
Winning the RoboCup Logistics League with
Fast Navigation, Precise Manipulation, and

Robust Goal Reasoning?

Till Hofmann1, Nicolas Limpert2, Victor Mataré2,
Alexander Ferrein2, and Gerhard Lakemeyer1

1 Knowledge-Based Systems Group, RWTH Aachen University, Germany
{hofmann,gerhard}@kbsg.rwth-aachen.de

2 MASCOR Institute, FH Aachen University of Applied Sciences, Germany
{limpert,matare,ferrein}@fh-aachen.de

Abstract. The RoboCup Logistics League is a robotics competition in
a Smart Factory scenario in which a team of robots has to assemble
products for dynamically generated orders. In 2019, the Carologistics
was able to win the competition with a redesigned manipulation system,
improved navigation, and an incremental and distributed goal reasoning
system. In this paper, we describe the major components of our approach
that enabled us to win the competition, with a particular focus on this
year’s changes.

1 Introduction

The Carologistics RoboCup Team3 is a cooperation of the Knowledge-Based
Systems Group (RWTH Aachen University) and the MASCOR Institute (FH
Aachen University of Applied Sciences), which was initiated in 2012. Doctoral,
master’s, and bachelor’ students of both partners participate in the project and
bring in their specific strengths to tackle the various aspects of the RoboCup
Logistics League.

In the RoboCup Logistics League (RCLL), the goal is to maintain and op-
timize the material flow in a simplified Smart Factory scenario. Two competing
teams of three robots each need to fulfill dynamically generated orders by assem-
bling workpieces to products of varying complexities, ordered from C0 to C3. To
assemble such products, the robots operate and transport workpieces between
Modular Production System stations (MPSs). Each team has an exclusive set of
seven machines of five different types, where each type of machine is capable to
perform a different step of the production. The major challenges of the RCLL
include navigation, perception and manipulation, as well as reasoning tasks such
as planning, plan execution, and execution monitoring.

? This is a preprint version. The final authenticated version is available online at
https://doi.org/10.1007/978-3-030-35699-6_41.

3 https://carologistics.org/

https://doi.org/10.1007/978-3-030-35699-6_41
https://carologistics.org/


In the following, we describe our approach to the RCLL with a particular fo-
cus on the components that led to the success in 2019. To foster the development
of the league, we have publicly released our software stack used in 20194. We
begin with the software architecture and major building blocks in Section 2 and
summarize our development workflow in Section 3, which provided the means to
effectively coordinate a team of ten developers in a competition environment. In
Section 4, we describe our redesigned gripper system that allows precise grasping,
and we summarize a multi-stage procedure using data from a laser range finder
and an RGB/D camera to quickly and precisely align to a machine. We continue
with improvements to path planning in Section 5, which enabled our robots to
move across the playing field more quickly, a crucial aspect of a competitive pro-
duction. In Section 6, we summarize our approach to high-level decision making
using a goal reasoning approach with an incremental and distributed multi-agent
strategy that is capable of an efficient production flow while reacting quickly to
unexpected events, before we conclude in Section 7.

2 Architecture and Middleware

Vision · · ·

AMCL Motion Components
Actuator/Sensor proc.

Localization, etc.

Behavior Engine Reactive Behaviors
Skill execution/monitoring

CLIPS Agent Deliberation
Decision making/planning

Fig. 1. Behavior Layer Separation [17]

The software system of the Carol-
ogistics robots combines two dif-
ferent middlewares, Fawkes [13]
and ROS [20]. This allows us
to use software components from
both systems. The overall sys-
tem, however, is integrated us-
ing Fawkes. Adapter plugins con-
nect the systems, for example to
use ROS’ 3D visualization capa-
bilities. In addition, using ROS
within Fawkes allows to benefit from well-tested software solutions that solve
lower level problems taking important roles in the RCLL such as navigation or
several debugging functionalities including ROSBag to record the behavior and
sensory of a robot and allow analyzation of the robots behavior. The overall
software structure is inspired by the three-layer architecture paradigm [6]. As
shown in Figure 1, it consists of a deliberative layer for high-level reasoning, a
reactive execution layer for breaking down high-level commands and monitoring
their execution, and a feedback control layer for hardware access and functional
components. The changes to the manipulation workflow, described in Section 4
give an insight on these aspects. The topmost layer is detailed in Section 6.
The communication between single components – implemented as plugins – is
realized by a hybrid blackboard and messaging approach [13].

4 https://fawkesrobotics.org/p/rcll2019-release/

https://fawkesrobotics.org/p/rcll2019-release/


2.1 Lua-Based Behavior Engine

In previous work we have developed the Lua-Based Behavior Engine (BE) [14].
It serves as the reactive layer to interface between the low- and high-level sys-
tems. The BE is based on hybrid state machines (HSM). They can be depicted
as a directed graph with nodes representing states for action execution, and/or
monitoring of actuation, perception, and internal state. Edges denote jump con-
ditions implemented as Boolean functions. If a condition fires, the active state
is changed to the target node of the edge. A table of variables holds information
like the world model, for example storing numeric values for object positions. It
remedies typical problems of state machines like fast growing number of states
or variable data passing from one state to another. Behaviors, so-called skills,
are implemented using the light-weight, extensible scripting language Lua.

3 Development Workflow

Over the years, it has become increasingly apparent that a healthy development
workflow is an often underrated factor that can make or break a fast-paced
robotics competition such as the RCLL. During an RCLL competition, matches
are often played in quick succession, sometimes with only 1-hour breaks before
a team must be back on the playing field. Due to its relative expensiveness and
complexity, the playing field is often only partially available for testing, so testing
time is precious and must be well-coordinated. The short development windows
create a tendency towards “quick-and-dirty” fixes, and the scarce testing often
leads to uncertainty whether a feature can be considered stable or not.

In order to not end up with unusable code after a competition, these issues
must be actively managed. During a typical, busy RCLL competition, there can
easily be 50 or more feature branches in concurrent development. Here, it is most
important to strictly separate branches that are supposed to become a stable
feature (i.e. be merged back into the master branch) from location-specific tun-
ing and dirty hacks. Although deployment to the robots is (aside from the merge
conflicts) a straightforward task of simply merging all desired (stable or experi-
mental) feature branches into a temporary (so-called current) branch, the job
of feeding things back into the master remains important for a different reason:
Since the master branch is the preferred starting point for all feature branches,
it cannot fall too far back behind the on-going development. If some feature A is
not in the master, any branch B that patches it has to be started from branch
A, which should be avoided since it introduces an additional dependency. Even
worse, if some feature C depends on two independent features A and B, at least
one of A and B must be merged back into the master. Most importantly, branch-
ing any features off of the current branch is strictly forbidden, as current, and
therefore anything branching from it, may contain things that turn out to be a
bad idea.

To improve our assessment of code quality when merging back into the
master, in 2019 we introduced continuous integration builds, a review process,



as well as syntactic and semantic linter checks. To further improve reproducibil-
ity and reliability of our setup, we use Ansible [7] for configuration management.
This allows us to quickly set up a robot from scratch and guarantees that all
robots are set up with the same configuration. Additionally, we use Ansible to
deploy the most recent changes to the robots by updating all repositories on the
robot with a single Ansible playbook.

4 Improvements to Manipulation

In an ongoing effort to optimize picking and placing actions in terms of time
and reliability, we modified both the gripper’s hardware design and the design
of the software components. Combining mechanical gripper adaptions for more
robustness and reliability with a fast model-based perception to precisely esti-
mate poses of either conveyor belts or the MPS’s slides has had a major influence
on the success of our system this year. Most of our hardware modifications have
been described in our previous team description papers [19,10,9,8], so here we
will focus on new developments only.

4.1 Gripper System

Fig. 2. New gripper with three
self-centering fingers.

The Robotino base faces challenges on pre-
cise positioning in front of machines. The over-
all positioning tolerance of roughly ±2 mm on
handling products at the MPS’ conveyor belts
requires precise motion. In 2018 we decided to
extend the motion capabilities of the gripper
[9] to overcome this issue. We added two axes
for precise frontwards and sidewards gripper
movement to get a higher placement tolerance
of the Robotino base during product placing
or picking actions. Previously, we could not
align the Robotino with a sufficient precision,

as it only allows motions with a certain speed threshold preventing position
correction in the sub-centimeter range. The motor controllers have a limited
minimal amount of rotations per minute which result in minimum translational
velocities of 0.006 m

s . In practice, the motion reported by the wheels lags behind
the frequency of our software framework. In turn, the robot oscillates when the
positioning tolerance is set too low. Our current setup sets a mininum transla-
tional tolerance of 0.02 meters. Additionally, the position estimation reported
by the global localization is inaccurate in front of a machine, due to the limited
number of laser beams matching global map components and imprecise absolute
machine positions. As a result we have to rely on the sensory gathering precise
machine and conveyor belt positions (as denoted in the following section).

To overcome issues resulting from mechanical requirements of the gripper
itself it has been redesigned in 2019 to grip the workpiece from above with



three instead of two fingers, as shown in Figure 2. The advantage is increased
robustness and precision because the workpiece always centers between the three
spring-loaded fingers, independently of any positioning error. Another advantage
of the new design is that it retracts fully behind the robot’s circular base shape,
which significantly reduces the risk of damage and simplifies path planning.

4.2 Conveyor Belt Detection

Fig. 3. Left: Model pointcloud (blue)
roughly aligned to scene (black) based on
initial guess. Right: After running ICP, the
model is aligned to the scene precisely.

Workpiece manipulation is one of the
central challenges of the RCLL. In
fact, production and delivery of a
mere C0 already involves six pick or
place operations. For a C2 with ex-
pensive rings, up to 18 manipulation
operations are required. A manipula-
tion failure is likely to result in a total
loss of the handled product, so a single
failure in handling an almost finished
C2 will easily cause the loss of an en-
tire game.

Consequentially, reliability is at
the top of the priority list for manip-
ulation in the RCLL. Since the conveyor belts are only a few millimeters wider
than the workpieces, much of the reliability comes down to the precision of both
the manipulator mechanics and the conveyor detection. We chose not to at-
tempt detection of the workpieces themselves, but to concentrate on detecting
the conveyor belts as reliably as possible.

The first step in that direction was to replace the notoriously unreliable
RealSense F200 3D cameras with the newer SR300 model, which is equally suited
for near-field operation with high resolution. It features a much more reliable
USB 3.0 implementation and is supported by the redesigned librealsense25,
which improves both OS support and stability. It is also better at dealing with
the dark and reflective surfaces of most of the conveyor assembly, yielding less
spotty pointclouds.

For maximum manipulation reliability, we need to determine the 6D pose
(translation & rotation) of the conveyor belt. Our detection algorithm works
purely on the 3D pointcloud data from the RealSense camera, disregarding any
color information. For the RoboCup 2019, we built a multi-modal 3-stage pipeline
that incorporates the two previous solutions as the first two stages, which each
stage supplying an initial configuration for the next.

The first stage uses the LiDAR sensor mounted in the bottom base of the
robot to roughly determine the pose of the MPS box in front of the robot. It uses
a RANSAC approach [5] to fit a line parametrization that matches the width of
the MPS table’s flat side panel (error ' 20 mm). The second stage uses the rough

5 https://github.com/IntelRealSense/librealsense

https://github.com/IntelRealSense/librealsense


MPS pose to run a RANSAC-based plane fitting, this time where the conveyor
belt can be expected in the point cloud data from the RealSense 3D camera.
This stage reduces the translational error to ∼ 5 mm, supplying a suitable initial
estimate for the next stage. The third stage is a highly precise ICP-based model
fitting approach [4]. Its iterative nature makes it much more computationally
expensive and sensitive to bad initial estimates, but it turns out to be the most
reliable way to further reduce the pose jitter to something below 2 mm.

For the last stage, the quality of the model (i.e. the reference point cloud) that
is fitted into the live data is of great importance. It should be sufficiently complex,
i.e. it should contain points that describe multiple, non-parallel surfaces so as to
be sufficiently defined in the translational component. Symmetries should also
be minimal, and it should be sufficiently large in order to achieve high rotational
precision.

With these conditions satisfied, and some tuning to compensate mechanical
assembly tolerances, we were able to play entire games with no manipulation
failures towards the end of the competition.

5 Path Planning

Fig. 4. Path planning in the RCLL.
Obstacles are represented in occu-
pancy grids which in turn are used
for the path planning environment.

Throughout an entire game, navigation is one
of the tasks that takes up most of the time.
Changing to ROS Navigation [12] in 2017 has
proven to be a flexible and reliable approach
well-suited for the difficult navigation tasks
in the RCLL. Path planning in such an en-
vironment requires a robust but fast naviga-
tion solution suitable to provide collision-free
navigation with dynamic obstacles. From an
agent’s perspective it is desired to decrease
the average time to reach navigational goals,
which mainly depends on the average veloc-
ity, but also on path efficiency.

The classic separation between global and
local path planning is of major use to quickly
react to obstacles crossing the way in a small
local frame. Figure 4 depicts an example of a
robot navigating in the RCLL. The global path planner does not have to take
kinematic constraints into account, as the Robotino base is omni-directional.

Since 2017, we have made use of a local planner based on a timed elastic
band approach [22] as a controller running within our setup of ROS Navigation
responsible for executing the planned path and optimizing a trajectory based on
several properties of the robot base such as acceleration and velocity limits. The
major advantage of this planner is its strafing capability. However, due to the
kinematic freedom of the platform, we found that the complex workflow of the
timed elastic band approach is not needed for us. As such, we implemented our



own local planner based on the Vector Field Histogram approach [3], giving us
considerably high loop rates of roughly 90 Hz (compared to an average maximum
of 10 Hz of the previously used planner) resulting in much lower reaction times
on dynamic obstacles, which allows to move closer to obstacles and use narrow
passages that otherwise might lead to collisions as the robots do not react in
appropriate time. However, we eventually realized that this approach requires
a more elaborate solution to be a drop-in replacement for our local planner.
The timed-elastic-band–based local planner has built-in features to smoothen
translational and angular accelerations given the current obstacles around the
robot, the current robot’s velocities, the calculated trajectory and the difference
between the robot and the absolute goal, which are lacking from the Vector Field
Histogram planner. Thus, we decided to keep the previously used setup using
the well-tested local planner and instead consider other aspects of navigation
that will increase efficiency.

(a) Raw laser data (b) Filtered laser data (c) Resulting costmap

Fig. 5. Laser filtering process. 5(a) shows the unfiltered laser readings and the position
of the robot in the bottom left. 5(b) depicts the filtered laser. 5(c) is the resulting
costmap representing filtered obstacles in an overlay to the filtered and unfiltered laser
beams. Note the single laser beams in the bottom left and right corners that are not
taken into account.

The planning environment in ROS Navigation is represented with occupancy
grids [11]. The local planner’s computation time is largely determined by the
size of the occupancy grid. Therefore, shrinking its size reduces the planning
time significantly. However, this approach impairs the local planner’s foresight,
which we remedy by implementing an additional controller for the local plan-
ner’s maximum velocity based on plain laser data. To make the approach fast
and reliable, we limit the maximum velocity when any laser beam reports obsta-
cles within certain thresholds. We use three thresholds, which were empirically
determined: A maximum velocity of 0.8 m

s if there are no obstacles, 0.6 m
s if there

are obstacles within 0.6 m, and 0.3 m
s if there are obstacles within 0.3 m.

While this allows a maximum speed of 0.8 m
s in free environments, the system

suffers from sensor noise gathered by raw laser data. In many cases, the laser
reports false positives, showing obstacles at positions that are actually free, which



results in occupied cells of the occupancy grid which are traversable. As a result,
the path planner tries to avoid phantom obstacles. To overcome this issue, we
filter the raw laser data by using an implementation of the fixed-radius near
neighbour problem [2] in the PointCloud Library. Figure 5 shows an example
scenario in which 247 beams are filtered down to 142 beams, while Figure 5(c)
shows the resulting costmap.

6 Goal Reasoning with the CLIPS Executive

FORMULATED

SELECTED

EXPANDED

COMMITTED

DISPATCHED

FINISHED

EVALUATED

RETRACTED

Goal Reasoner

Choose among goals

Expander generates plan

Commit to a plan or sub-goal

Acquire goal resources

Action selection and execution

Evaluation of goal outcome

CX/System

R
e
je
c
ti
o
n

R
e
-i
n
it
ia
te

m
o
n
it
o
ri
n
g
(m

a
in
te
n
a
n
c
e
g
o
a
l
o
n
ly
)

Fig. 6. The goal lifecycle with all
possible goal modes [16].

We implemented an agent based on the CLIPS
Executive (CX) [16], which uses a goal rea-
soning model [1] similar to ActorSim [21].
We refer to [16] for an in-depth discussion of
related work.

A goal describes objectives that the agent
should pursue and can either achieve or main-
tain a condition or state. The program flow is
determined by the goal mode, which describes
the current progress of the goal. The mode
transitions are determined by the goal life-
cycle, as shown in Figure 6. When a goal is
created, it is first formulated, merely meaning
that it may be relevant to consider. The goal
reasoner may decide to select a goal, which is
then expanded into one or multiple plans, ei-
ther by using manually specified plans or au-
tomatic planners such as PDDL planners [15].
The reasoner then commits to one of those
plans, which is dispatched after all required
resources have been acquired, typically by executing a skill of the behavior en-
gine. Eventually, the goal is finished and the outcome is evaluated to determine
the goal’s success.

The CX provides an explicit representation of the agent’s world model, and
its goals, plans, and actions. It separates the domain model with the available
operators, predicates, and known facts from the execution model, which enhances
the domain model by features that are only relevant for the execution of the plan,
e.g., exogenous actions and sensed predicates.

Multi-Robot Coordination The CX also provides means for multi-robot co-
ordination, in particular world model synchronization, mutual exclusion, and
resource allocation [16]. To cooperate effectively, each agent must share (parts
of) its world model with the other agents. The CX implements world model
synchronization using a shared database [18,23]. Each robot uses a database
instance for local (agent-specific) and global (shared) world model facts. The



global world model database is synchronized as part of a replica set with the
global instances of the other robots.

Based on the replicated database, the CX also implements a locking mech-
anism. To lock a mutex, an agent must request a majority acknowledgement,
thereby avoiding two agents to hold the same mutex. To allow mutual exclu-
sion, the CX specifies two actions lock and unlock, which may be used by the
agent just as any other action. Additionally, each goal may be associated with
one or multiple resources that are required in order to dispatch the goal. If one
resource is currently unavailable, the goal is rejected. The agent holds the re-
source for the whole lifetime of the goal, once a goal is retracted, its acquired
resources are released automatically. In contrast to that, other mutexes locked
by lock and unlock actions are acquired and released explicitly by plan actions
during the execution of the goal’s plan. Resource locks are typically used if the
resource is consumed or changed by the goal’s plan and any other goal related to
the resource may become invalid after the goal has finished, while lock actions
are typically used to guarantee short-term mutual exclusion, e.g., to avoid two
robots moving to the same location.

6.1 Goal Reasoning in the RCLL

Using goal reasoning in the CX, we implemented an incremental and distributed
strategy for the RCLL. We split the production of an order into multiple goals,
such that each step of the production of one order is a separate goal and each goal
starts and ends at an MPS without a workpiece in the robot’s gripper. With this
approach, a robot can easily switch between tasks and orders, e.g., first mount
a ring for a C2 and then switch to mounting a cap for a C0. All production
goals are structured in a goal tree. The root of the tree is a PRODUCTION mainte-
nance goal, with separate maintenance sub-trees for URGENT, FULFILL-ORDERS,
PREPARE-RESOURCES, and NO-PROGRESS goals, with decreasing priorities of the
order of the sub-trees. This way, the agent always selects an urgent goal if there
is any, and otherwise tries to fulfill orders, e.g, by delivering a product. If this is
not possible, it prepares resources not tied to a specific order, e.g., feeding raw
material into the ring station. If there is no goal in any of the sub-trees, it selects
a goal that does not progress the game, e.g., going to a waiting position.

Goal selection is solely based on the priority of the goal, i.e., we always select
the formulated goal with the highest priority, which is currently defined manually
for each goal class. Goals that continue the production of an already started
product have higher priority than goals that start a new product, products of
higher complexity have higher priority than products of lower complexity. Our
goal selection implements an incremental strategy as our goal reasoner only
decides which goal to pursue next rather than scheduling a set of goals ahead of
time. We obtain a distributed multi-agent strategy that effectively fulfills order
without an explicit decision which orders to pursue, thereby removing the need
for a central agent.

Although the CX is capable of using a PDDL planner [15], we use a database
of hand-crafted plans instead. This allows tighter control of the resulting plans



and better execution monitoring and also avoids planning overhead during execu-
tion, but reduces the flexibility of the goal reasoner as we cannot easily dispatch
the same goal in slightly different situations, e.g., start dispatch a goal with the
robot holding a workpiece. Currently, PDDL is only used for the execution model
to check whether all preconditions of an action are satisfied before executing an
action, and also to specify the actions’ effects.

To coordinate the three robots, we use a distributed approach using the
locking mechanisms of the CX. More specifically, a production goal requires a
workpiece and an MPS as resource if they are altered by the goal’s plan. Addi-
tionally, all plans contain lock actions for locations and machines. The resource
locks guarantee that we only dispatch one goal that depends on the current
state of the workpiece (e.g., the number of rings mounted on the base) or the
machine (e.g., whether a cap station has a buffered cap). The additional lock
actions guarantee that no two robots try to move to the same location or operate
the same MPS station at the same time, even if the station is not a required
resource. This allows more efficient plan dispatching, as one robot may already
start the execution of a plan, even if the plan contains an action at a station
that is currently occupied.

Execution Monitoring In most robotics scenarios and in the RCLL in par-
ticular, plan execution may fail for a number of reasons. For one, an action may
simply fail due to imprecise sensors or actuators, e.g., picking a workpiece from
an MPS may fail because the gripper is not properly aligned to the MPS. Also,
another robot, either from the same or the opposite team, may interfere, e.g., by
blocking a location or resetting an MPS. Additionally, a plan may fail due to the
inherent uncertainties in the RCLL, e.g., an MPS being DOWN. Finally, we also
need to deal with exogenous events and their effects on the agent’s world model.
We can distinguish three kinds of events: (1) an action may fail to execute, (2) a
plan no longer has the intended effect, and (3) a goal is no longer useful. The
CX already supports generic monitoring rules, e.g., retrying a failed action a
number of times. In addition to that, we also implemented domain-specific mon-
itoring rules, which deal with the specific aspects of the RCLL. Most of these
domain-specific rules were created by observing undesired behaviors in test en-
vironments. Typical examples include resetting an MPS if it is in an unexpected
state and removing unknown workpieces from the input or output of a machine.
To implement and test our execution monitoring, we adapted the Gazebo-based
simulation of the RCLL [24] to incorporate random failures. With this strategy,
we were able to develop extended monitoring rules even for scenarios that we
could not observe frequently in the real world.

7 Conclusion

In 2019, we continued the development of the CLIPS Executive (CX), a goal
reasoning system which we use to pursue an incremental and distributed multi-
agent strategy for the RCLL in a principled way. We redesigned our gripper



system and replaced it with a three-finger manipulator that grasps workpieces
from the top. We took a new approach to MPS alignment with a multi-stage
strategy using RANSAC with a LiDAR sensor and ICP on an RGB/D image. We
further improved our navigation, which allowed our robots to move more quickly
across the playing field while avoiding collisions with static objects and robots
of both our and the opposite team. All those changes provided the means to a
more efficient production, which resulted in the team’s success in the RoboCup
Logistics League.

Acknowledgements. The team members in 2019 were David Bosen, Mario Claer,
Sebastian Eltester, Christoph Gollok, Daniel Habering, Till Hofmann, Nicolas Limpert,
Victor Mataré, Morian Sonnet and Tarik Viehmann.
Our special thanks go to T. Niemueller for his continued support and contributions
both to the league and to our team.
We gratefully acknowledge the financial support of RWTH Aachen University and FH
Aachen University of Applied Sciences.
T. Hofmann and V. Mataré were supported by the DFG grants GL-747/23-1 and
FE-1077/4-1 (respectively) on Constraint-based Transformations of Abstract Task
Plans into Executable Actions for Autonomous Robots6.
N. Limpert was partly supported by the H2020 ROSIN project under grant agreement
No 7322877 on ROS-Industrial quality assured software components.
We appreciate the financial and organizational support by the Cybernetics Lab IMA
& IfU, RWTH Aachen University.
We are especially thankful to Hans-Hermann-Voss-Stiftung8 for their financial support.

We thank our sponsors ELTROPULS GmbH 9 and Magazino GmbH 10 for travel fund-

ing, as well as AGVR GmbH 11, igus GmbH 12 and SICK AG13 for providing hardware

and development support.

References

1. Aha, D.W.: Goal Reasoning: Foundations, Emerging Applications, and Prospects.
AI Magazine 39(2) (Jul 2018)

2. Bentley, J.L., Stanat, D.F., Williams Jr, E.H.: The complexity of finding fixed-
radius near neighbors. Information processing letters 6(6), 209–212 (1977)

3. Borenstein, J., Koren, Y.: The vector field histogram-fast obstacle avoidance for
mobile robots. IEEE transactions on robotics and automation 7(3), 278–288 (1991)

4. Chen, Y., Medioni, G.: Object modelling by registration of multiple range images.
Image and vision computing 10(3), 145–155 (1992)

5. Fischler, M.A., Bolles, R.C.: Random sample consensus: A paradigm for model
fitting with applications to image analysis and automated cartography. Commun.
ACM 24(6), 381–395 (Jun 1981)

6 http://gepris.dfg.de/gepris/projekt/288705857
7 https://cordis.europa.eu/project/rcn/206395/factsheet/en
8 https://www.hans-hermann-voss-stiftung.de/
9 https://www.eltropuls.de/

10 https://www.magazino.eu/
11 http://www.agvr.eu/
12 https://www.igus.de/
13 https://www.sick.com/

http://gepris.dfg.de/gepris/projekt/288705857
https://cordis.europa.eu/project/rcn/206395/factsheet/en
https://www.hans-hermann-voss-stiftung.de/
https://www.eltropuls.de/
https://www.magazino.eu/
http://www.agvr.eu/
https://www.igus.de/
https://www.sick.com/


6. Gat, E.: Three-layer architectures. In: Kortenkamp, D., Bonasso, R.P., Murphy, R.
(eds.) Artificial Intelligence and Mobile Robots, pp. 195–210. MIT Press (1998)

7. Hochstein, L., Moser, R.: Ansible: Up and Running. O’Reilly (2014)

8. Hofmann, T., Limpert, N., Mataré, V., Ferrein, A., Lakemeyer, G.: The Carolo-
gistics RoboCup Logistics Team 2019. Tech. rep., RWTH Aachen University and
FH Aachen University of Applied Sciences (2019), https://kbsg.rwth-aachen.
de/~hofmann/papers/carologistics-2019-tdp.pdf

9. Hofmann, T., Limpert, N., Mataré, V., Schönitz, S., Niemueller, T.,
Ferrein, A., Lakemeyer, G.: The Carologistics RoboCup Logistics Team
2018. Tech. rep., RWTH Aachen University and FH Aachen University
of Applied Sciences (2018), https://kbsg.rwth-aachen.de/~hofmann/papers/

carologistics-2018-tdp.pdf

10. Hofmann, T., Mataré, V., Neumann, T., Schönitz, S., Henke, C., Limpert, N.,
Niemueller, T., Ferrein, A., Jeschke, S., Lakemeyer, G.: Enhancing software and
hardware reliability for a successful participation in the RoboCup Logistics League
2017. In: RoboCup Symposium – Champion Teams Track. Nagoya, Japan (2017)

11. Lu, D.V., Hershberger, D., Smart, W.D.: Layered costmaps for context-sensitive
navigation. In: Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ In-
ternational Conference on. pp. 709–715. IEEE (2014)

12. Marder-Eppstein, E., Berger, E., Foote, T., Gerkey, B., Konolige, K.: The office
marathon: Robust navigation in an indoor office environment. In: International
Conference on Robotics and Automation (2010)

13. Niemueller, T., Ferrein, A., Beck, D., Lakemeyer, G.: Design Principles of the
Component-Based Robot Software Framework Fawkes. In: Int. Conference on Sim-
ulation, Modeling, and Programming for Autonomous Robots (SIMPAR) (2010)

14. Niemueller, T., Ferrein, A., Lakemeyer, G.: A Lua-based Behavior Engine for Con-
trolling the Humanoid Robot Nao. In: RoboCup Symposium 2009 (2009)

15. Niemueller, T., Hofmann, T., Lakemeyer, G.: CLIPS-based execution for PDDL
planners. In: ICAPS Workshop on Integrated Planning, Acting and Execution
(IntEx) (2018)

16. Niemueller, T., Hofmann, T., Lakemeyer, G.: Goal reasoning in the CLIPS Execu-
tive for integrated planning and execution. In: Proceedings of the 29th International
Conference on Planning and Scheduling (ICAPS) (2019)

17. Niemueller, T., Lakemeyer, G., Ferrein, A.: Incremental Task-level Reasoning in a
Competitive Factory Automation Scenario. In: Proc. of AAAI Spring Symposium
2013 - Designing Intelligent Robots: Reintegrating AI (2013)

18. Niemueller, T., Lakemeyer, G., Srinivasa, S.: A Generic Robot Database and its
Application in Fault Analysis and Performance Evaluation. In: IEEE International
Conference on Intelligent Robots and Systems (IROS) (2012)

19. Niemueller, T., Neumann, T., Henke, C., Schönitz, S., Reuter, S., Ferrein, A.,
Jeschke, S., Lakemeyer, G.: Improvements for a Robust Production in the RoboCup
Logistics League 2016. In: RoboCup Symposium – Champion Teams Track (2016)

20. Quigley, M., Conley, K., Gerkey, B.P., Faust, J., Foote, T., Leibs, J., Wheeler, R.,
Ng, A.Y.: ROS: an open-source Robot Operating System. In: ICRA Workshop on
Open Source Software (2009)

21. Roberts, M., Alford, R., Shivashankar, V., Leece, M., Gupta, S., Aha, D.W.: Ac-
torSim: A toolkit for studying goal reasoning, planning, and acting. In: WS on
Planning and Robotics (PlanRob) at International Conference on Automated Plan-
ning and Scheduling (ICAPS). London, UK (2016)

https://kbsg.rwth-aachen.de/~hofmann/papers/carologistics-2019-tdp.pdf
https://kbsg.rwth-aachen.de/~hofmann/papers/carologistics-2019-tdp.pdf
https://kbsg.rwth-aachen.de/~hofmann/papers/carologistics-2018-tdp.pdf
https://kbsg.rwth-aachen.de/~hofmann/papers/carologistics-2018-tdp.pdf


22. Rosmann, C., Feiten, W., Wosch, T., Hoffmann, F., Bertram, T.: Efficient trajec-
tory optimization using a sparse model. In: European Conference on Mobile Robots
(ECMR). pp. 138–143. IEEE (2013)

23. Zwilling, F.: A Document-Oriented Robot Memory for Knowledge Sharing and
Hybrid Reasoning on Mobile Robots. Master’s thesis, RWTH Aachen University
(2017)

24. Zwilling, F., Niemueller, T., Lakemeyer, G.: Simulation for the RoboCup Logistics
League with Real-World Environment Agency and Multi-level Abstraction. In:
RoboCup Symposium (2014)


	Winning the RoboCup Logistics League with Fast Navigation, Precise Manipulation, and Robust Goal Reasoning

