot visibility fluents, that is, whether or not known items
in the environment are visible. More information about the framework can be
found in (Jacobs et al., 2005a,b).

Readylog has turned out to be well-suited to this kind of application. To
illustrate this we use an excerpt from our actual implementation of the death-

match agent (Fig. 9(b)). Here an agent was programmed which chooses at
each action choice point between the outcomes of a finite set of actions. It
has the choice between collecting a weapon, retreating to a health item, and
so on, based on a given reward function. The main part of the agent is the
non-deterministic choice which represents the action the agent performs next.
It has the choice between roaming and collecting items, attacking an oppo-
nent, or collecting several specific items. The decision which action to take
next is performed based on the reward of the resulting state. Note also that
the non-deterministic choices are restricted by suitable conditions attached to
each choice. This way many choices can be ruled out right away, which helps
prune the search space considerably. Our experimental results showed that our
Readylog game bots were competitive with the built-in bots, especially in
the Capture-the-Flag environment. The reason is that, although the built-in
game bots are omniscient, our Readylog agent could react more flexible due
to its high-level strategy.
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7 Conclusion

In this paper, we presented our approach to high-level control of autonomous
robots in dynamic domains. We proposed the framework Readylog, a robot
programming language suitable to support decision-theoretic planning under
uncertainty, macro actions, continuous change, and sensing. The run-time en-
vironment combines on-line execution with execution monitoring facilities. We
presented examples from the robotic soccer domain, for real robots as well as
simulated agents. Besides these soccer applications, we also applied Ready-

log successfully to interactive computer games as well as tasks in service
robotics.

Currently a robot’s world model and decision making is only concerned with
user-defined missions. In the future we would like to extend this also to the
robot’s own internal state. This should allow the robot, for example, to re-
cognize and act upon critical states like localization failures or, more generally,
to develop a sense of self-awareness, which would help the robot to optimize
its behavior.
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