
Bachelor’s Thesis

Goal Reasoning with the CLIPS
Executive in ROS2

Ivaylo Dinkov Doychev

October 19, 2021

Rheinisch-Westfälische Technische Hochschule Aachen
Knowledge-Based Systems Group

Aachen, Germany

Advisors:

Tarik Viehmann M.Sc., Till Hofmann, M.Sc.

Supervisors:

Prof. Gerhard Lakemeyer, Ph.D., Prof. Sebastian Trimpe, Ph.D.

Contents

1 Introduction 4

2 Overview and Background 6

2.1 Fawkes . 6

2.2 ROS(2) . 7

2.3 Goal Reasoning . 9

2.4 PDDL . 9

2.5 CLIPS . 10

2.6 CLIPS Executive . 11

2.6.1 Goal Reasoning in the CLIPS Executive 11

2.6.2 CX prerequisites and initialization 12

2.6.3 CX components . 13

3 Related Work 15

4 Integrating the CLIPS Executive into ROS 18

4.1 System Design . 19

4.1.1 System Design Goals . 19

4.1.2 Individual components 21

4.2 Implementation . 26

4.2.1 Integration Prerequisites 27

4.2.2 The Novel Skill Execution Mechanism 29

4.2.3 System Initialisation . 31

4.2.4 Using The CLIPS Executive 33

4.2.5 Interfaces for Fawkes . 39

5 Evaluation 40

5.1 Proof of concept in ROS2 . 40

5.1.1 Experimental Setup . 40

5.1.2 Experiment . 41

5.2 Proof of concept with Fawkes 43

5.2.1 Experimental Setup . 43

2

5.2.2 Experiment . 44

6 Conclusion 46

6.1 Future Work . 47

Bibliography 48

3

1 Introduction

Capabilities of robots rapidly increased over the last few years. They range from
better actuators and environment perception to broader real-world applications.
While this is a welcome advance for the world of robotics, there are several de-
mands for high- and low-level control. To accommodate for the increased capa-
bilities and higher demands, rich software solutions are required to build complex
systems to operate robots.

Planning, reasoning, and execution in complex environments with possibly mul-
tiple collaborating robots require efficient solutions for those computationally ex-
pensive tasks. One reasonable approach in that direction is the CLIPS Executive
(CX)[NHL19]. It acts as a high-level controller and manages all high-level deci-
sions such as goal formation, planner invocation, goal execution, monitoring, and
agent coordination. The executive is designed not only to be capable of deliberat-
ing in very dynamic environments but also supports the coordination of multiple
agents. Its reasoning and the program flow are based on the principles of goal
reasoning.

Goal Reasoning (GR) is “the study of agents that can deliberate on and self-select
their objectives”[Aha18]. It is a method designed for intelligent agents to deal with
high-level goals in a reactive and flexible fashion. Rather than completing a fixed
sequence of actions in pursuit of achieving a set goal, the agents are capable of
reasoning about the current goal and reacting to exogenous factors, which influ-
ence the goal’s satisfiability, thus being able to re-evaluate the goal or even switch
to a new one. This behavior is especially valuable in dynamic environments. This
method has set the fundamental basis for the implementation of the CX, which
utilizes goal reasoning in the form of goal lifecycles.

The CLIPS Executive has proven its capabilities in the RoboCup Logistics League
(RCLL) [NLF15] - a robotics competition supporting the advancement in au-
tonomous and smart logistics robots, where team Carologistics won the RCLL
in 2019 [HLM+19] with it.

The main limitation of the current CLIPS Executive, however, is that it is tightly
coupled to the Fawkes framework[NFBL10], where it is developed in. Many of
the components and the plugins, which the executive utilizes, are implemented
inside Fawkes. Consequently, the CX is limited to being integrated into software
stacks, which depend on and use the Fawkes framework. To tackle this limitation
and allow more people to benefit from the approach, we decided to expand the
availability of the CLIPS Executive system.

In this thesis, we present the integration of the CX in the Robot Operating Sys-
tem (ROS)[QCG+09] and more precisely ROS2. ROS is the de-facto standard
open-source middleware for robotics applications. It is supported by a large, lively
community, which has provided a sheer amount of tools and packages that cover
most requirements in robotics. Oddly enough, there aren’t many high-level con-

4

trollers currently available in ROS. By implementing the CX in ROS2, we could
reveal the potential of a GR-based executive to a wider set of people. To the best
of our knowledge, this would be a novelty in the ROS ecosystem.

This integration focuses on developing a standalone CLIPS Executive on the side
of ROS2. It provides a highly configurable and reliable CLIPS-based executive for
the high-level decision-making process inside a robotics software. The first goal
is to enable the CX to be integrated into ROS-based applications. This way, ROS
agents can utilize the potential of the executive. As a proof of concept for this
support, we run the CLIPS Executive in combination with the established ROS2
stacks - Navigation2 [MMWGC20] and Plansys2 [MGRM21]. The second goal
of this integration is to provide the means of communication so that other robotics
frameworks such as Fawkes can utilize the executive.

This thesis is structured as follows: Section 2 first gives an overview of the Fawkes
and ROS platforms and then insight into all relevant technology and preliminar-
ies behind the CLIPS Executive as well as outlining its concept and functionality.
Next, we continue with Section 3, which introduces related work in ROS. It exam-
ines several systems providing high-level reasoning capabilities. Section 4 gives
a basic description of the systems design and main system requirements. It pro-
ceeds with the elaboration of the system implementation. Section 5 describes the
evaluation settings and criteria, and the actual evaluation of the CX system in-
side the ROS2 ecosystem. It also evaluates the possible integration of the CX into
Fawkes. Finally, Section 6 provides the summary and conclusion of our approach
and outlines future development possibilities.

5

2 Overview and Background

We start by providing an overview of the frameworks Fawkes, where the CX is
currently being developed in, and ROS2, which has a broad community that could
benefit from the CX. This would serve as a guideline for the similarities and dif-
ferences between the two frameworks.

The rest of the sections provide information about the core methods and concepts
utilized in the CLIPS Executive. A brief description of the reasoning process and
the initial CX behavior is also provided.

2.1 Fawkes

Fawkes is a component-based, multi-threaded Software Framework for robotic
real-time applications for various platforms and domains[NFBL10]. The main
entities are plugins, which support the structuring and the implementation of the
software (similar to packages in ROS, cf. Section 2.2). Each of them runs in a
separate thread.

The main way of communication inside Fawkes happens through data exchange
via a hybrid blackboard/messaging approach, where information is shared to a
blackboard, and commands are sent via messages. The blackboard utilizes read-
er/writer principle, meaning that when a writer updates data, all readers receive an
update message. Each data update triggers an update to the blackboard and thus
allows event-based programming. Furthermore, a reader can request a specific be-
havior of the writer instance by sending a message over the network to that specific
writer. There is a designated Fawkes main thread that creates the blackboard and
stores different interfaces. Then, internal Fawkes threads (e.g., plugins) or remote
apps access the blackboard memory via read/write transactions. One interface is
designed to have a maximum of one writer at a time and an unspecified number of
readers. A common example would be a plugin responsible for the navigation of
the agent that would be registered as a writer for the Navigator interface. A second
plugin, which is responsible for requesting the desired target pose would be reg-
istered as a reader and would send a ”Go-To” message with specific coordinates
over the blackboard. The writer would then receive and process the message.

An important part of the Fawkes environment is the main loop. It acts as the main
controlling block of the system. It manages the execution order of the threads and
ensures that time constraints are met. Threads in the form of plugins are hooked to
the main loop in a certain stage. The main loop runs in multiple stages in a specific
order, where plugins beneath the same stage run concurrently.

Fawkes offers a Lua-based behavior engine. Users can, for example, define so-
called skills (hybrid state machines), which get executed through the Skiller ex-

6

ecutor plugin. In this case, the mapping of the high-level actions to predefined
skills inside the executor is required.

2.2 ROS(2)

The Robot Operating System (ROS) is open-source middleware, despite its name,
and has been widely used for robotics applications. It is a middleware in the
sense, that it provides a structured communications layer above the host operating
systems[QCG+09]. It includes services designed for a heterogeneous computer
cluster such as hardware abstraction, low-level device control, message-passing
between processes, and package management. The main idea of ROS is that you
shouldn’t reinvent the wheel when programming a robot software, but stick to cer-
tain core methods and standards, as the vast majority of functionalities are already
available in the package system, e.g., navigation or sensing. This speeds up the
developing process immensely.

One ROS program consists of one or more packages (similar to plugins in Fawkes).
The main building blocks inside each package are nodes. They are independent
processes, thus code re-usability, fault isolation and modularity are strongly en-
hanced. The communication between nodes happens via an anonymous publish/-
subscribe model. There can be several publishers and subscribers, which commu-
nicate among themselves via a unique topic. The publisher passes a message (to a
certain topic), which has a simple predefined data structure. Next, all subscribers
to that topic receive the message iff they expect the same message type. This is the
most widely used communication model, but there are also services and actions.
Services can be seen as one-to-one communication based on the request/response
(Client/Server) model. Actions, on the other hand, are built on topics and ser-
vices. They are very similar to services, with the key difference, that the action
server provides constant feedback while executing the request. They also support
requesting the cancellation of the current execution.

The significant drawback of ROS1 is that it is not very suited for real-time appli-
cations, as it required significant resources with no guarantee of process synchro-
nization or deadlines. Therefore, its successor ROS2[OSR] was introduced. The
aim of ROS2 is to provide support for small embedded platforms, real-time appli-
cations, and non-ideal network conditions. These happen through the addition of
the Data Distribution Service (DDS), Zeroconf, Protocol Buffers, ZeroMQ, Redis,
and WebSockets [MKA16]. The DDS communication layer serves as the lowest
middleware layer that communicates with the OS and provides a publish/subscribe
transport (similar to ROS topics) that allows any two DDS programs to commu-
nicate without the need for a central coordinator. This improves the transmission
performance and makes the overall system quicker, more fault-tolerant, and lighter
to work with.

7

One further addition is the lifecycle management for nodes, which enables better
control over the state of the ROS environment. Figure 1 shows the design of the
lifecycle state machine used for the implementation of managed nodes (lifecycle
nodes). It enables to fully control the state of a ROS node. For example, all
nodes initially are unconfigured. A dedicated manager can decide to configure a
note, by invoking a user-implemented function (configure) and transition its state
to Inactive, from where it can then activate the node and enable its communication
to other nodes. This design allows the launching mechanism to ensure the proper
loading of all components with respect to dependencies between the nodes, before
continuing with execution.

These led us to the conclusion, that ROS2 and its newly introduced features were
the better choice for such complex application as the CLIPS Executive. In addition,
for developers in ROS1, who would like to use the CX, there are also interfaces,
assuring backward compatibility. These are the ROS1 bridge[ROSb], which pro-
vides a network bridge that enables the exchange of messages between ROS1 and
ROS2, and also action bridge[ROSa], which bridges between ROS1 action client
and ROS2 action server, allowing the communication through actions.

Figure 1: Managed nodes lifecycle state machine [LFS].

8

2.3 Goal Reasoning

Goal Reasoning (GR) in our work is based on Aha’s definition (2018):

”Goal reasoning (GR) is the process by which intelligent agents continually reason
about the goals they are pursuing, which may lead to goal change” [Aha18]

It is derived from the human ability to form a goal, given a limited amount of
knowledge, and dynamically re-prioritize it in the occurrence of either internal or
external events. The central entities of the approach are expressed as goals. The
flexible and reactive nature of Goal Reasoning originates from the active formation
of goals, combined with a process, in which a formulated goal goes through a set
of different stages, defined as the goal lifecycle. The goal progression, as well as,
exogenous factors are monitored in each of these stages, thus allowing the reason-
ing system to either adapt the current goal or to change it entirely. Such behavior
is especially suited for autonomous Agents in a complex environment. Aha also
defines two models of GR: Goal-Driven Autonomy (GDA) and goal refinement
[Aha18] with the latter finding wider applicability as it allows the formation of
goal constraints and thus the ability to compound more complex models.

The central idea of goal refinement is to progressively refine a goal through the
addition of goal constraints. Goal Lifecycles are used as a form of goal refining
[RSA+14]. Each goal goes through a set of different phases in its lifespan. The
agent, for example, before committing to a goal, can either expand, re-initiate,
or reject it, given the internal condition of the agent or exogenous factors such
as processing sensor data. This technique enhances the ability of the agent to
formulate, execute, evaluate and adjust a goal without the need for a complete
model of all possible situations that could occur.

2.4 PDDL

The Planning Domain Definition Language, in short PDDL, is a planning language
with the aim of providing a universal standard for AI-based planning[GKW+98a].
It is used to encode common planning tasks and to also provide separation of
concerns. This way, the system can be independent of the provided planner, as
the underlying planning software is interchangeable. The input planning problem
is split into two instances: the domain description and the problem description.

(1) Domain Description A description of the behavioral capabilities of the sys-
tem. This defines the domain model to be planned for. This model includes:

• Object Types: define the possible types of objects in the planning
domain. These mainly represent actual physical entities (e.g., robots)

• Predicates: define the properties of the objects inside the domain

9

• Actions: define the possible ways of changing the environment. All
actions include pre-conditions, which need to be satisfied, before ap-
plying the post-conditions

(2) Problem Description: The problem description includes the current knowl-
edge about the system. The combination of available objects with initial
state (mainly facts associated with these objects) and a pursued goal forms
the representation of the problem instance. A planner is then called to pro-
vide a sequence of actions (plan) that achieves the desired goal.

2.5 CLIPS

The ”C” Language Production System (CLIPS) is a portable, rule-based produc-
tion system [Wyg89]. It was first developed for NASA as an expert system and
uses forward chaining inference based on the Rete algorithm consisting of three
building blocks[JCG]:

1. Fact List: The global memory of the agent. It is used as a container to
store basic pieces of information about the world in the form of facts, which
are usually of specific types. The fact list is constantly updated using the
knowledge in the knowledge base.

2. Knowledge Base: It comprises heuristic knowledge in two forms:

• Procedural Knowledge: An operation that leads to a certain effect.
These can, for example, modify the fact base. Functions carry pro-
cedural knowledge and can also be implemented in C++. They are
mainly used for the utilization of the agent, such as communication to
a behavior engine. An example for procedural knowledge would be a
function that calls a robot-arm driver to grasp at a target location, or a
fact base update reflecting a sensor reading.

• Rules: Rules play an important role in CLIPS. They can be compared
to IF-THEN statements in procedural languages. They consist of sev-
eral preconditions, that need to be satisfied by the current fact list for
the rule to be activated, and effects in the form of procedural knowl-
edge. When all its preconditions are satisfied, a rule is added to the
agenda, which executes all the activated rules subsequently by firing
the corresponding procedural knowledge.

3. Inference Engine: The main controlling block. It decides which rules
should be executed and when. Based on the knowledge base and the fact
base, it guides the execution of agenda and rules, and updates the fact base,
if needed. This is performed until a stable state is reached, meaning, there

10

are no more activated rules. The inference engine supports different conflict
resolution strategies, as multiple rules can be active at a time. For example,
rules are ordered by their salience, a numeric value where a higher value
means higher priority. If rules with the same salience are active at a time,
they are executed in the order of their activation.

2.6 CLIPS Executive

The CLIPS Executive (CX) is a CLIPS-based production system[NHL19], which
serves as a high-level controller, managing all the high-level decision making. Its
main tasks involve goal formation, goal reasoning, on-demand planner invocation,
goal execution and monitoring, world and agent memory (a shared database for
multiple agents) information synchronization. In general, this is achieved by indi-
vidual CLIPS structures (predefined facts, rules, etc.), that get added to the CLIPS
environment.

2.6.1 Goal Reasoning in the CLIPS Executive

Goals are the core concept of the CX. They describe the objectives to achieve or
conditions to maintain[NHL19], e.g., to bring a certain object from point A to point
B. They are explicitly represented in the form of CLIPS templates, where specific
rules guide the goal’s execution and mode transformation during its lifecycle. The
CX utilizes GR with the goal refinement mechanism[Aha18] in the form of goal
lifecycles. This way, each goal goes through a predefined set of goal modes during
its lifespan. This makes the program flow explicit and allows constant goal moni-
toring, observation of agent status and actions, as well as tracking and reacting to
internal/exogenous factors. Some goals may be compound, e.g., cooking a recipe.
Such a goal is comprised of several simple sub-goals, such as preparing different
ingredients and heating the oven.

Figure 2 shows the goal lifecycle, through which every goal progresses over time.
Nodes represent the current mode of a goal (stages of refinement).

In the initial stage, a goal is first formulated, meaning that it may be relevant for the
agent and should be considered. A goal is then selected among other goals based
on criteria, e.g., the goal is the most promising. Then, if the goal is compound
it is expanded into sub-goals, otherwise, a course of action is determined, e.g.,
by invoking a planner, reaching expanded mode. Next, the goal commits to the
produced plan or a sub-goal, acquiring all required resources. The plan or sub-
goal is then executed (goal is dispatched). A simple goal reaches the finished
stage when the plan execution has been completed and the outcome of the goal is
determined (succeeded/failed/rejected).

The requirements to achieve a compound goal differs based on the goal type, e.g.,

11

a run-all goal, which runs all sub-goals and succeeds if all of them succeeded or
a try-all goal, which succeeds if one of the sub-goals succeeds. Then, based on
the goal outcome and former stages, the goal is evaluated and the world model is
updated accordingly. This evaluation happens according to user-defined criteria

Figure 2: The goal lifecycle of CX
[NHL19].

Finally, the goal is retracted by the CX,
freeing all resources, plans, and every-
thing related to the specific goal.

Note, that before commited, a goal can
be rejected, directly going into finished
mode. Furthermore, after evaluation, a
goal can be re-initiated. With this ap-
proach, several goals can be selected and
expanded. Then, the CX commits to the
most promising/highest value goals and
the other goals get rejected. This out-
lines the flexibility of the program flow
that the GR mechanism offers.

To model complex objectives, compound
goals may be nested into goal trees. The
goal types of the inner nodes specify
the handling of their respective sub-trees.
Leaves of such goal trees are simple
goals, which can be directly executed by
determining a course of action.

2.6.2 CX prerequisites and initializa-
tion

Before running the CX, there is a 3 stage initialization phase, which ensures that
the features and files are loaded into the CLIPS environment, for the CX to function
properly.

• Stage 1: Several features are initialized during the first stage in a certain
order. Following are few examples of key CLIPS features.

(1) Blackboard: The Fawkes specific hybrid blackboard (cf. Section 2.1)
is loaded with the execution of the Fawkes main program. This step
initializes the CLIPS access to the blackboard and adds the necessary
C++ functions for communication and manipulation of the blackboard
from within the CLIPS environment.

(2) PDDL Parser: The CLIPS Executive uses the PDDL [GKW+98b]
language as a domain and action model. Planning and execution are

12

based on the same common PDDL domain model in order to keep
consistency[NHL18]. The parser feature is used to translate PDDL
domains in CLIPS facts and rules representing the PDLL domain and
problem files.

(3) PDDL Planner: Allows any PDDL-based planner to be integrated and
used with the CX. This is possible due to the CX being able to pro-
vide the standard PDDL Domain and Problem files from the parsed
domains. The agent uses it to invoke the planner.

(4) Robot Memory: The robot memory is a MongoDB-based replicated
common database, which allows multiple agents to communicate with
each other [NHL19]. The CX synchronizes the world model with the
robot memory. Also, the robot memory plugin can be called to re-
trieve all current predicates and objects of the PDDL domain from the
database and to write a PDDL Problem file from the current situation
and a goal specification.

• Stage 2: It includes the domain-independent CX initialization. In this stage
CLIPS fact templates and rules for goals, PDDL domain facts, etc. are
loaded.

• Stage 3: It conducts the user-defined domain-specific executive initializa-
tion. Files are loaded in the given order. In this stage, several features such
as domain representations, world model synchronization, custom goal rea-
soner and expander, execution monitoring, and executioners are loaded.

2.6.3 CX components

The CX supports separation of concerns. The following components can be dis-
tinguished inside the CLIPS Executive:

PDDL knowledge representation: Both the domain and plan model are repre-
sented using PDDL, based on its widespread use. The input domain grants knowl-
edge about the object types, predicates, and possible actions (including their pre-
conditions and effects). This knowledge is presented in form of facts inside the
fact-base. The planning model is the current beliefs of all objects and facts, based
on predicates and object types inside the domain. These beliefs are crucial for both
the planning and execution process. The planner is populated with the existing
knowledge relevant to its problem representation. To keep consistency through-
out the planning/execution, the CX and the provided planner operate on the same
PDDL domain, thus the provided actions inside the resulting plan can be executed.

World model representation: The world model includes all information con-
cerning the internal and external environment. The world model and the planning
model are synced and an update to one model is immediately sent to the other, in
order to avoid inconsistent knowledge. The representation of the world model is

13

richer than the one in the planning model. It includes additional information con-
cerning exogenous factors, such as other agents blocking the current path, which
are not sent to the planning model, as this information is irrelevant for the planner.
This information is useful during the execution and the execution monitoring of a
provided plan.

Goal formation and reasoning: The developer has the flexibility of defining goals
and how they change during their lifetime. A dedicated goal reasoner should be as-
signed the responsibility of controlling the transitions inside goals. The reasoning
process is mostly connected and dependent on the current domain-specific knowl-
edge (e.g, knowledge inside the world model). Both planning and execution are
triggered based on the goal mode and the data inside the goal.

Planning: The planning component provides either dynamical or fixed planning.
In the former case, the main requirement is the presence of a dedicated planner,
such as a PDDL planner. The executive calls the planner, based on a selected goal.
The CX provides the planner problem instance with the existing objects and facts
and sets the desired goal. Upon successful planning outcome, the goal is expanded
and a plan action is generated for each action inside the provided plan. These plan
actions are relevant for the execution of the plan. In the latter case, the developer
defines a plan and provides a fixed-sequence of plan actions.

Execution: In this component, the provided plan is executed, based on its plan
actions. Multiple instances are running during the execution. First, there is an
action-selection mechanism, which evaluates and selects actions, which can be
executed given the current internal and external knowledge. Reason being, that
the planner can indicate a plan action as executable, based on its problem file, but
in reality, there can be, for example, exogenous factors or unavailable resources,
which are part of the world model, that prevent the execution of that action. A
selected action is then executed, using a dedicated executor. The execution is
constantly being monitored, which assures reasonable reaction of the system to
exogenous factors.

Interfaces between each component ensure that the relevant information is being
shared between the different instances.

14

3 Related Work

The CX combines the principles of GR with high-level execution capabilities.
There have been several systems that propose task execution mechanisms for au-
tonomous robots. Such systems vary in implementation, but they all pursue plan-
ning and execution for agents. Despite ROS being the robotics applications stan-
dard middleware, there exists little to no such available packages. In the following,
we describe the few systems known to us, which have contributed significantly in
that area.

ROSPlan: It is the current standard framework for embedding a generic task plan-
ner in ROS systems[CFL+15]. The main purpose of ROSPlan is to link PDDL
to the ROS environment and allow the integration of different PDDL planners.
It provides task planning and action execution. It consists of a knowledge base
node, which gathers all relevant information about the world and the internal state
of the agent. This information is then used to generate the initial state and goal
and is passed to the planning system node, which constructs the PDDL problem
instance and invokes the external planner. The planning system also constructs
a filter for the plan, which updates the information, relevant for the problem in-
stance, based on new information in the knowledge base. Finally, the planning
system dispatches the set of actions, based on the generated plan. The planning
system maps the high-level PDDL actions to low-level ROS action messages. This
happens through a plan dispatcher instance, where the developer should specify
how a PDDL action is to be executed in ROS.

ROS Based Planning and Execution Framework for Human-Robot Interac-
tion:
Dondrup, C. et al. [DPNL17] introduces a system, which uses the ROSPlan frame-
work for planning, but its main contribution is the replacement of the built-in action
execution mechanism of ROSPlan with a Petri-Net Plans (PNP) for action execu-
tion. The knowledge base of ROSPlan is modified to use a MongoDB backbone.
Furthermore, a bridging interface between the two frameworks is built, allowing
the message passing between ROSPlan and PNP and native integration of a ROS
action server. This proves, that the native execution mechanism of ROSPlan can
be successfully substituted to meet the needs of the produced system.

Plansys2: It can be considered as the successor of ROSPlan for ROS2 [MGRM21]
with the additional support for multi-robot execution. The ROS2 Planning System
provides an efficient, robust, and easy-to-use PDDL-based planning system for
ROS2 applications. The Domain Expert reads and holds the PDDL domain de-
scription (available types, constants, predicates, functions, and actions) and shares
them with the rest of the system. The Problem Expert contains the current knowl-
edge about the system’s state (objects, facts, goals). This knowledge is populated
by a client application, which can then call the Planner to generate a sequence of
actions (plan) by calling an interchangeable PDDL planner based on the informa-

15

tion available in the Domain and Problem Expert. This plan can then be used by
a client application, in our case - the CLIPS Executive, or by the native Plansys2
Executor (similar to ROSPlan). Such a planning system is crucial for the imple-
mentation of the CX as the world model is represented in a form of a PDDL domain
description, shared by the executive, and the underlying planning system and its
PDDL planner. For our approach, we are replacing the native Plansys2 Executor
with the running CX instance similar to how [DPNL17] have utilized ROSPlan.

GOLOG and ROS Integration: Kirsch, M. et al. [KMFS20] implements a high-
level controller in GOLOG and proposes a ROS interface; golog++. The goal of
this interface according to the authors is with ”golog++ to do for GOLOG what
ROSPlan does for PDDL”[KMFS20]. The approach is more modular in compari-
son to ROSPlan and maps the core functionalities of ROS and ROS ActionLib to
golog++ instances. For example, it strictly requires the use of the mapped ROS
ActionLib to golog++ for action execution. This way, the developer only needs
sufficient knowledge in C++ and little to none in ROS.

SMACH (”State MACHine”): A ROS package, which allows the execution of
high-level tasks with finite state machines instead of PDDL models. It is a ROS-
independent Python library that can be used not only to build hierarchical and
concurrent state machines but also any other task-state container that adheres to
the provided interfaces[BC10]. It defines several state classes serving as inter-
faces to parts of ROS. One example would be the ServiceState, which represents
the execution of a ROS service call and implements the service request/response
mechanism. This way, the developer could model a state machine to interact with
ROS. RAFCON is another finite state machines based executive[BSBD16]. It is
fairly similar to SMACH, with the key difference, that it includes a GUI, which
enables graphical monitoring of state machines or execution status, and even the
creation and observation of new state machines or modifications to existing ones
during a running execution.

While both of these enlighten the implementation of an executive in ROS signifi-
cantly, state machines tend to not perform well enough in complex environments
with several unpredictable exogenous factors.

Real-Time BDI Model in ROS2: a real-time multi-agent approach to improv-
ing practical reasoning, integrating the Belief-Desire-Intention (BDI) model in
ROS2[AG19]. Their BDI model explicitly considers timing constraints in the ac-
tions of the agents and the interactions between them (defined by a designer),
thus the reasoning mechanism has a natural constraint on plan generation/fulfill-
ment and desires, which define the preconditions, deadline, priority of a goal, and
the actual goal to achieve. Each real-time agent has a predefined name, belief-
set, desire-set and plan-set, which represent the knowledge of the agent about the
world, which goals it could achieve, and how it can interact with the surrounding
environment to accomplish a goal[AG19]. The real-time BDI model communi-
cates with the agent’s nodes (monitoring nodes, scheduler, and executor node),

16

running in ROS2 to instantiate at run-time the actual beliefs, goals, and intentions
of the agent. The monitoring nodes are sensing the environment/internal state and
publish a message to a given topic, whenever an update is perceived. The sched-
uler node serves the role of the reasoner for the agent. It subscribes to all topics
and updates the agent sets accordingly. As the name suggests, it schedules the next
plan to be executed based on the aforementioned criterion and then feeds it to the
executioner node, which executes the given plan and publishes it to a belief and
goal topic. While this approach seems very promising, it still lacks the needed
autonomy for our approach, as the designer should not only explicitly define the
deadline and priority of a desire but also the body of a plan (actions to perform and
the exact order) and the priority of the plan, which is relevant for the scheduler,
when choosing a plan.

While all mentioned approaches contribute significantly to task execution for au-
tonomous robots in ROS, there is, to the best of our knowledge, currently no GR-
based executive available either in ROS1 or ROS2. Such mechanism has proven
its capabilities in the Fawkes framework, therefore, our proposed implementation
will present a new and proven concept to the ROS community.

17

4 Integrating the CLIPS Executive into ROS

This thesis presents the open-source integration of the CLIPS Executive[RCX],
currently implemented in Fawkes, in ROS2. We reckon this integration will be a
step in the right direction not only for the CX but also for the ROS community,
based on the aforementioned reasons, thus more developers could benefit from
and/or contribute to the CX and the goal reasoning ideas.

There were two pursued milestones for this integration.

(1) Standalone ROS system: Our goal for this milestone was to achieve a
robust and reliable goal reasoning system that could be used solely in the
ROS ecosystem and environment and communicate with other systems, such
as Plansys2 or the Navigation2 stack[MMWGC20]. The main limitations
for this milestone are the tightly coupled Fawkes components (e.g., the
PDDL Parser), as well as Fawkes plugins/libraries on which the CX de-
pends. For that purpose, we implemented standalone Fawkes-independent
libraries, e.g., the PDDL Parser and Protobuf, and replaced existing depen-
dencies with more sophisticated systems in ROS. The ultimate goal is to
provide an established high-level reasoner and executioner, that could eas-
ily be combined and/or integrated into the context of another ROS robotics
application. This way, ROS developers could reliably use the CX for all
high-level decisions and build their own agents.

(2) Usability in other robotic frameworks: The second milestone is a system
that could be integrated/used in another robotics framework with Fawkes
being the sought-after framework. The reason originates from the fact that
the CX was originally developed in Fawkes, and we plan on using the ROS2
CLIPS Executive as a possible substitution of the current CX. There are
several challenging parts for the back integration with Fawkes. First, the
bridging between the ROS CX and the features that remain in Fawkes (e.g.,
the Skiller, cf. Section 2.1), and second, further implementation of features,
which are not part of the core implementation of the ROS CX, but are neces-
sary for the agents currently implemented using the Fawkes CX, such as the
agent for the RCLL[HVG+21]. By implementing the necessary features and
mechanisms, the ROS CX should be capable of providing a similar behavior
as the current Fawkes CLIPS Executive, thus enabling proper communi-
cation and execution flow between the ROS2 CX and the running Fawkes
plugins.

The common requirement is the ability to run the CX in both single-, and multi-
robot simulations and real-world robots, thus extending the applicability of the CX
for multiple scenarios.

Following, we begin by giving a high-level overview of the system’s design, the
primary system requirements that we build upon, and the purpose behind each

18

implemented component. In the last section, we dive a little deeper into the core
implementation of each component, the communication between each of them,
and the possible connection to an external application.

4.1 System Design

The primary goal of this integration is to achieve, simultaneously, an established
CLIPS-based goal planning and reasoning framework available in ROS2, and a
system that can easily be used in the context of other frameworks (e.g., Fawkes)
with little configuration. To fulfill that demand, we designed a system, that takes
several requirements into account. Figure 3 gives an overview of the design of the
system, which will be used as a baseline reference throughout this section.

4.1.1 System Design Goals

First, as a reasoning system, ensuring reliability, predictability, and robustness is
key. This is made possible by the ROS2 core mechanics and newly added features.
The addition of a DDS communication middleware, which is commonly used in
mission-critical systems (battleships, aircrafts, financial systems, and many others)
makes the implementation of a real-time, secure application a possibility. This is
especially important for a high-level reasoner, as all information should be kept up-
to-date so the appropriate commands are reliably sent from the CX and received
by the underlying layer.

Robustness and predictability are secured by implementing the main CLIPS Exec-
utive nodes as ROS2 managed nodes (lifecycle nodes). These nodes operate on a
defined lifecycle, which is based on a finite state machine with transitions between
given states, thus ensuring the consistent behavior of a node from its creation to
its destruction. Each state is observable over services, which also allow inter-
nal/external triggering of a transition to a state and invoking the corresponding
user-implemented functionality for the given transition. These are, for example,
the configuration of the node, the activation of its communication network, and on
error handling and clean-up. This behavior allows the deterministic startup and
control of the system. In our case, the core nodes - CLIPS Environment Manager,
CLIPS Features Manager, CLIPS Executive and Skill Execution nodes are imple-
mented as managed nodes. The responsibility for the transitions between their
states is coordinated by the implemented Lifecycle Manager, which is used by the
main system Bringup to assure the correct system launch (cf. Figure 3).

Next, extendability and customizability are crucial to the CX so that its function-
ality can be adapted comfortably to the needs of the developers. The original CX
is highly configurable to individual scenarios. We designed the ROS CX based on
similar concepts. One such example is the configuration of the CX over a dedicated

19

config file, where most of the executive’s behavior is defined. Furthermore, we use
established ROS2 packages in the core implementation of the CX, which offer pos-
sibilities that are not currently implemented in the Fawkes CX. To illustrate this,
we utilize systems, such as Plansys2 for the planning aspect or Navigation2 inside
the evaluation.

Figure 3: ROS CLIPS Executive design.

Lastly, as the CLIPS Executive is aimed to perform well in dynamic environments
with multiple robots, such as the RCLL, support for multi-robot reasoning and ex-
ecution is vital. The Fawkes CX is able to coordinate multiple agents by invoking
different Skiller instances, which execute the input skill. The ROS CX supports
similar behavior. We also use the term skill inside the ROS CX, but its semantics
are different - skill represents the identifier of the PDDL action, for which an ex-
ecutor node is implemented, instead of referring to a modeled hybrid state machine
within Fawkes. We implemented a skill execution mechanism to support the exe-
cution of actions on different robots. Multiple nodes in a network can implement

20

the same PDDL action. To indicate the robot, which will execute the skill, an agent
id is specified inside the execution node (similar to namespacing). The CX starts
the execution of an action based on the specified agent and skill. This is covered
in-depth in Section 4.2.4.

4.1.2 Individual components

In this section, we will describe the functionality and the rationale behind each of
the currently implemented ROS2 packages, which can be found in Figure 3.

Integrating CLIPS

The main thing we had to take into consideration was, how a CLIPS-based exec-
utive should function in the context of ROS2 or rather any robotics application.
The CX is CLIPS-based (cf. Section 2.6), so the very first thing we needed was to
secure that there is a CLIPS environment natively running in ROS. Creating an en-
vironment is the single most important step when embedding CLIPS into another
system. Each environment maintains its own set of data structures and can be run
independently of the other environments. It is a common practice to have a single
initialized environment, which interacts with the rest of the system.

The common execution pattern is to have a centralized instance that first initializes
CLIPS. Then all features, which are available during the current execution, are sent
to that instance. Finally, upon an environment creation request, it loads the core
CLIPS files and functions and notifies the newly created CLIPS environment about
all available features. This completes the startup and the implemented executive is
responsible for the CLIPS execution flow and the communication outside CLIPS,
using the provided features.

The CLIPS Package

The CLIPS package design can be found in Figure 3. It consists of the CLIPS En-
vironment Manager and its client wrapper, which provides ease of use for the inter-
action with the manager. The manager provides the functionality of the aforemen-
tioned external centralized instance, which is the main waypoint for interaction
between ROS and CLIPS. It is designed as a lifecycle node and must be present at
any time, while running the system, as both CLIPS and a corresponding environ-
ment are created, using the manager. As a consequence, it can be considered as
the main starting point of the system. The manager is inspired by the Environment
Manager inside the Fawkes CX. We adapted the logging component and the over-
all communication flow from and to the manager, based on ROS2 communication
protocols. It fulfills several tasks, while being completely independent of the rest
of the system, in order to achieve desirable decoupling from other instances such

21

as the features manager or the implemented executive. Its responsibilities include:

(1) CLIPS Logging The manager implements a custom default logger class,
which is based on the logging component inside the Fawkes CX. The log-
ging component class specifies what kind of information is received over the
network and in which logging configuration it is being printed out. This in-
formation can range from the addition of facts or activation of a rule to error
printing or backtracing a rule execution. The logger is accustomed to the
specified logging mode of the system and the specified facts, that are being
watched. This detailed tracing is extremely useful during debugging, as the
developer can both target certain fact types or receive the complete CLIPS
logs.

The present logging component can easily be modified to the developer’s
needs. It can also be replaced with a new one or accompanied by another
one, whose targeted logs are more specific. This is possible due to a priority-
based mechanism, meaning that first the logs of a higher priority component
are processed, before proceeding with others. The logger inside the redefine
warning feature, which catches the re-definitions of CLIPS rules, is a good
example of such customization.

(2) CLIPS Interaction As the manager is the main waypoint to CLIPS for the
rest of the system, it provides several functions. These include environ-
ment creation/destruction and addition/removal of features. These functions
are also supported and used by the corresponding CLIPS manager within
Fawkes.

The manager supports the creation of multiple environments, each identified
with its unique name. Upon the creation of a new environment, the man-
ager sets up all aforementioned configurations. The bare-bone environment
is provided with simple utilities. These include the ability to load CLIPS
files, time stamping, and others. It is also provided with a list of registered
features, whose initialization can be requested at any time. On successful
creation, the running environment is further accessible through the manager
and can be used in other system components.

Complementing this, destroying a created environment is also supported. It
does the exact contrary of creating an environment. The destroyed environ-
ment can’t be further accessed from other components.

The manager also provides a function, through which an external instance
sends a list of available features in the form of feature names, that could be
requested by any CLIPS environment.

Logically, the manager implements a way to remove the names of registered
features.

22

Given its tasks, the Environment Manager should be the first available instance in
the running system. All of the mentioned functions are implemented as services,
so they are available both system-wide, as well as, reachable from an outside ap-
plication.

To hide the complexity of implementing clients to the provided services and con-
trolling the communication flow/outcome of the service for each instance, which
needs to communicate with the manager, there is an implemented client wrapper
- the Environment Manager Client. Its main goal is to provide functions, which
realize all possible requests to the manager. It initializes a client for each provided
service. It handles the complexity of creating and sending the client request to the
corresponding manager service. Finally, it gives feedback on the outcome of that
request. Its design purpose is to have a general client, which can be used inside or
outside the system universally.

The Features Package

The features package is another essential part of the system. It is composed of the
CLIPS Features Manager and all of the implemented CLIPS features. The design
can be seen in Figure 3.

The main idea behind features is to enable the interaction between a CLIPS en-
vironment and the embedding of system/external applications with the purpose
of adding functionality to the CLIPS environment. They can be seen as an ap-
plication programming interface (API), which allows communication from within
CLIPS with an external program. In the most common case, the feature imple-
ments several C++ functions for interaction with the specified system. The context
initialization consists mainly of transforming these functions into CLIPS functions,
so they can be called inside CLIPS. This mechanism is vital for a complex system,
such as the CLIPS Executive, as the executive needs to control/send commands to
multiple external instances. In Section 4.2 we will go into further depth of each
implemented feature.

As the name suggests, the CLIPS Features Manager has the duty of controlling and
managing all available features. It is also designed as a managed node to control
the startup, as its main prerequisite is to have a running Environment Manager to
interact with. Its tasks consist of:

1. Dynamically loading of all specified features. The Features Manager is the
entity responsible for the actual creation of a feature and the control of its
initialization/destruction.

2. Sending the list of available features to the Environment Manager.

3. Providing a function to the to CLIPS, which enables the CLIPS Environment
to request the initialization of a given feature if the feature was previously

23

added to the Environment Manager. This request is sent to the Features Man-
ager, which takes care of calling the context initialization of the requested
feature if it is present inside the manager.

4. Providing the CLIPS Environment with the means to request to destroy the
context of an already registered feature. This will result in the feature not
being able to be accessed through the CLIPS Environment and in the system.

It allows easy loading/unloading and control over each future during its lifetime.
Designing each feature to be based on a common features class and the dynam-
ically loading of features by the Features Manager allows the user/developer to
easily configure, which features are to be loaded. This simplifies the process of
implementing and configuring new features significantly.

The CLIPS Executive Package

This package consists of the CLIPS Executive and several important CLIPS files,
which are loaded into the created environment. It is heavily based on the CLIPS
Executive plugin inside Fawkes, thus from a developer’s perspective, CLIPS Ex-
ecutive agents do not require any changes when switching to the ROS CX.

The executive is the third core instance of the system. It is also implemented
as a managed node. Both the CLIPS Environment and Features Manager can be
viewed as the necessary tools to empower the capabilities of a user-defined CLIPS
Environment. The CLIPS Executive is the most complex instance in our system.
The CX is responsible for all high-level tasks connected to reasoning, planning,
execution, and monitoring. These are carried out through the CLIPS engine. It is
also responsible for communication with the outside system/systems, by the means
of designated features.

The work of the CLIPS Executive can be split into two main parts. Part one con-
sists of creating and configuring the CLIPS Executive node. Part two covers the
initialization of the CX inside CLIPS and the consequent working process inside
the CLIPS environment.

Part I

The idea of the CX is to provide a highly configurable executive, which can easily
be adapted to individual scenarios, thus allowing the developer to experiment with
different settings. Whether for testing purposes by switching between the loaded
domains and files, or using the CX on a real agent, we wanted to keep the behavior
as predictable and the provided configuration as modular as possible.

To accomplish the same configurability in the ROS CX as in the original CX we,
took advantage of ROS2 parameters and a designated configuration file, whose
parameters are mainly imported from the CLIPS Executive configuration file inside
Fawkes. These parameters are used to configure different functionalities, such as

24

starting the executive instance in debugging mode, enabling loop events inside
CLIPS, managing how and when certain instances and files are initialized in the
environment. The executive enables the definition of multiple running scenarios
inside the same configuration, so the developer can easily switch between agents.

The initial configuration of the CX consists of extracting parameters and requesting
the default features, for example, the config feature, whose task is to parse the
provided executive configuration file into CLIPS.

Part II

This part mainly covers the CLIPS-side initialization of the CX. As in the original
CX, the ROS CX implements a phase-based initialization (cf. Section 2.6). A key
difference is the available features, which can be requested. The ROS CX offers
some similar features as the Fawkes CX but with different implementations. For
example, we implemented a config feature, which is independent of the Fawkes
central config library. Also, the PDDL Planner feature utilizes Plansys2 instead of
Fawkes interfaces to certain PDDL Planners. During the initialization, the CX also
loads several CLIPS files, which provide the functionality of the different compo-
nents responsible for knowledge representation (PDDL representation), goal rep-
resentation, planning, execution, and others. Section 4.2.4 covers the similarities
and the major modifications between their functionality inside the ROS CX in
comparison to the original CX.

The Lifecycle Manager Package

The design of this package is inspired by the Lifecycle Manager implemented
in Navigation2[MMWGC20] and the ROS design suggestions for lifecycle nodes
[LFD]. The package consists of the Lifecycle Nodes Manager and a client wrapper
for a lifecycle node - the Lifecycle Nodes Client. The idea behind their implemen-
tation is to provide unified management of lifecycle nodes. The Lifecycle Manager
is responsible for the proper configuration and triggering of wanted transition for
each of the user-specified lifecycle nodes. In our system, the Lifecycle Manager
manages the Environment and Features Manager, as well as the CLIPS Executive
node. The manager is designed to monitor and react to either the successful or
unsuccessful transition of these nodes.

The manager instance expects a list of lifecycle node IDs as input. The provided
list is managed in the given order, meaning that the first node will be processed
first (FIFO). This is important for dependencies between the nodes. The manager
instantiates a Lifecycle Node Client for each node. The task of this client wrapper
is to enable the transitioning of a managed node, as well as getting feedback for
the current state. This is possible thanks to two services, implemented inside each
lifecycle node instance - the service to get the current state and to trigger a possible
state transition. After the initialization of all clients, a startup script is executed.
The manager also provides the means to shut down, reset, pause, or resume the

25

system.

Having a centralized manager for the main system nodes enables the flexibility
of customizing the system startup and configuration, as well as managing the ex-
pected system bring down.

The Bringup Package

The idea of this package is to give the resources to set up and start the CLIPS
Executive system in CX applications. It consists of three main components:

(1) Nodes Parameters: The nodes parameters include all provided configura-
tion files. They enable the developer to configure the CX system nodes to
their needs, depending on the available parameters. This is especially im-
portant in the case of the CLIPS Executive. Its highly configurable nature
allows the experimentation of different scenarios and settings. This behavior
is comparable with the loading of the CLIPS Executive YAML configuration
file inside Fawkes.

(2) Launching files: The launching files provide the main bringup of the sys-
tem. They launch the system, based on provided launching descriptions -
specific nodes, parameters, etc. This is similar to defining a CLIPS Execu-
tive meta plugin in Fawkes.

(3) Composed startup nodes: The composed startup nodes provide the ability
to strictly control the startup flow of the system nodes and compose them
in a single process, instead of launching each node separately. This ensures
that CLIPS instances run within the same process, which is necessary to
avoid conflicts inside different CLIPS components. They are used inside a
launching file.

This package is aimed at applications that integrate the CLIPS Executive system.

This basic overview of the system and each individual component gave the funda-
mental basics and theoretical foundations necessary to jump into the implementa-
tion section of the ROS2 CLIPS Executive.

4.2 Implementation

In this section, we will focus on the implementation aspects of our system. We
will examine the main prerequisite developing steps before integrating the CLIPS
Executive in ROS. These include embedding CLIPS in ROS and providing the
necessary interfaces. This section also provides a description of the system’s con-
figuration and startup, before giving a thorough explanation of its functionality,

26

capabilities, and program flow. Each of the main components is easily customiz-
able or replaceable by the user, but we will focus on the current state of our system.

4.2.1 Integration Prerequisites

This development step was connected to the two main problems associated with
enabling the integration of the CX in ROS. First, we needed to embed CLIPS
inside ROS. The second problem was the aforementioned limitation of the Fawkes
CLIPS Executive, namely, the CX is dependent on several libraries and controls
several plugins, available only in Fawkes. Following, we will describe how we
overcame those obstacles.

Native CLIPS in ROS

Integrating the CX starts with providing a mechanism, whose purpose is to enable
the interaction with CLIPS. For this, we implemented the described centralized
managing instance - the CLIPS Environment Manager. It employs the ability to
initialize CLIPS and to create/destroy CLIPS environments, as well as configuring
them according to the developer’s needs. These functionalities are implemented
in the form of ROS services, the client/server-based communication interface of
ROS2. This provides easy access to the manager, from either the rest of the sys-
tem or external application, thus decoupling it from the system. The Environment
Manager can be seen as an API between CLIPS and ROS. Underneath, it utilizes
another API - clipsmm[cli], which ensures the CLIPS-C++ bridging. Clipsmm
is also utilized in the Fawkes CX. We also implemented a client wrapper for the
Manager, which hides the complexity of interacting with ROS services and pro-
vides ease of use. Figure 4 shows the possible interaction between an external
component, which utilises the client wrapper, and the Environment Manager.

Figure 4: Interaction between the Environment Manager and the client wrapper.

27

Interface Libraries and Features

The Fawkes CX uses several features that are coupled to Fawkes. To keep modular-
ity and re-usability, we implemented interfaces, that decouple the Fawkes-specific
plugins and assure the correct behavior of the CX. These interfaces aim to offer a
comparable behavior as in the original plugins. For instance, the Fawkes planner
feature provides an interface for interaction between the CX and a provided PDDL
planner. In this case, we built a feature that allows the interaction between the CX
and a planning system on the side of ROS. Additionally, many of these plugins
depend on Fawkes-specific libraries, which we needed to implement as standalone
libraries to provide the desired functionality. In the following, we will examine the
main features that we implemented for the ROS CX.

(1) Config Feature: The implemented config feature provides identical behav-
ior to the one in Fawkes, but is entirely independent of the Fawkes config
library. It allows the parsing of an input configuration directly into CLIPS
in the form of facts. This way, the CX can parse the user-specified config
file and can operate according to the provided parameters. This mechanism
allows experimenting with different settings and scenarios.

(2) PDDL Parser Feature: The purpose of this feature is to allow the parsing
of a provided PDDL domain file into specific CLIPS facts, corresponding to
the specified object types, predicates, and actions. This feature is extremely
important, as the knowledge about the world and the possible system behav-
ior is build upon the provided domain. For this purpose, we decoupled the
Fawkes PDDL parser library and the CLIPS PDDL parser plugin and imple-
mented them as standalone libraries. Consequently, the CX is able to parse
the provided domain and populate the fact base, which is a key prerequisite
for the core CX features.

(3) Planner Feature: The goal of this feature is to provide the CX with the
ability to interact with an external planning system/planner. Its purpose is
to substitute the planner mechanism inside the original CX with a more so-
phisticated planning system. For this purpose, we currently utilize Plan-
sys2, which provides several additional functionalities, such as an elaborate
PDDL Planner interface compared to the rudimentary one in Fawkes, and
more capable natively supported planners (e.g., temporal planner support).

(4) Skill Execution Feature: The purpose of this feature is to provide an inter-
face to the new Skill Execution mechanism, provided by our system. This
mechanism completely substitutes the execution mechanism of the Fawkes
CX and allows the execution of a specific action inside the system, without
the dependency of the Fawkes Skiller. Additionally, it provides the possibil-
ity to interface with the Fawkes Skiller, thus a skill in the ROS CX can be
handled the same as a skill in the Fawkes CX. Using the provided sequence

28

of actions (plan) and reasoning about the executable actions, the CX creates
and manages execution instances using this interface, which then requests
and monitors the execution of a user-implemented skill inside the embedded
system. The Skill Execution mechanism is covered in-depth in the following
Section.

All features are designed as loadable plugins. This enables the user to flexibly
configure, which features need to be loaded by the manager and then provided to
the Environment Manager. This also enhances the ease of implementing a new
feature, as they all derive from the same feature instance, thus the developer only
needs to implement the actual functionality, which the feature would provide to
CLIPS, and then specify the loading of this feature inside the manager’s configu-
ration. The Features Manager utilizes the Environment Client for interaction with
the Environment Manager. On startup, it sends a list of available features to the
manager and implements a function, which allows the CLIPS Environment to ini-
tialize the context of a specific feature. In Fawkes, the implemented CLIPS aspects
provide similar functionality. Figure 5 shows how the Plansys2 feature is loaded
into a CLIPS Environment.

Figure 5: The interaction between the CLIPS Environment Manager, the Features
Manager and a CLIPS Environment to load the Plansys2 feature.

4.2.2 The Novel Skill Execution Mechanism

The execution of skills in Fawkes is orchestrated by the Fawkes Skiller executor.
This plugin, however, remains in Fawkes, as it is strongly coupled to the Fawkes
core mechanisms. For this reason, we implemented a novel Skill Execution mech-
anism to enable the execution of skills on the side of the ROS CX, while also

29

enabling interfacing with the Fawkes Skiller and also keeping the execution inter-
face within the CLIPS environment consistent between the two CXs.

The Skill Execution mechanism allows the binding of different executors. This
mechanism is implemented inside the skill execution package of the CX and is
partially inspired by the action execution approach inside Plansys2 [MGRM21].
There are two entities - the Skill Execution Master and the Skill Execution. All
instances of these entities communicate over the same topic - a virtual, centralized
skill board.

1. The Skill Execution Master - The purpose of the skill master is to provide
control over the user-implemented Skill Execution nodes. It is initialized
with the provided parameters for the action. These include the action name,
parameters, different mappings, and an agent id, which indicates the agent
to execute the action, in the case of multiple agents. It enables requesting
the execution of a skill. Additionally, it provides constant monitoring of the
currently executed action, as well as the option of canceling the execution
of the skill. Finally, it saves the outcome provided by the execution node.

2. The Skill Execution - The purpose of the Skill Execution node is to pro-
vide the base class for the implementation of a specific PDDL action. Each
instance corresponds to exactly one action, is provided with the execution
mechanism by default, and implements the actual execution of the skill. We
implemented it as a managed node so it can be easily controlled by the skill
master, depending on whether the execution is required, or the node can be
idling. For multi-robot scenarios, a dedicated parameter is used to specify,
which id corresponds to the agent, implementing the specific action. For
example, the agent robotino1 would only accept requests which include its
agent id. These skill nodes are aimed to be implemented based on the sys-
tem, which utilizes the CX. For example, a move action for Navigation2
would differ from the one in the case of Fawkes. Upon activation, the in-
dividual function responsible for the execution is run. We also provide the
possibility to give constant feedback during the execution, as well as inform-
ing about the outcome of the execution.

The interaction between the two instances is the following (cf. Figure 6):

• The Skill Master sends a message of type REQUEST with the specific skill,
parameters, and agent id.

• A Skill Execution node, which implements the action that is running on the
provided agent, and is currently idle sends a RESPONSE providing its id.

• The Skill Master receives the RESPONSE and decides to either CONFIRM
the execution or REJECT it.

30

• Upon receiving a confirmation, the execution node is activated and the exe-
cution begins, based on the implemented execution function. The node can’t
process further requests.

• The execution node can choose to periodically send feedback over the skill
board

• The Skill Master can send a CANCEL request to abort the execution

• Finally, the execution node send information about the executed skill

Figure 6: Skill Execution Sequence.

The skill execution mechanism is utilized in the CX for the execution of plan
actions. The Skill Execution feature provides an interface, which allows the CLIPS
Executive to create and control skill execution master nodes, based on the current
action.

4.2.3 System Initialisation

This section gives a high-level overview of the common system startup flow and
the possible system configuration. We use the implemented bringup package,
which provides the system’s main starting mechanism and configuration files.

System Configuration

Both in the original CX and the ROS CX the developer can configure different
parameters:

• CLIPS debug level - The user can choose to enable or disable CLIPS debug-
ging. CLIPS provides very comprehensive logs by default. The debugging
includes the watching of facts, rules, activation of rules, printing in certain

31

functions/rules. To meet different debugging requirements the debugging is
split into several predefined levels.

• Overall CLIPS configuration - There several parameters, which decide how
CLIPS functions. There is the assertion of time each loop and the automatic
retraction of goals to name a few.

• Defining Scenarios - This is the most important part of the executive’s con-
figuration. It allows the definition of multiple scenarios inside the same
config file. Each scenario defines its own parameters, as well as, which
instances to load in the specific phase of the executive’s phase-based initial-
ization. The CX loads only the specified scenario.

In the case of the Lifecycle Manager, the developer can specify the lifecycle nodes
to be managed.

System Startup

The CLIPS Executive can both be started with or without the Lifecycle Manager,
where the developer is responsible for managing the lifecycle nodes. Here, we will
focus on the startup with a manager, as it is the more common and robust pattern.

Figure 7 represents the launching sequence of the CLIPS Executive using the Life-
cycle Manager. On startup, the listed nodes are created and receive the provided
configuration parameters. Initially, all managed nodes are in their unconfigured
state. The responsibility of the manager is to control the flow of the provided life-
cycle nodes. Upon its initialization, the manager launches a startup script. The
aim of this script is to configure and then activate all nodes in the specified order.
In this case, the provided order is the Environment Manager, then the Features
Manager, and lastly, the CLIPS Executive. The manager constantly monitors the
state of the current node and the outcome of its transition. The system is in a work-
ing state iff. all nodes have been transitioned to the active state, else system shut
down would follow. During this initialization the corresponding configuring and
activating functions of the provided nodes are called upon transitioning to the next
state.

32

Figure 7: CX launch sequence diagram (with Lifecycle Manager). The red circle
represents a synchronisation point.

4.2.4 Using The CLIPS Executive

This section gives a more in-depth description on how to use and set-up the CX
inside a System. The purpose of this section is to provide the basic fundamentals,
which are required to build an agent with the CX. This section can be seen as a
more in-depth description of Section 2.6 and Section 2.3. Most of the described
functionality is the same for both the original CX and the ROS CX, as most func-
tions are imported from the Fawkes CX. The key functional novelties for the ROS
CX are inside the planning and execution components.

33

We will first examine goal formation, progress, and reasoning, as goals are the
core concept for the executive. They give information about the pursued objective
and are the single most important entity, based on which other components func-
tion. A particular way of expanding a goal is to use an external planner, which
would provide a course of actions. Therefore, we will describe the planning mech-
anism. Lastly, we will examine the components, responsible for the execution and
monitoring of the provided plan.

Goals

Being a GR-based approach, the execution flow is determined by the formation of
goals, their selection, and their refinement over their lifespan.

A dedicated goal reasoner is the main component responsible for managing goals,
triggering their goal mode transitions, and making active choices in the current
goal mode. This entire functionality is heavily dependent on the provided domain,
the developer’s needs, and the system, which utilizes the CX. This execution step
is identical to the concepts and program flow, which is used in the Fawkes CX.
To ease the implementation process of the goal reasoner, the CX provides a frame-
work that allows the developer to express goals, how they change, and to formulate
goal trees easily [NHL19]. The CLIPS Executive implements several goal types
by default, each providing different functionality. In the case of compound goals,
for example, the try-all goal runs sub-goals until at least one sub-goal succeeded.
If none of them succeed the goal fails, thus providing disjunction functionality. In
contrast, the run-all goal provides conjunction functionality, where all sub-goals
need to succeed, whereas the timeout goal is used to form an input time constraint
on the execution of a sub-goal. Furthermore, the representation of goals and their
lifecycle is implicitly defined inside the CX.
The developer is thus left with the task of creating different goals, based on the
provided goal representation. These goals should be relevant for the provided do-
main and describe the objective to be achieved or maintained. The goal reasoner
would need to also decide what goals are relevant and to manage their progress
over their lifetime. This behavior is based on the different goal modes and their
functionality inside the goal lifecycle (cf. Section 2.6). A typical implementation
of a goal reasoner would act as follows.
Initially, the goal reasoner formulates a set of goals, which indicates, that these
goals may be relevant. It proceeds with picking one or more of these goals on a
given criterion, e.g., the most promising goals or the least expensive ones. Next, it
requests a course of actions (plan) for a selected goal. Upon successful generation
of the plan and corresponding plan actions, the goal is expanded. Then, the goal
reasoner would commit to one plan and acquire the required goal resources. Fi-
nally, the reasoner dispatches the goal, which triggers the execution of the actions
based on the provided plan.

Planning

The expansion of a selected goal is connected with the generation of a suitable

34

plan. Currently, the CX supports a PDDL-based planner model [NHL18]. There
are two main prerequisites for this model. For one, a domain file should be pro-
vided to the CX, which defines the behavioral capabilities of the embedding sys-
tem. Secondly, the CLIPS Executive needs a way to parse this domain into its
fact-base. This function is currently provided by the PDDL parser and the imple-
mented CLIPS PDDL parser feature. Using this interface, the CX is able to extract
the possible object types, predicates, and actions from the provided file, which
formulate its domain model.

Currently, two ways of generating a plan are supported - using a planner or pro-
viding a fixed sequence of actions (similar to the Fawkes CX).

1. Fixed Planning: This type of planning is only dependent on the provided
domain and the current knowledge about the world inside the CX. In this
case, the developer is left with the option of defining a certain plan instance
with a specific plan id, corresponding goal id, and the goal of this particular
goal. The actual sequence of actions and the order of execution of these
actions, which need to be executed to achieve the desired outcome of this
plan, is also defined explicitly and bound to the plan. This type of planning
is particularly useful for goals, whose objective can be statically achieved
and does not involve many uncertainties. This way, the call to an external
planner is omitted and thus the extra overhead that comes with it, especially
for plans that would need a lot of processing.

The following listing shows a very basic example of fixed planning:
1 (defrule goal-expander-create-sequence
2 ?g <- (goal (mode SELECTED) (id TESTGOAL))
3 =>
4 (assert
5 (plan (id TESTGOAL-PLAN) (goal-id TESTGOAL))
6 (plan-action (id 1) (plan-id TESTGOAL-PLAN) (

action-name move)
7 (goal-id TESTGOAL) (param-values "r1" "wp_init" "wp1"))
8 (plan-action (id 2) (plan-id TESTGOAL-PLAN) (

action-name move)
9 (goal-id TESTGOAL) (param-values "r1" "wp1" "wp2"))

10)
11 (modify ?g (mode EXPANDED))
12)

Listing 1: Fixed Sequence Example

It represents a basic rule inside the goal reasoner, which would search for a
selected goal with the id of TESTGOAL. If such a goal is found, it creates
the plan and the plan-actions for this plan and asserts them into the fact-
base, thus expanding the goal. The plan-actions are then considered by the
execution mechanism in the specific order, which is indicated by their id.
The purpose of this plan is to move the robot (r1) from the initial waypoint
to waypoint 2.

35

2. Planning with dedicated planner: The more flexible and common way
of planning is using an external PDDL planner to generate a suitable plan.
To avoid any inconsistencies the external planning system and the CX are
provided with the same domain description. This also guarantees that the
resulting plan will actually be executable according to the given domain
model.

Before calling the planner, the problem description is generated. It is popu-
lated with the objects and facts, which are provided by the CX based on the
current knowledge inside the planner model. The PDDL goal is set accord-
ing to the information inside the goal, which is being expanded. Finally, the
external planner is called concurrently to the running CX, which allows con-
current activities, such as planning with another planner for the same goal
or the execution of another goal, while the planning is running. To increase
the efficiency of the planner, it is strongly suggested to limit the knowledge
inside the planner model, thus reducing the size of the problem description.
This behavior is identical to the one in the Fawkes CX.

The biggest difference in comparison to the Fawkes CX is the better planner
support and overall planning flow. The planning inside the original CX is
limited to few PDDL Planners, which can be called. It is also unnecessarily
complex by requiring a running database just to interface with a planner.
The Fawkes CX synchronizes domain and plan model data with a replicated
database, which is used as an API between the CX and the planner.

The ROS CX improves this functionality by providing wider planner sup-
port through the Plansys2 planning system and direct interaction. Plansys2
supports reliable, flexible, and multi-robot planning and execution. For our
purpose, we use only the planning mechanism of the system and not the ex-
ecution mechanism as the actual execution handling is realized by the CX. It
brings new possibilities, such as more capable natively supported planners
(e.g., temporal planner support). The implemented interface - the Plansys2
feature allows direct access to the nodes responsible for planning - the Do-
main Expert, Problem Expert, and the Planner.
The typical flow is to provide the domain file to both the Domain-, and
Problem Expert. Then the knowledge inside the Problem Expert is popu-
lated based on the planner model of the CX. Finally, the Planner of Plansys2
is called with the domain and problem instances. The planning process is
monitored by the CX and the outcome is processed accordingly.

Plan Execution

Once the goal is expanded and the course of actions is determined, the program
flow proceeds with the execution of these actions. Before executing the actual
actions, there is a prepossessing stage. The reasoner picks an expanded goal, based
on predefined criteria, and commits to that goal. The goal is then dispatched and
the plan execution starts. Currently, the CX supports the execution of sequential

36

plans, where the plan actions are selected and executed in the provided order. The
implementation of plans with concurrent actions is also possible. The execution
involves several components:

A. Action Selection

The responsibility of the action-selection component is to select the next action to
be executed by the executor, based on the provided order of execution. This selec-
tion takes two things into consideration.
First, it is worth noting, that the planner model used for the problem instance is
a sub-set of the world model. An action, marked by the planner as executable,
may in reality be infeasible in the current state, because of e.g., exogenous factors.
Therefore, the preconditions of each plan action are checked against the current
knowledge inside the world model, and it is marked as executable iff. these pre-
conditions are met. This ensures consistency between the planner model and the
world model during execution.
The action-selection then picks the next plan action based on predefined criteria
(e.g., smallest plan id). The state of this action is then changed to pending, which
signals the execution of this action.

B. Action Execution

Figure 8 shows the interaction during a skill execution.

The CX creates a skill master node, providing the skill, its parameters, and agent
id. Then, the executive uses the master to request a skill execution over the skill
board. If an execution node for this skill is implemented and is currently idle, a
response is sent, which the master node can decide to reject or confirm. Upon
confirmation, the execution starts. The skill execution is running concurrently to
the CX, thus allowing the executive to continue working on tasks, such as moni-
toring the execution or evaluating the executability of the next action(s). The Skill
Execution feature constantly monitors the information inside the master node and
passes it to the CX as feedback. The CX can also decide to abort the execution
at any time. When the execution is finished, either successful or it has failed, the
execution node should send the according finishing message and the outcome of
the execution is provided to the CX. The task of implementing an execution node
for the external system is left to the developer, as it is strongly dependent on the
components inside the system.

37

Figure 8: Shows the execution flow of a mockup skill X. The CX starts the execu-
tion using the Skill Execution feature. Execution Node is implemented for skill X,
which determines how to execute the skill based on the external application.

C. Sensing and Execution Monitoring

We ported the sensing and execution monitoring from the Fawkes CX.

Upon successful execution of actions, its effects are directly applied to the world
model by default. To alter this behavior, the CX supports sensed effects. In this
case, the CX waits for the actual observation and confirmation of the sensed effect
before applying the remaining effects and transitioning the goal to the final state.

The execution of the plan is continuously being observed. This allows reacting to
effects, resulting from exogenous events or a failed execution of the current plan.
In the occurrence of such events, the agent would need to react accordingly. The
implemented execution monitoring provides three ways of dealing with such situa-
tions. First is to retry the failed action, based on reasoning on gathered information,
such as the number of failures and others. Next, the agent can decide to abort the
current plan preemptively. This is useful, in case the plan is no longer feasible, or a
timeout is reached. Lastly, instead of failing the goal, execution monitoring allows
the adaptation of the current plan, for example, by providing additional actions
or reordering current ones. The execution monitoring is also not limited to these
three ways. Programmers can easily customize and extend execution monitoring
according to their needs.

38

4.2.5 Interfaces for Fawkes

Our last goal for the implementation was to provide a mechanism, which would
enable the communication from the ROS CX to Fawkes. This way, the ROS CX
will be able to provide comparable behavior and ideally be capable of substituting
the Fawkes CX upon implementation of interfaces on the side of Fawkes.

As we mentioned, several Fawkes plugins interact with the running instance of the
CLIPS Executive. This interaction happens primarily over the dedicated Fawkes
blackboard (the central communication medium between Fawkes components).
The interface between the blackboard and the CX is provided by the blackboard
feature, which allows the CX to make transactions, such as writing, reading, or
sending messages over the blackboard. Typically, when needing to communicate
and receive information from a certain plugin, the CX creates a reader for the cor-
responding feature. This allows the CX to continuously read the interface informa-
tion, while also enabling it to control the plugin by passing a predefined message.
For example, the CX would create a reader instance for the SkillerInterface, whose
writer is an instance of a Fawkes Skiller that executes the skill. The CX can then
send messages to start the execution of a specific goal.

In our implementation, we provided a separate package, which mimics a black-
board with a reader/writer principal. We provided a common Interface class, which
works based on implemented interfaces on the side of ROS2. These interfaces im-
itate the interfaces implemented in Fawkes. The actual communication is realized
over dedicated channels for the different interfaces, based on registered readers
and writers. As in Fawkes, this communication is realized over one-to-many rela-
tion, with a writer being the single instance. Each interface also defines commands
in the form of messages, which a reader instance can send to the writer. Further-
more, we implemented a blackboard feature, which allows the CX instance the
same behavior capabilities as in the Fawkes blackboard feature.

This allows to mimic the behavior of a blackboard on the side of ROS and enable
the interaction between the ROS CX with the running instance of Fawkes.

39

5 Evaluation

In order to prove the capabilities of the ROS CX, we split the evaluation of our
system into two parts - proof of concept in the context of ROS2, using a specific
problem in the domain of logistics robotics and common ROS platforms. This
experiment proves the ability of the CX to be used as a standalone system inside
ROS, as well as, its ability to interact and be integrated with other ROS systems,
such as the Navigation2 stack and Plansys2. The ability of the CX to interact
with other complex ROS packages, which offer a variety of features that are cur-
rently not supported in the Fawkes CX, such as multi-agent navigation and more
comprehensive planning support, further improve the capabilities of the ROS CX
compared to the Fawkes CX. The second proof of concept is in the context of the
Fawkes framework, using dedicated test-scenarios, which the Fawkes CX already
provides to demonstrate its capabilities and usage. This thus prove the ability of
the ROS CX to run the same test-scenarios and to interact with Fawkes, which will
serve as the baseline towards the ongoing work on being capable of substituting
the current CX inside more complex, real-world agents, such as the RCLL agent
[HVG+21].

5.1 Proof of concept in ROS2

In the following, we will describe the experimental setup used for this evaluation,
before examining the actual experiment.

5.1.1 Experimental Setup

To perform the evaluation we used a combination of multiple renowned and estab-
lished platforms throughout the ROS ecosystem:

• Navigation2 : The successor of ROS Navigation, which is the most com-
monly used 2D navigation software framework. It controls and enables
robots to move autonomously and reach a certain destination. Based on the
input information, it generates a plan and outputs command, which drive
the robot movement with respect to exogenous factors. It also provides
support for multi-robot navigation and offers different simulation setups.
[MMWGC20]

• Gazebo: 3D robot simulator, which offers rich visualization for physical
simulation with support for sensors and cameras. It also provides several
models and environments, as well as interfaces, which are used to bind a
specific program. [KH04]

40

• TurtleBot3 (TB3): A small, programmable, ROS-based mobile robot. It
supports a simulation development environment that can be programmed
and developed with a virtual robot in the simulation. It can be used to run
Gazebo simulations in combination with Navigation2 [TB3]

• Rviz2: ROS2 GUI, which allows the visualization of data, coming from
ROS components. It can use the received data to create and render a 3D
map or to render a robot when a robot model is provided.

• Plansys2: The successor of ROSPlan for ROS2. Further information can be
found in Section 3.

The Navigation2 stack provides a highly configurable and comprehensive simula-
tion setup. The Navigation2 bringup package can be used to launch Navigation2
in simulation with Rviz2, Gazebo, and a specific robot (in our case TurtleBot3).
The developer is free to adjust the provided configuration files or edit default ones
by providing, for example, specific gazebo world, robot models, and adjusting
parameters, such as the initial pose of the robot, when a simulation started.

We decided to use the Navigation2 simulation setup for the experiment, as it uti-
lizes different robotics frameworks and it gives a detailed overview of the execu-
tion flow. By integrating the CX as the high-level controller for this simulation,
we can show the ease of use within the ROS ecosystem and the wide applicability
of the system.

5.1.2 Experiment

In this experiment, we combine the CLIPS Executive and Plansys2. For this pur-
pose, both systems are launched and activated by the Lifecycle Manager. The CX
requests the Plansys2 feature, which enables the interaction to Plansys2, which is
used for the generation of plans. Furthermore, the implemented Skill Execution
mechanism is utilized by the executive, based on the functionality, provided by the
Skill Execution feature. This allows the CX to start the execution of skills inside
the running Navigation2 instance, which executes the actual driving of the robot
inside the simulation.

We created a dedicated PDDL domain file. The domain defines two types - robot
and waypoint. The waypoint represents a specific position, to which the robot can
navigate. We defined two predicates, which indicate the current position of the
robot and a possible connection between two waypoints. The implemented PDDL
action (move) navigates the robot from one waypoint to another. The two precon-
ditions are that the robot is currently at the provided waypoint and this waypoint
is connected to the desired waypoint. The post-condition is the robot being at the
desired waypoint.

Initially, the domain is loaded into the executive using the CLIPS PDDL parser
feature. The Domain and Problem Expert of Plansys2 are provided with the same

41

domain file. The test domain populates the initial knowledge about facts and ob-
jects based on the provided domain, which forms the plan model. The knowledge
for this experiment represents a single robot (named ”tb3”) and 8 waypoints (”wp-
init”, ”wp1” to ”wp-6” and ”wp-final”).

Figure 9: Plansys2 Terminal
Output.

We defined a simple goal, whose objective is to
bring the robot (tb3) from the initial waypoint
(”wp-init”) towards the final waypoint (”wp-
final”). The two waypoints are not directly con-
nected, thus the robot would need to navigate
through all waypoints to achieve this goal. The
selected goal is expanded by the CX by pro-
viding the current knowledge to Plansys2 and
calling its planner with the desired goal (in this
case: ”robot-at tb3 wp-final”). The provided
plan is parsed in the form of plan actions in-
side the CX. The robot executes 7 plan actions
(thus 7 skills) in total. These include moving
from the initial waypoint to the 1st waypoint,
then to the 2nd waypoint, and so on to the fi-
nal waypoint (”wp-final”). Figure 9 shows the
provided knowledge to Plansys2, as well as the
resulting plan.

The CX interacts with Navigation2 over a ded-
icated execution node, which implements the
move action. This node acts as a client for the
Navigation2 server, responsible for the naviga-
tion to a specific pose, and defines the coordi-
nates of the different waypoints. The executive creates a skill master node for the
current plan action and requests the execution of the action, providing the desired
waypoint. The move node passes the desired pose to Navigation2, which executes
the navigation on the TurtleBot3, while also visualizing the current path in Gazebo
and in Rviz2 (cf. Figure 10). The execution finishes, when the TurtleBot3 reaches
the final waypoint (”wp-final”).

42

Figure 10: Navigation2 and TB3 simulation (Gazebo left, Rviz right). The red dot
corresponds to the agent, the white dots to obstacles (on the left), and the black
line to the current planned path navigation to a pose (on the right). The pose is
provided by the CX.

This experiment’s main conclusion is the ability of the CX to be used, indepen-
dently of Fawkes, as a standalone ROS application and the ability to interact with
other ROS projects. It also shows the direct interaction with planning system inside
the ROS CX instead of depending on an interaction over a database. Furthermore,
the experiment has shown that the CX can execute actions on other ROS systems,
in this case, Navigation2 with TB3, simply by providing a domain file to the CX
and implementing an execution node for each PDDL action. The capabilities of
the ROS CX can be further improved in comparison to the Fawkes CX, as it is
able to be integrated into other complex systems. For example, the Navigation2
stack provides multi-robot navigation, which is not implemented in the original
CX. This hence extends its usability in different scenarios.

5.2 Proof of concept with Fawkes

5.2.1 Experimental Setup

For this evaluation, we will start the Fawkes instance, which implicitly loads the
blackboard, and use the Skiller plugin. The Fawkes Skiller is the main plugin
inside Fawkes, which is responsible for the execution of skills on a hardware level.
It passes the mapped skill (cf. Section 2.1) to the Lua-based behavior engine,
which dictates the actual execution. The prerequisite for the execution is the user

43

implementation of that skill inside Lua. For example, for a PDDL action ’say-
hello’ a dedicated skill ”say” will be implemented. Then, a skill mapping of that
action the say skill would be required. One such mapping would be:

"say-hello": "say{text="Hello ?(name)y"}"

The name will then be substituted with the provided object’s name inside the ac-
tion.

The original CX provides two testing scenarios, namely, test-scenario and test-
scenario-pddl. In the context of Fawkes, these tests serve the purpose of validating
the interaction between the Fawkes CX and the Skiller, as well as, the Planner
plugin. The former test aims to prove the ability of the CX to parse a PDDL
domain file, demonstrate the usage of goal trees, and execute a predefined sequence
of actions by interacting with the Skiller. The later test improves on this by using
a dedicated planner to generate the sequence of actions, instead of providing a
predefined plan.

We decided that these two scenarios provide the ideal set-up to prove the interac-
tion between the ROS CX and Fawkes, as well as the capabilities of the ROS CX
to completely substitute the Fawkes CX and provide identical behavior in those
scenarios.

5.2.2 Experiment

For the experiment, we used the same testing scenarios as their corresponding defi-
nitions inside Fawkes. For both tests, the CX utilizes the implemented blackboard-
like mechanism and the blackboard feature on the side of ROS2, which enables the
interaction with Fawkes.

Test-Scenario The provided domain for this test represents a simple hello world
domain, which enables two objects to talk to each other. A simple goal is cre-
ated, which is expanded by a fixed sequence of plan actions. The plan essentially
contains numerous ”speech” actions, such as saying hello and goodbye. For these
actions, a skill inside Fawkes is implemented, which uses a library to transmit the
speech over the computer’s speakers.
In Fawkes, the CX processes all plan actions sequentially and sends a message
to request the execution of the current skill over the Fawkes blackboard (inside
the Skiller interface) to the Skiller, which then executes the skill, and constantly
sends updates about the current execution. The ROS CX also processes these plan
actions sequentially but instead sends an execution command over the ROS2 CX
blackboard to the Skiller interface on the side of ROS2. We implemented a Fawkes
plugin, which receives the upcoming skill execution messages(acting as a writer to
the ROS2 interface) and passes them over the Fawkes blackboard (using the Skiller

44

interface) to the running Skiller. The execution updates are passed to the plugin,
which writes in the ROS2 blackboard, from where the CX reads the updated infor-
mation and acts accordingly.
Using this mechanism, the CX is able to interact with Fawkes and execute all skills
as the Fawkes CX does.

Test-Scenario-Pddl The key difference of this test compared to the previous is
that a dedicated planner is used to plan and provide the sequence of actions. The
rest of the test is the same. To just be able to call a planner for the generation of
the plan, the Fawkes CX requires the MongoDB plugin, the Robot Memory plugin,
which provides the API between the replicated database and the CX, synchroniza-
tion of the world-model to that database, and the actual planner plugin. In contrast,
the ROS CX only requires the Plansys2 feature and running the Plansys2 frame-
work to do the same. The CX just passes the initial knowledge and the domain
file to the Problem Expert and calls the planner to generate the plan, which is then
parsed inside the CX. From then, the CX proceeds as in the previous test.

The experiment’s main conclusion is the possibility of substituting the Fawkes CX
entirely with the ROS CX. The integrated CX offers new possibilities, such as
planning with a dedicated system, namely, Plansys2, and the possibility of multi-
agent path-planning (using Navigation2).

This proof of concept also provides the fundamental basis for the ongoing work
towards the ability to interchange between the Fawkes CX and the ROS CX inside
complex real-world agents, such as the RCLL agent [HVG+21]. The key strength
of the ROS CX is the possibility to implement new features, based on its ability to
interact with other ROS systems, which provide different functionalities. This can
be significant for the RCLL agent. To achieve this substitution, the implementation
of several interfaces is still required. Their purpose will be to provide a comparable
interaction between the ROS CX and other plugins to the one of the Fawkes CX,
thus making the substitution a possibility. Our ultimate goal for the ROS CX in
connection to Fawkes is a fully functional CX in the context of the aforementioned
RCLL agent which is executed on a real robot.

45

6 Conclusion

In this thesis, we complement the current goal reasoning approach of the Fawkes
CLIPS Executive by integrating its state-of-the-art functionalities into ROS. The
CX is a well-established CLIPS-based system, implemented in Fawkes, which is
capable of coordinating multiple agents and reason in both dynamic and static en-
vironments. Its main capabilities build upon the ideas of goal reasoning, where the
execution flow revolves around the progression of goals based on their specified
lifecycle. The constant monitoring enables goals to be either re-evaluated or en-
tirely substituted by a more promising goal. This program flow is especially suited
for intelligent agents operating in dynamic settings.

With this thesis, we tackled the CX’s main limitation, namely, being tightly cou-
pled to the Fawkes robotics framework, thus being only usable in software stacks
and agents that are strictly dependent on Fawkes. We solved this issue by inte-
grating the CX into the ROS ecosystem, which provides a highly supportive com-
munity, widespread use, and several different components. Our implementation
exploits the core new ROS2 features, as well as, existing community tools.

We implemented central components, which enable the interaction between an ex-
ternal system and CLIPS, as well as a manager for the built interfaces (features),
which allow the CLIPS environment to communicate with and use external appli-
cations. We combined the functionality, provided by these components, with ROS2
concepts, and implemented a highly configurable and robust CLIPS Executive to
conduct all high-level decisions inside a system. The CX provides separation of
concerns. Being embedded in ROS2, we showed how the CX can benefit from
available community packages, such as Plansys2, which can be used by the CX
as an underlying planning system, or Navigation2 which offers rich multi-agent
navigation capabilities that are currently not available in Fawkes. Our system also
integrates the ability to execute plan actions. The CX employs comprehensive rea-
soning about the next executable action. We also provided a mechanism, which
enables the executive to request and monitor the execution of action provided by a
client application (e.g., move action with Navigation2).

Put briefly, we presented a full integration of the current CX in the ROS ecosystem,
following the core mechanisms behind the Fawkes CLIPS Executive, and adapting
them in ROS accordingly. We implemented the CLIPS Executive as a standalone
ROS2 application to be utilized on different ROS systems for both simulated and
real-world agents. To validate this, we used the CX as a high-level tasks controller
of the Navigation2 stack, which utilizes the TurtleBot3 robot in a Gazebo sim-
ulation. Furthermore, we provided a mechanism, which enables the interaction
between the ROS2 CX and the Fawkes framework, as well as the implementa-
tion of several standalone libraries of former Fawkes-specific libraries. Finally, we
described the necessary means to substitute the Fawkes CX with the ROS CX.

This implementation will open several avenues for future improvements and acces-

46

sibility, derived from the supportive and lively ROS community and novel mecha-
nism of GR for ROS, respectively.

6.1 Future Work

As a next step in improving the ROS CX, we will provide additional features,
which will enrich the executive’s functionality. One such example is MongoDB in-
teraction support. For this purpose, we will implement a standalone library, which
will ensure the interaction between a MongoDB database and the CX. This will
then allow to port the multi-agent coordination possibilities from the original CX.
Additionally, we plan on further testing the ROS CX in the ROS ecosystem on new
agents, which will utilize other ROS frameworks that provide new functionality in
comparison to the one in Fawkes (e.g., Navigation2 multi-agent path planning).

As we mentioned, there is ongoing work of providing the means to be able to
substitute the Fawkes CX inside the RCLL agent with the ROS CX. For this, we
still need to decouple Fawkes instances and implement the means to interact with
the ROS CX on the side of Fawkes. These include the aforementioned MongoDB
interaction support, further implementation of blackboard interfaces on the side
of the ROS CX, and plugins that will interact with those interfaces. Furthermore,
there is ongoing work for the RCLL agent towards replacing the current utiliza-
tion of the Move Base framework with Navigation2. In this case, the ROS CX
will provide better support with direct interaction with the Navigation2 stack in
comparison to the built Fawkes interfaces, which enable the interaction with the
Navigation2 framework.

Our ultimate goal is to actually replace the Fawkes CX with the ROS CX because
we would rather utilize the ROS CX as it is easier to access for developers due to
the popularity of ROS compared to Fawkes. Furthermore, it will leave us with the
task of maintaining only one system.

47

Bibliography

[AG19] Francesco Alzetta and P. Giorgini. Towards a Real-Time BDI
Model for ROS 2. In WOA, 2019.

[Aha18] D. Aha. Goal Reasoning: Foundations, Emerging Applications,
and Prospects. AI Mag., 39:3–24, 2018.

[BC10] Jonathan Bohren and Steve Cousins. The SMACH High-Level
Executive [ROS News]. IEEE Robotics Automation Magazine,
17(4):18–20, 2010.

[BSBD16] Sebastian G. Brunner, Franz Steinmetz, Rico Belder, and Andreas
Dömel. RAFCON: A graphical tool for engineering complex,
robotic tasks. In 2016 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), pages 3283–3290, 2016.

[CFL+15] Michael Cashmore, Maria Fox, Derek Long, Daniele Magazzeni,
Bram Ridder, Arnau Carrera, N. Palomeras, N. Hurtós, and Marc
Carreras. Rosplan: Planning in the robot operating system. Pro-
ceedings International Conference on Automated Planning and
Scheduling, ICAPS, 2015:333–341, 01 2015.

[cli] clipsmm: C++ bindings for CLIPS. https://github.com/
timn/clipsmm.

[DPNL17] Christian Dondrup, Ioannis Papaioannou, Jekaterina Novikova,
and Oliver Lemon. Introducing a ROS based planning and exe-
cution framework for human-robot interaction. pages 27–28, 11
2017.

[GKW+98a] Malik Ghallab, Craig Knoblock, David Wilkins, Anthony Barrett,
Dave Christianson, Marc Friedman, Chung Kwok, Keith Golden,
Scott Penberthy, David Smith, Ying Sun, and Daniel Weld. PDDL
- The Planning Domain Definition Language. 08 1998.

[GKW+98b] Malik Ghallab, Craig Knoblock, David Wilkins, Anthony Barrett,
Dave Christianson, Marc Friedman, Chung Kwok, Keith Golden,
Scott Penberthy, David Smith, Ying Sun, and Daniel Weld. PDDL
- The Planning Domain Definition Language. 08 1998.

[HLM+19] Till Hofmann, Nicolas Limpert, Victor Mataré, Alexander Ferrein,
and Gerhard Lakemeyer. Winning the RoboCup Logistics League
with Fast Navigation, Precise Manipulation, and Robust Goal Rea-
soning. In RoboCup 2019: Robot World Cup XXIII, pages 504–
516. Springer International Publishing, 2019.

48

https://github.com/timn/clipsmm
https://github.com/timn/clipsmm

[HVG+21] Till Hofmann, Tarik Viehmann, Mostafa Gomaa, Daniel Haber-
ing, Tim Niemueller, and Gerhard Lakemeyer. Multi-Agent Goal
Reasoning with the CLIPS Executive in the Robocup Logistics
League. In Proceedings of the 13th International Conference on
Agents and Artifical Intelligence (ICAART), 2021.

[JCG] Ph.D. Joseph C. Giarratano. CLIPS User Manual. http:
//clipsrules.sourceforge.net/documentation/
v640/ug.pdf.

[KH04] N. Koenig and A. Howard. Design and use paradigms for Gazebo,
an open-source multi-robot simulator. In 2004 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS) (IEEE
Cat. No.04CH37566), volume 3, pages 2149–2154 vol.3, 2004.

[KMFS20] Maximillian Kirsch, Victor Mataré, Alexander Ferrein, and Stefan
Schiffer. Integrating golog++ and ROS for Practical and Portable
High-level Control. pages 692–699, 01 2020.

[LFD] ROS managed nodes design. https://design.ros2.org/
articles/node_lifecycle.html.

[LFS] Managed nodes. https://design.ros2.org/img/
node_lifecycle/life_cycle_sm.png.

[MGRM21] Francisco Martı́n, Jonatan Ginés, Francisco J. Rodrı́guez, and
Vicente Matellán. PlanSys2: A Planning System Framework
for ROS2. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, IROS 2021, Prague, Czech Republic, Septem-
ber 27 - October 1, 2021. IEEE, 2021.

[MKA16] Yuya Maruyama, Shinpei Kato, and Takuya Azumi. Exploring the
performance of ROS2. pages 1–10, 10 2016.

[MMWGC20] Steve Macenski, Francisco Martı́n, Ruffin White, and Jonatan
Ginés Clavero. The Marathon 2: A Navigation System. In 2020
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), 2020.

[NFBL10] Tim Niemueller, Alexander Ferrein, Daniel Beck, and Gerhard
Lakemeyer. Design Principles of the Component-Based Robot
Software Framework Fawkes. pages 300–311, 11 2010.

[NHL18] T. Niemueller, Till Hofmann, and G. Lakemeyer. CLIPS-based
Execution for PDDL Planners. 2018.

[NHL19] Tim Niemueller, Till Hofmann, and Gerhard Lakemeyer. Goal
Reasoning in the CLIPS Executive for Integrated Planning and Ex-
ecution. 07 2019.

49

http://clipsrules.sourceforge.net/documentation/v640/ug.pdf
http://clipsrules.sourceforge.net/documentation/v640/ug.pdf
http://clipsrules.sourceforge.net/documentation/v640/ug.pdf
https://design.ros2.org/articles/node_lifecycle.html
https://design.ros2.org/articles/node_lifecycle.html
https://design.ros2.org/img/node_lifecycle/life_cycle_sm.png
https://design.ros2.org/img/node_lifecycle/life_cycle_sm.png

[NLF15] Tim Niemueller, Gerhard Lakemeyer, and Alexander Ferrein.
The RoboCup Logistics League as a Benchmark for Planning in
Robotics. 07 2015.

[OSR] OSRF. Open Source Robotics Foundation. ROS2
https://github.com/ros2.

[QCG+09] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully
Foote, Jeremy Leibs, Rob Wheeler, and Andrew Ng. ROS: an
open-source Robot Operating System. volume 3, 01 2009.

[RCX] ROS CX github repo. https://github.com/
fawkesrobotics/ros2-clips-executive/tree/
master.

[ROSa] ROS1 action bridge. https://github.com/ipa-hsd/
action_bridge.

[ROSb] ROS1 bridge. https://github.com/ros2/ros1_
bridge.

[RSA+14] M. Roberts, Vattam S., R. Alford, B. Auslander, J. Karneeb,
M. Molineaux, T. Apker, M. Wilson, J. McMahon, and D. W. Aha.
Iterative Goal Refinement for Robotics. In 1st ICAPS Workshop
on Planning in Robotics (PlanRob), 2014.

[TB3] TB3 manual. https://emanual.robotis.com/docs/
en/platform/turtlebot3/simulation/.

[Wyg89] Robert M. Wygant. CLIPS — A powerful development and de-
livery expert system tool. Computers and Industrial Engineering,
17(1):546–549, 1989.

50

https://github.com/fawkesrobotics/ros2-clips-executive/tree/master
https://github.com/fawkesrobotics/ros2-clips-executive/tree/master
https://github.com/fawkesrobotics/ros2-clips-executive/tree/master
https://github.com/ipa-hsd/action_bridge
https://github.com/ipa-hsd/action_bridge
https://github.com/ros2/ros1_bridge
https://github.com/ros2/ros1_bridge
https://emanual.robotis.com/docs/en/platform/turtlebot3/simulation/
https://emanual.robotis.com/docs/en/platform/turtlebot3/simulation/

	Introduction
	Overview and Background
	Fawkes
	ROS(2)
	Goal Reasoning
	PDDL
	CLIPS
	CLIPS Executive
	Goal Reasoning in the CLIPS Executive
	CX prerequisites and initialization
	CX components

	Related Work
	Integrating the CLIPS Executive into ROS
	System Design
	System Design Goals
	Individual components

	Implementation
	Integration Prerequisites
	The Novel Skill Execution Mechanism
	System Initialisation
	Using The CLIPS Executive
	Interfaces for Fawkes

	Evaluation
	Proof of concept in ROS2
	Experimental Setup
	Experiment

	Proof of concept with Fawkes
	Experimental Setup
	Experiment

	Conclusion
	Future Work

	Bibliography

