
Fuzzy Representations and Control
for Domestic Service Robots in Golog

Stefan Schiffer1 Alexander Ferrein2 Gerhard Lakemeyer1

1 Knowledge Based Systems Group
RWTH Aachen University, Aachen, Germany
{schiffer,gerhard}@cs.rwth-aachen.de

2 Robotics and Agents Research Lab
University of Cape Town, Cape Town, South Africa

alexander.ferrein@uct.ac.za

Abstract. In the RoboCup@Home domestic robot competition, com-
plex tasks such as “get the cup from the kitchen and bring it to the living
room” or “find me this and that object in the apartment” have to be
accomplished. At these competitions the robots may only be instructed
by natural language. As humans use qualitative concepts such as “near”
or “far”, the robot needs to cope with them, too. For our domestic robot,
we use the robot programming and plan language Readylog, our variant
of Golog. In previous work we extended the action language Golog, which
was developed for the high-level control of agents and robots, with fuzzy
concepts and showed how to embed fuzzy controllers in Golog. In this
paper, we demonstrate how these notions can be fruitfully applied to
two Robocup@Home scenarios. In the first application, we demonstrate
how qualitative fluents based on a fuzzy set semantics can be deployed.
In the second program, we show an example of a fuzzy controller for
a follow-a-person task. While these programs have to be regarded as
a proof-of-concept for the possibility to integrate qualitative concepts
into Readylog beneficially for such applications, we aim at implementing
these programs on our domestic robot platform in the future.

1 Introduction

Classical applications for approaches to cognitive robotics and reasoning about
actions are delivery tasks, where the robot should deliver a letter or fetch a
cup of coffee. In these domains, it becomes obvious that solving such tasks
deploying reasoning and knowledge representation is superior to, say, reactive
approaches in terms of flexibility and expressiveness. An even more advanced ap-
plication domain is RoboCup@Home [12, 13]. As a distinguished league under
the roof of the RoboCup federation the robots have to fulfil complex tasks such
as “Lost&Found”, “Fetch&Carry”, or “WhoIsWho” in a domestic environment.
In the first tasks the robot has to remember and to detect objects, which are
hidden in an apartment, or has to fetch a cup of coffee from, say, the kitchen and
bring it to the sitting room, while in the latter the robot needs to find persons
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and recognise their faces. The outstanding feature of these applications is that
they require integrated solutions for a number of sub-tasks such as safe naviga-
tion, localisation, object recognition, and high-level control (e.g., reasoning). A
particular complication is that the robot may only be instructed by means of
natural interaction, e.g., speech or gestures. Human-robot interaction is hence
largely based on natural language. For example, in the Fetch&Carry task it is
allowed to help the robot with hints like “The teddy is near the TV set”.

Humans make frequent use of qualitative concepts like near or far, as the ex-
ample shows. It would be desirable that the robot could interpret these concepts
and cope with them. When reasoning techniques are deployed to come up with
a problem solution for these domestic tasks, also these mechanisms need to be
able to cope with those qualitative concepts. But even as logic-based reasoning
approaches make inherently use of qualitative concepts, the rest of the complex
robot architecture does not. Hence, one needs to bridge the gap between the
qualitative high-level control and the quantitative robot control system.

In this paper, we show how this gap can be bridged for domestic robot ap-
plications. We extended the logic-based high-level robot programming and plan
language Readylog [2, 3] with so-called qualitative fluents describing properties
of the world based on fuzzy set theory [4] and integrated fuzzy control tech-
niques into the robot control language [5]. This enables us (1) to map qualitative
predicates to quantitative values based on a well-defined semantics, and (2) to
combine fuzzy control and logic-based high-level control. In the sequel, we show
how these concepts can be used beneficially to formulate compact solutions for
tasks such as Fetch&Carry . While we only give a preliminary specification here,
for our future work we aim at deploying these programs to our domestic robot
platform, which participated successfully at RoboCup@Home competitions in
the past [10,11].

The rest of this paper is organised as follows. In Section 2, we give a brief
introduction to the robot programming and planning language Readylog and the
situation calculus, which Readylog is based on. We recapitulate previous work
on integrating fuzzy sets and fuzzy control structures into Golog in Section 3,
before we show our qualitative domain description in Section 4. In particular, we
define necessary qualitative predicates for the domestic service robotics domain
and define fuzzy control structures to enable the robot to cope with qualitative
predicates. We conclude with Section 5.

2 The Situation Calculus and Golog

2.1 The Situation Calculus

The Situation Calculus [7] is a second order logical language with equality which
allows for reasoning about actions and their effects. The world evolves from
an initial situation due to primitive actions. Possible world histories are repre-
sented by sequences of actions. The situation calculus distinguishes three dif-
ferent sorts: actions, situations, and domain objects. A special binary function
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symbol do : action × situation → situation exists, with do(a, s) denoting the
situation which arises after performing action a in situation s. The constant S0

denotes the initial situation, i.e., the situation where no actions have occurred
yet. The state the world is in is characterised by functions and relations with
a situation as their last argument. They are called functional and relational
fluents, respectively. The third sort of the situation calculus is the sort action.
Actions are characterised by unique names. For each action one has to specify a
precondition axiom stating under which conditions it is possible to perform the
respective action and an effect axiom formulating how the action changes the
world in terms of the specified fluents. For space reasons we will not go into the
formal details here. To get an idea, it is enough to know that actions can only
be performed when they are possible, i.e., their precondition axiom holds, and
their effects are manifested in the environment. Finally, we need a so-called ba-
sic action theory [9] (BAT), which is a set of logical sentences containing axioms
about action preconditions and effects, axioms about what is true in the initial
situation and some further foundational axioms. For details we refer to [8, 9].

2.2 Readylog

Readylog [2,3] is our variant of Golog [6] and also makes use of Reiter’s BATs
as described above. It has imperative control constructs such as loops, condi-
tionals, and recursive procedures, but also less standard constructs like the non-
deterministic choice of actions. Readylog extends Golog by numerous features.
For specifying the behaviours of an agent or robot the following constructs exist:
(1) sequence (a; b), (2) non-deterministic choice between actions (a|b), (3) solve
a Markov Decision Process (MDP) (solve(p, h), p is a Golog program, h is the
MDP’s solution horizon), (4) test actions (?(c)), (5) event-interrupt (waitFor(c)),
(6) conditionals (if (c, a1, a2)), (7) loops (while(c, a1)), (8) condition-bounded ex-
ecution (withCtrl(c, a1)), (9) concurrent execution of programs (pconc(p1, p2)),
(10) probabilistic actions (prob(valprob, a1, a2)), (11) probabilistic (offline) pro-
jection (pproj (c, a1)), and (12) procedures (proc(name(parameters), body)).

3 Qualitative Fluents and Fuzzy Controllers in Golog

In this section, we briefly go over our previous work on integrating fuzzy fluents
and fuzzy controllers into Golog. For technical details we refer to [4, 5].

3.1 Fuzzy Fluents

The essence of qualitative representations is to find appropriate equivalence
classes for a number of quantitative values and to group them together in these
qualitative classes. Fuzzy set theory seems appealing as it avoids sharp bound-
aries of the classes: a quantitative value can be, for instance, in two classes at
the same time, the transition between two neighbouring classes can be designed
as being smooth. This characteristic can avoid problems every roboticist already
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Fig. 1. Membership function for qualitative orientation at level 3

has experienced: sensor values oscillate between two categories resulting in awk-
ward behaviour of the robot.

Our formalisation of fuzzy fluents is based on the idea to extend ordinary
functional fluents with a degree of membership to a certain qualitative category.
This means, for example, that the robot’s distance to an obstacle can be short
and very short at the same time. To account for the fuzzy border of the two
categories, the degree of membership is, say, 0.5 for both categories. Another
example is given in Fig. 1. The robot’s orientation at an angle of π

8 is front
and front-right, both with a membership degree of 0.5. Note that while we use
triangular-shaped membership functions in this example, there are no limitations
on the shape of the membership function. To use these fluents, one simply defines
the different categories and membership values in the domain specification.

What is further needed in order to do reasoning with these kinds of fluents,
is a routine that restores a quantitative value from a qualitative category, that
is to defuzzify a category. In [4], we formalise a centre-of-gravity defuzzifier in
the situation calculus. However, other defuzzifiers known from fuzzy set theory
can easily be used as well.

3.2 Fuzzy Controller in Golog

Fig. 2 shows a schematic fuzzy controller. The quantitative sensor values y(t),
together with some reference input r(t), which describes the vital state of the
system, need to be fuzzified, i.e., the membership to a certain class needs to be
determined. The Inference Mechanism uses these fuzzified input values together
with a rule base of fuzzy rules to select the appropriate control output. The
output as such uses fuzzy categories and thus must be defuzzified to serve as an
input u(t) for the real world (the control output). The output of the real world
process serves as the sensor input for the next control step.
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Fig. 2. General architecture of a fuzzy controller

To map this into Golog, we introduce a statement fuzzy controller which
takes a rule base as input and returns the control output (cf. also [5]):

fuzzy controller(
if φ then assign(f, ck); · · · ;
if ψ then assign(g, cl);
default(assign(f, cn); assign(g, cm)))

A fuzzy rule base in Golog is interpreted as follows. Each matching fuzzy rule
will be replaced by its consequence, i.e., a special assignment statement, while
non-matching ones contribute nil. The assignment statement assign(f, c) men-
tioned above is a Golog action which assigns the qualitative category c to the
fuzzy fluent f. As defuzzifier, we use the centre of gravity (cog). Depending on the
assigned output category, control actions can be sent to the actuators. The con-
dition of a rule can be a complex formula over fuzzy fluents stating for example:
is the object close and very close? Sometimes, it may happen that no given rule
in a controller block matches at all, nevertheless some output would be required.
We therefore define an additional statement default(assign(f, c); . . .), which is
interpreted in case the control output was the nil action after evaluating the
rule base.

4 Applications in a Domestic Service Robotics Domain

In this section we give two examples for using fuzzy fluents and fuzzy controller
in the domestic robot domain. We start with a brief description of the tasks.
Before we show the example Golog programs, we define the required distance
and orientation relations.

4.1 A Domestic Service Robotics Domain (RoboCup@Home)

In the RoboCup@Home competition service and assistive robot technology that
is highly relevant for future personal domestic applications should be demon-
strated. In the competition, the robots have to fulfil tasks such as:

FollowMe! : the robot has to follow a human through the apartment;
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Fetch&Carry : a human names known objects and the robot needs to fetch
them. The human may give hints such as: “The teddy is near the TV”;

Walk’n’Talk : in a guidance phase, a human instructor leads the robot around
in an apartment and tells it certain landmarks such as “kitchen table”, “TV
set”, or “fridge”. In a second phase the robot is instructed to navigate to
some of these just learnt places.

The rules of the RoboCup@Home competition state that a robot —to be suc-
cessful in the competition— is to be endowed with a certain set of basic abilities,
like navigation, person and object recognition, and manipulation. Furthermore,
fast and easy calibration and setup is essential, as the ultimate goal is to have a
robot up and running out of the box. Also, human-robot interaction has to be
achieved in a natural way, i.e., interacting with the robot is allowed only using
natural language (that is by speech) and gesture commands. As mentioned in the
introduction, humans tend to make use of qualitative concepts such as near or
far. With introducing suitable qualitative concepts, we bridge the gap between
human and robot representations of domestic environments.

But not all parts of the solution of a domestic task require deliberation. For
some decisions simple reactive controllers are sufficient. However, these reactive
mechanisms also need to understand qualitative concepts. Here, we can make use
of our embedding of fuzzy controllers in Golog. In the next sections, we show
some specification examples.

4.2 Qualitative Representations for Domestic Environments

One very important form of interaction between a human and a robot in the
RoboCup@Home domain is to give the robot some hints where objects might be
located. Based on Clementini, Felici, and Hernandez [1], we develop qualitative
representations for positional and directional information that can be used to
instruct the robot.

The position of a primary object is represented by a pair of distance and
orientation relations with respect to a reference object. Both relations depend on
a so-called frame of reference which accounts for several factors like the size of
objects and different points of view. Different frames of reference can be classified
into three basic types: they are intrinsic, if the relation is given by some inherent
property of the reference object, extrinsic, if a relation is imposed by external
factors such as motion, or deictic, if the orientation is given by the point of view
from which the reference object is seen. In a domestic setting, we can likely infer
the type of the frame of reference as well as a possible reference object from
the context. If, for example, the user is referring to an object to the left of the
plant we are able to instantiate the reference object with the plant, if the user is
referring to something being in front of the robot, we conclude an intrinsic type
and take the inherent front direction of the robot.

Orientation relations are used to describe where objects are placed relatively
to each other. The frame of reference contains the point of view and is meant to
fix the “front” side of the orientation relation. The point of view and the reference
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Fig. 3. Different levels of granularity for orientation and distance according to [1]

object are connected by a straight line. The view direction is then determined
by a vector from the point of view to the reference object. The location of a
primary object is expressed with regard to the view direction as one of a set of
relations. There are different levels of granularity. For example, for orientation
on the first level, the point of view and the reference object are connected by
a straight line such that the primary object can be to the left, to the right, or
on that line. On the second level there would be four partitions, the third level
would have eight, and so on, as shown in Figs. 3(a) and 3(b).

For the distance relation also different levels can be derived as shown in
Figs. 3(c) and 3(d). An arbitrary level n of granularity with n + 1 distinctions
yields the set Q = {q0, q1, . . . , qn} of qualitative distances. Given a reference
object RO these distances partition the space around RO such that q0 is the
distance closest to RO and qn the one farthest away. Further, a structure relation
is needed in order to relate distances to each other (see [1] for details). As in the
description of qualitative orientation, where the frame of reference was meant to
fix the ’front’ side of the reference object, we need to attend frames of reference
for the distance relation, too. In the domestic settings we can define different
distance relations according to: (1) external references such as the maximal size
of the apartment: “The plant is at the far end of the corridor”; (2) intrinsic ref-
erences used in relating objects to each other such as room or table: “The cup is
on the table close to the plate” vs. “The teddy is close to the TV”; and (3) an ap-
propriate distance system. In our domestic environment we suggest to make finer
distinctions in the neighbourhood of the reference object than in the periphery.
Hence, we can distinguish the scales dist-scale ∈ {apartment, room, object(o)},
where object o refers to objects such as table, or bookshelf.

Hence, we must provide a procedure analyseHint , which takes a hint given
by the human instructor and distills the position of the object, the frame of
reference as well as the scale from that hint. For instance:

– “The plant is far on the left side of the corridor”; the primary object is the
plant, the point of view is the view point of the robot, the distance scale is
set to the size of the corridor.

– “The cup is on the table close to the plate”; the primary object is the cup,
the reference object is the plate, the distance scale is set to the size of the
table. No orientation relation is given.
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proc fetch and carry(object , hint)
analyseHint(hint);
π(pos, forθ, fordist).[ori type(forθ) ∧ dist system(fordist)∧
dist scale(fordist) ∧ dist type(fordist) ∧ object pos(pos)]?;

search(object, pos, forθ, fordist )
endproc

proc search(object, pos, forθ, fordist)
solve(while ¬objectFound do

pickBest(search pos = defuzzify(pos, forθ, fordist));
lookForObjectAt(object , search pos);

endwhile, H) /* end solve with horizon H */
pickup and return(object);

endproc

Algorithm 1: A Readylog program making use of the qualitative notions for
the “Fetch&Carry” test

– “The teddy is close to the TV”; the primary object is the teddy, the reference
object is the TV, the distance scale should be set to the size of the room
where the TV is located. Again, no orientation relation is given.

With this procedure at hand, we can adopt our fuzzy fluents for the qual-
itative distance and orientation. The membership function for the orientation
fluent was given in Fig. 1. We can define the membership function for distance
in a similar way. In the next section, we give an idea of how these fluents can be
used for programming the robot.

4.3 Qualitative Notions in High-level Programs

Now that we have proposed an initial modelling of qualitative representations
of positional information in a domestic setting we show how we can make use
of these representations within our existing high-level control mechanism. Algo-
rithm 1 shows a slightly abstracted version of a Readylog control program for
the Fetch&Carry task.

The procedure fetch and carry takes the object that should be fetched and
a user hint as input. At first, the action analyseHint is executed. This is a com-
plex action which involves natural language processing. From the user phrase,
the frame of reference for orientation and distance as well as the distance scale
is extracted (as pointed out in the previous section). The action’s effects axioms
are changing fluent values for the fluents describing the orientation’s frame of ref-
erence, the distance system, the distance scale, the distance’s frame of reference
as well as the qualitative position of the reference object. The next statement
in the program is a so-called “pick” statement (π) which is used to instanti-
ate the free variables in the logical formula in the next test action (denoted by
the ?). The whole construct can be seen as an existential quantifier, and the
effect is that the variables pos, forθ, fordist are bound. The next step is to call
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proc follow me rulebase
fuzzy controller( . . . ;

if is?(distuser, close, speeduser, slow) then assign(speedrobot, slow);
if is?(distuser, far, speeduser,medium) then assign(speedrobot, fast);
. . . ; default(speedrobot,medium))

) ;/* end fuzzy controller */
applySpeed()

endproc

Algorithm 2: A fuzzy controller for the “FollowMe!” test

the search routine with these parameters. The search involves the activation of
decision-theoretic planning (solve) at a position where the object is meant to
be according to the user’s hint. The position is defuzzified, taking the frame of
reference information into account. That is, the position based on the distance
scales and the quantitative orientations given the points of view etc can now be
calculated. The action lookForObject again is a complex action which actually
tries to seek the object.

4.4 Domestic Golog Fuzzy Controllers

As detailed in Sect. 3.2 we integrated fuzzy controllers in Golog in [5]. If (a
part of) a task does not require high-level decision making (decision-theoretic
planning as used in the previous section), but can instead be solved with a
reactive mechanism it may still be convenient to make use of the qualitative
representations. One example in the domestic setting is the “FollowMe!” test.
The control of the follow behaviour can be modelled quite straight-forwardly.

In the following we show a simple rule base that could be used to solve the
FollowMe! task. The rule base for this test could look like Alg. 2. As we stated in
Sect. 3, a rule base consists of a number of if-then rules where the antecedent as
well as the consequence mention fuzzy fluents. So, the first rule reads as follows:
“if the distance to the user is close and its speed is slow, then set the robot
speed to slow”, the second rule reads “if the distance to the user is far and its
speed is medium, then set the robot speed to fast”, where user is the person to
be followed. The is? predicate is defined in [5] and denotes the conjunction of
the fuzzy fluents distuser and speeduser, If neither condition applies, the default
speed selection is set to medium. Finally, the speedrobot fuzzy fluent has to be
defuzzified, that is, a quantitative value is calculated for the qualitative class.
Then, we can apply the quantitative speed to the robot motors.

5 Conclusions

In this paper, we presented an approach on how high-level robot controllers
could deal with qualitative representations for domestic environments. For robot
competitions such as RoboCup@Home this is useful, as the robot needs to be
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instructed by a human operator by natural language. Having qualitative rep-
resentations in place allows for more human-like instructions as humans tend
to use qualitative (spatial) representations such as far or left-of. In our pre-
vious work, we defined qualitative fluents in the situation calculus based on
fuzzy sets. This allows us to define qualitative fluents in a well-founded way.
Particularly, it gives a semantics to derive quantitative values from qualitative
categories and vice versa. Further, we proposed a semantics for fuzzy controller
in Golog. Both, the definition of fuzzy fluents and fuzzy controllers, allows us
to write programs mentioning qualitative values in a straight-forward way. For
the RoboCup@Home tasks Fetch&Carry and FollowMe! we showed example
implementations, how qualitative representations and fuzzy controllers could be
beneficially deployed. While these programs only reflect first ideas of deploying
fuzzy fluents and fuzzy controllers in domestic robot applications, we are aim-
ing at implementing these controllers for our future work on our domestic robot
platform.
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