
The Carologistics RoboCup Logistics Team 2019

Till Hofmann1, Nicolas Limpert2, Victor Mataré2,
Alexander Ferrein2, and Gerhard Lakemeyer1

1 Knowledge-Based Systems Group, RWTH Aachen University, Germany
2 MASCOR Institute, FH Aachen University of Applied Sciences, Germany

Abstract. The Carologistics team participates in the RoboCup Logis-
tics League for the eighth year. The RCLL requires precise vision, manip-
ulation and path planning, as well as complex high-level decision making
and multi-robot coordination. We outline our approach with an emphasis
on recent modifications to those components.

The team members in 2019 are David Bosen, Mario Claer, Sebastian
Eltester, Christoph Gollok, Mostafa Gomaa, Daniel Habering, Till Hof-
mann, Nicolas Limpert, Morian Sonnet and Tarik Viehmann.

This paper is based on the last year’s team description [6].

1 Introduction

The Carologistics RoboCup Team is a cooperation of the Knowledge-Based
Systems Group (RWTH Aachen University) and the MASCOR Institute (FH
Aachen University of Applied Sciences). The team was initiated in 2012. Doc-
toral, master, and bachelor students of both partners participate in the project
and bring in their specific strengths tackling the various aspects of the RoboCup
Logistics League (RCLL): designing hardware modifications, developing func-
tional software components, system integration, and high-level control of a group
of mobile robots.

Our team has participated in RoboCup 2012–2017 and the RoboCup Ger-
man Open (GO) 2013–2019. We were able to win the GO 2014-2018 as well
as the RoboCup 2014 thru 2017, demonstrating flexible task coordination, ro-
bust collision avoidance and self-localization through an easily maintainable and
extensible framework architecture.

In the following we describe some of the challenges of the RCLL with a focus
on the changes introduced in 2019. In Section 2 we give an overview of the
hardware changes we are going to deploy in 2019. We continue by describing
updates to the functional software components in Section 3 and to behavior
components in Section 4 before concluding in Section 5.



1.1 RoboCup Logistics League 2019

As in previous years, the goal is to maintain and optimize the material flow in a
simplified Smart Factory scenario. Two competing groups of up to three robots
each use a set of exclusive machines spread over a common playing field to pro-
duce and deliver products (cf. [7,14,12]). After the league switched from purely
symbolic production to Festo’s physical Modular Production System (MPS) in
2015 [14], the rules and field layout have been incrementally refined to focus on
challenges that are relevant to the Industry 4.0 movement [13].

For 2019, the biggest rule change is the introduction of competitive orders.
For regular orders, each team can deliver the requested product and scores inde-
pendently of the other team. For a competitive order, the team that delivers first
gets bonus points, while the second team gets points deducted. For this year,
there will be only one competitive C0 order during the regular game, which may
be increased in the future.

On the technical side, the MPS stations will be equipped with barcode scan-
ners, which will allow the tracking of workpieces, and thus to give points for
(partial) production steps.

2 The Carologistics Platform

Fig. 1. New manipulator with 3
linear axes and self-centering grip-
per

The standard robot platform of this league is
the Robotino by Festo Didactic [5]. As in pre-
vious years, we are using the Robotino Ver-
sion 3 with many hardware modifications and
a custom software stack starting from the OS
level. Most of our hardware modifications have
been described in our previous team descrip-
tion papers, so here we will focus on new de-
velopments only.

2.1 Gripper System

The gripping system is an incremental update
to the 3-axis system developed in 2018 [4]. The
assembly of the linear axes is mostly kept the same, except for some refinements
to 3D-printed connective parts to save filament and increase stability. The grip-
per itself has been redesigned to grip the workpiece from above with three instead
of two fingers (cf. Figure 1). The advantage we hope to gain from this is increased
robustness and precision because the workpiece will always center between the
three spring-loaded fingers, independently of the positioning error. Another ad-
vantage of the new design is that it retracts fully behind the robot’s circular
base shape, which should significantly reduce the risk of damage and simplify
path planning.



2.2 Architecture and Middleware

The software system of the Carologistics robots combines two different middle-
wares, Fawkes [8] and ROS [19]. This allows us to use software components from
both systems. The overall system, however, is integrated using Fawkes. Adapter
plugins connect the systems, for example to use ROS’ 3D visualization capabil-
ities. The overall software structure is inspired by the three-layer architecture
paradigm [3]. It consists of a deliberative layer for high-level reasoning, a reac-
tive execution layer for breaking down high-level commands and monitoring their
execution, and a feedback control layer for hardware access and functional com-
ponents. Changes to the lowest layer are described in Section 3. The upper two
layers are detailed in Section 4. The communication between single components
– implemented as plugins – is realized by a hybrid blackboard and messaging
approach [8].

3 Advances to Functional Software Components

A plethora of different software components is required for a multi-robot system.
In this section, we focus on changes for this year’s competition, namely a new
path planning module and a revised conveyor belt detection.

3.1 Path Planning

Fig. 2. Vector Field Histogram
representing 3 different obstacles
and the selected angle of mo-
tion [2].

Since our change to ROS move base in 2017,
the whole navigation system has proven to
be a flexible and reliable approach well-suited
for the difficult navigation tasks in the RCLL.
The classic separation between global and lo-
cal path planning is of major use to quickly
react to obstacles crossing the way in a small
local frame. The global path planner does not
have to take kinematic constraints into ac-
count as the Robotino base can move freely
in x, y, θ at any time, given that that there is
enough free space around the robot.

Since 2017, we initially made use of the teb local planner as a controller
running within the move base responsible for executing the planned path. The
major advantage of this planner among many others available is its strafing
capability. However, due to the kinematic freedom of the platform, we decided
that the complex workflow of the teb local planner is not needed for us. As
such, we decided to implement our own local planner based on the Vector Field
Histogram approach [2], giving us a loop rate of roughly 90 Hz and as such
higher translational and angular velocities on average. The general idea of VFH
is to identify obstacles given a discrete set of laser beams (and as such being
robust against sensor noise) and select a motion direction given the histogram



and the actual goal. The actual goal of VFH is the current goal on the global
path - Figure 2 shows an example histogram.

With the changes addressed in 2.1 we have even less motion constraints and
can finally plan with a point-mass with respecto to the robot being a round-
shaped platform with no mechanical parts pointing outwards while the robot is
moving.

During our usage of the move base in general and particularly its very fixed
behaviour defining a strict failure recovery procedure, we discovered that it
makes sense to switch to a more flexible approach. Also, the changes for multi-
agent path planning introduced in 2018 were implemented around the move base
without being a proper solution for multi-agent path planning. As such we de-
cided to switch to ROS’ robot navigation locomotor3 in general and in particu-
lar a fork of its locomove base implementing the multi-agent solution introduced
last-year in a single clean solution. We can now properly select what should hap-
pen when the globally planned path would actually cross the path of another
robot, without having to give temporary goals to move base.

3.2 Conveyor Belt Detection

Fig. 3. Left: Model pointcloud (blue)
roughly aligned to scene (black) based on
initial guess. Right: After running ICP, the
model is aligned to the scene precisely.

The conveyor belts are rather narrow
compared to the products and thus re-
quire precise handling. For reliable in-
teraction, the error margin should be
less than 3 mm. For 2019, we will re-
fine the ICP-based method developed
in 2018 [4]. In 2018, the initial esti-
mate for the conveyor pose was gener-
ated from a RANSAC-based line de-
tection algorithm that uses the data
from the SICK laser range finders to
determine the approximate position
of MPS table’s flat side panel. From
there, the approximate position of the conveyor belt can be calculated since
its mounting position on the MPS table is known. However, tests and usage
during RoboCup and German Open 2018 have shown that this method is the
main source of errors since bad initial estimates tend to pull the correspondence
optimizer towards an incorrect local optimum.

While the hypothesis verification [18] does eliminate most false positives, each
failed attempt usually costs 1-5 seconds of precious game time. The problem is
aggravated by the fact that the noise in the line detection increases the closer
the robot moves towards the MPS, since the angle between the MPS panel and
the laser beams hitting its edges becomes sharper.

So for 2019, the focus is on increasing the reliability of the initial estimate by
incorporating additional data. One approach will be to use the previous plane-

3 https://github.com/locusrobotics/robot_navigation

https://github.com/locusrobotics/robot_navigation


fitting approach [17] since it is fast and much more robust against bad initial
estimates, thus forming a three-stage pipeline:

1. Laser-based line detection: Imprecise, but fast, robust and requires no initial
estimate.

2. Plane fitting: Moderately precise, fast and robust against bad initial esti-
mates.

3. ICP: Very precise, but slow and sensitive to bad initial estimates.

4 High-level Decision Making and Task Coordination

Vision · · ·

AMCL Motion Components
Actuator/Sensor proc.

Localization, etc.

Behavior Engine Reactive Behaviors
Skill execution/monitoring

CLIPS Agent Deliberation
Decision making/planning

Fig. 4. Behavior Layer Separation [12]

The behavior generating compo-
nents are separated into three lay-
ers, as depicted in Figure 4: the
low-level processing for percep-
tion and actuation, a mid-level re-
active layer, and a high-level rea-
soning layer. The layers are com-
bined following an adapted hybrid
deliberative-reactive coordination
paradigm.

The robot group needs to cooperate on its tasks, that is, the robots com-
municate information about their current intentions, acquire exclusive control
over resources such as locations or machines, and share their beliefs about the
current state of the environment.

In the following we describe the reactive and deliberative layers of the be-
havior components. For computational and energy efficiency, the behavior com-
ponents need also to coordinate activation of the lower level components.

4.1 Lua-based Behavior Engine

In previous work we have developed the Lua-based Behavior Engine (BE) [9]. It
serves as the reactive layer to interface between the low- and high-level systems.
The BE is based on hybrid state machines (HSM). They can be depicted as a
directed graph with nodes representing states for action execution, and/or moni-
toring of actuation, perception, and internal state. Edges denote jump conditions
implemented as Boolean functions. For the active state of a state machine, all
outgoing conditions are evaluated, typically at about 15 Hz. If a condition fires,
the active state is changed to the target node of the edge. A table of variables
holds information like the world model, for example storing numeric values for
object positions. It remedies typical problems of state machines like fast growing
number of states or variable data passing from one state to another. Skills are
implemented using the light-weight, extensible scripting language Lua.



4.2 Reasoning and Planning with the CLIPS Executive

FORMULATED

SELECTED

EXPANDED

COMMITTED

DISPATCHED

FINISHED

EVALUATED

RETRACTED

Goal Reasoner

Choose among goals

Expander generates plan

Commit to a plan or sub-goal

Acquire goal resources

Action selection and execution

Evaluation of goal outcome

CX/System

R
e
je
c
ti
o
n

R
e
-i
n
it
ia
te

m
o
n
it
o
ri
n
g
(m

a
in
te
n
a
n
c
e
g
o
a
l
o
n
ly
)

Fig. 5. The goal lifecycle with all pos-
sible goal modes [11].

We implemented an agent based on the
CLIPS Executive (CX) [11], which uses
a goal reasoning model [1]. A goal de-
scribes objectives that the agent should
pursue and can either achieve or maintain
a condition or state. The program flow is
determined by the goal mode, which de-
scribes the current progress of the goal.
The mode transitions are determined by
the goal lifecycle, which is depicted in Fig-
ure 5. When a goal is created, it is first
formulated, merely meaning that it may
be relevant to consider. The goal reasoner
may decide to select a goal, which is then
expanded into one or multiple plans, either
by using manually specified plans or au-
tomatic planners such as PDDL planners
[10]. The reasoner then commits to one of
those plans, which is dispatched, typically
by executing a skill of the behavior en-
gine. Eventually, the goal is finished and
the outcome is evaluated to determine the
success of the goal.

The CX provides an explicit represen-
tation of the agent’s world model, and its
goals, plans, and actions. It separates the domain model with the available oper-
ators, predicates, and known facts from the execution model, which enhances the
domain model by features that are only relevant for the execution of the plan,
e.g., exogenous actions and sensed predicates. In contrast to the approaches de-
scribed in [10,15], we currently do not use a planner, but instead use pre-defined
plans.

4.3 Multi-Robot Coordination

The CX also provides means for multi-robot coordination, in particular world
model synchronization, mutual exclusion, and resource allocation [11]. To co-
operate effectively, each agent must share (parts of) its world model with the
other agents. The CX implements world model synchronization using a shared
database [16,20]. Each robot uses a database instance for local (agent-specific)
and global (shared) world model facts. The global world model database is syn-
chronized as part of a replica set with the global instances of the other robots.

Based on the replicated database, the CX also implements a locking mech-
anism. To lock a mutex, an agent must request a majority acknowledgement,
thereby avoiding two agents to hold the same mutex. To allow mutual exclusion,



the CX specifies two actions lock and unlock, which may be used by the agent
just as any other action. Additionally, each goal may be associated with one or
multiple resources that are required in order to dispatch the goal. If one resource
is currently unavailable, the goal is rejected. Once a goal is retracted, its acquired
resources are released automatically.

5 Conclusion

In 2019, we are continuing the development of an agent based on the CLIPS
Executive, which provides an explicit goal representation including plans and
actions with their preconditions and effects. Work on the mechanical side of the
manipulator system is focused on a radical redesign of the gripper itself. The
conveyor detection pipeline is extended to combine the benefits and eliminate
the downsides of all previous approaches. For path planning, we switched from
move base to robot navigation with a new implementation of multi-agent path
planning.

The website of the Carologistics RoboCup Team with further information
and media can be found at https://www.carologistics.org.

Acknowledgements. We gratefully acknowledge the financial support of RWTH
Aachen University and FH Aachen University of Applied Sciences.
T. Hofmann and V. Mataré were supported by the DFG grants GL-747/23-1 and
FE-1077/4-1 (respectively) on Constraint-based Transformations of Abstract Task
Plans into Executable Actions for Autonomous Robots4.
We appreciate the financial and organizational support by the Cybernetics Lab IMA
& IfU, RWTH Aachen University.

We gratefully thank T. Niemueller for his continued support and contributions both

to the league and to our team.

References

1. Aha, D.W.: Goal Reasoning: Foundations, Emerging Applications, and Prospects.
AI Magazine 39(2) (Jul 2018)

2. Borenstein, J., Koren, Y.: The vector field histogram-fast obstacle avoidance for
mobile robots. IEEE transactions on robotics and automation 7(3), 278–288 (1991)

3. Gat, E.: Three-layer architectures. In: Kortenkamp, D., Bonasso, R.P., Murphy, R.
(eds.) Artificial Intelligence and Mobile Robots, pp. 195–210. MIT Press (1998)

4. Hofmann, T., Limpert, N., Mataré, V., Schönitz, S., Niemueller, T., Ferrein,
A., Lakemeyer, G.: The Carologistics RoboCup Logistics Team 2018. Tech. rep.,
RWTH Aachen University and FH Aachen University of Applied Sciences (2018)

5. Karras, U., Pensky, D., Rojas, O.: Mobile Robotics in Education and Research
of Logistics. In: IROS 2011 – Workshop on Metrics and Methodologies for Au-
tonomous Robot Teams in Logistics (2011)

6. Neumann, T., Hofmann, T., Mataré, V., Henke, C., Schönitz, S., Niemueller, T.,
Ferrein, A., Jeschke, S., Lakemeyer, G.: The Carologistics RoboCup Logistics Team
2017. Tech. rep., RWTH Aachen University and FH Aachen University of Applied
Sciences (2017)

4 http://gepris.dfg.de/gepris/projekt/288705857

https://www.carologistics.org
http://gepris.dfg.de/gepris/projekt/288705857


7. Niemueller, T., Ewert, D., Reuter, S., Ferrein, A., Jeschke, S., Lakemeyer, G.:
RoboCup Logistics League Sponsored by Festo: A Competitive Factory Automa-
tion Benchmark. In: RoboCup Symposium 2013 (2013)

8. Niemueller, T., Ferrein, A., Beck, D., Lakemeyer, G.: Design Principles of the
Component-Based Robot Software Framework Fawkes. In: Int. Conference on Sim-
ulation, Modeling, and Programming for Autonomous Robots (SIMPAR) (2010)

9. Niemueller, T., Ferrein, A., Lakemeyer, G.: A Lua-based Behavior Engine for Con-
trolling the Humanoid Robot Nao. In: RoboCup Symposium 2009 (2009)

10. Niemueller, T., Hofmann, T., Lakemeyer, G.: Clips-based execution for pddl plan-
ners. In: ICAPS Workshop on Integrated Planning, Acting and Execution (IntEx)
(2018)

11. Niemueller, T., Hofmann, T., Lakemeyer, G.: Goal reasoning in the clips executive
for integrated planning and execution. In: Proceedings of the 29th International
Conference on Planning and Scheduling (ICAPS) (2019)

12. Niemueller, T., Lakemeyer, G., Ferrein, A.: Incremental Task-level Reasoning in a
Competitive Factory Automation Scenario. In: Proc. of AAAI Spring Symposium
2013 - Designing Intelligent Robots: Reintegrating AI (2013)

13. Niemueller, T., Lakemeyer, G., Ferrein, A.: The robocup logistics league as a bench-
mark for planning in robotics. In: 25th International Conference on Automated
Planning and Scheduling (ICAPS) – Workshop on Planning in Robotics (2015)

14. Niemueller, T., Lakemeyer, G., Ferrein, A., Reuter, S., Ewert, D., Jeschke, S., Pen-
sky, D., Karras, U.: Proposal for Advancements to the LLSF in 2014 and beyond.
In: ICAR – 1st Workshop on Developments in RoboCup Leagues (2013)

15. Niemueller, T., Lakemeyer, G., Leofante, F., Abraham, E.: Towards clips-based
task execution and monitoring with SMT-based decision optimization. In: Work-
shop on Planning and Robotics (PlanRob) at International Conference on Auto-
mated Planning and Scheduling (ICAPS). Pittsburgh, PA, USA (Jun 2017)

16. Niemueller, T., Lakemeyer, G., Srinivasa, S.: A Generic Robot Database and
its Application in Fault Analysis and Performance Evaluation. In: IEEE In-
ternational Conference on Intelligent Robots and Systems (IROS) (2012).
https://doi.org/10.1109/IROS.2012.6385940

17. Niemueller, T., Neumann, T., Henke, C., Schönitz, S., Reuter, S., Ferrein, A.,
Jeschke, S., Lakemeyer, G.: Improvements for a Robust Production in the RoboCup
Logistics League 2016. In: RoboCup Symposium – Champion Teams Track (2016)

18. Papazov, C., Burschka, D.: An efficient ransac for 3d object recognition in noisy and
occluded scenes. In: Asian Conference on Computer Vision. pp. 135–148. Springer
(2010)

19. Quigley, M., Conley, K., Gerkey, B.P., Faust, J., Foote, T., Leibs, J., Wheeler, R.,
Ng, A.Y.: ROS: an open-source Robot Operating System. In: ICRA Workshop on
Open Source Software (2009)

20. Zwilling, F.: A Document-Oriented Robot Memory for Knowledge Sharing and
Hybrid Reasoning on Mobile Robots. Master’s thesis, RWTH Aachen University
(2017)

https://doi.org/10.1109/IROS.2012.6385940

	The Carologistics RoboCup Logistics Team 2019

