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Abstract. The Carologistics team participates in the RoboCup Logis-
tics League for the ninth year. The RCLL requires precise vision, manip-
ulation and path planning, as well as complex high-level decision making
and multi-robot coordination. We provide an overview of our approach
with focus on navigation, perception, and high-level reasoning.

The team members in 2020 are David Bosen, Sebastian Eltester, Mostafa
Gomaa, Till Hofmann, Nicolas Limpert, Victor Mataré, Cindy Mund,
Daniel Swoboda, and Tarik Viehmann.

This paper is based on last year’s team description [6] and champions
paper [5].

1 Introduction

The Carologistics RoboCup Team is a cooperation of the Knowledge-Based
Systems Group (RWTH Aachen University) and the MASCOR Institute (FH
Aachen University of Applied Sciences). The team was initiated in 2012. Doc-
toral, master, and bachelor students of both partners participate in the project
and bring in their specific strengths tackling the various aspects of the RoboCup
Logistics League (RCLL): designing hardware modifications, developing func-
tional software components, system integration, and high-level control of a group
of mobile robots.

Our team has participated in RoboCup 2012–2019 and the RoboCup Ger-
man Open (GO) 2013–2019. We were able to win the GO 2014-2019 as well as
the RoboCup 2014-2017 [21,22,20,7] and 2019 [5], demonstrating flexible task
coordination, robust collision avoidance and self-localization through an easily
maintainable and extensible framework architecture.

In the following, we provide an overview of our system, starting with our
robot platform in Section 2. In Section 3, we continue by describing our approach
to path planning, before we explain our approach to perception and in particular
conveyor belt detection in Section 4. In Section 5, we summarize our approach
to high-level decision making, before we conclude in Section 6.



1.1 The RoboCup Logistics League

The RoboCup Logistics League (RCLL) [12] is a RoboCup [9] competition with a
focus on smart factories and production logistics. In the RCLL, a team of mobile
robots has to fulfill dynamically generated orders by assembling workpieces. To
assemble such products, the robots operate and transport workpieces between
static production machines. The major challenges of the RCLL include typical
robotics tasks such as localization, navigation, perception, and manipulation,
with a particular focus on reasoning tasks such as planning, plan execution, and
execution monitoring.

The game is controlled by a semi-automatic referee box (refbox ) [23]. The
refbox generates dynamic orders that consist of the desired product configuration
and a requested delivery time window, which must be manufactured by the
robots of each team. Each requested product consists of a base piece (colored red,
black, or silver), up to three rings (colored blue, green, orange, or yellow), and a
cap (colored black or gray), resulting in 246 possible product configurations. The
complexity of a product is determined by the number of required rings, where
a C0 product with zero rings is a product of the lowest complexity, and a C3
product with three rings is a product of the highest complexity. Each team has
an exclusive set of seven machines of five different types of Modular Production
System (MPS) stations. To manufacture a requested product, the team has to
execute a sequence of production steps by means of operating the MPS stations.

2 The Carologistics Platform

Fig. 1: The Carologis-
tics Robotino

The standard robot platform of this league is the
Robotino by Festo Didactic [8]. The Robotino is de-
veloped for research and education and features omni-
directional locomotion, a gyroscope and webcam, in-
frared distance sensors, and bumpers. The teams may
equip the robot with additional sensors and compu-
tation devices as well as a gripper device for product
handling. The Carologistics Robotino is shown in Fig-
ure 1.

Sensors We use one forward-facing and one tilted,
backward-facing SICK TiM571 laser scanner for col-
lision avoidance and self-localization. Using a second
laser scanner in the back allows us to fully utilize the
omni-directional locomotion of the Robotino. In addi-
tion to the laser scanners, we use a webcam for de-
tecting the MPS identification tags, and a Creative
BlasterX Senz3D camera for conveyor belt detection.



2.1 Gripper System

Our gripper system consists of three linear axes and a three-fingered gripper, as
shown in Figure 2. The three axes are driven by stepper motors, which allows
movements with sub-millimeter accuracy. The axes are controlled by an Arduino,
which in turn receives commands from the Robotino main computer.

(a) The three linear axes
driven by stepper motors

(b) The CAD model of the
three-fingered gripper

(c) The complete gripper
system

Fig. 2: The gripper system consisting of three linear axes and a self-centering
gripper with three fingers

The gripper uses three fingers and grips the workpiece from above. This
allows increased robustness and precision, as the workpiece is always centered
between the three spring-loaded fingers, independent of positioning errors.

2.2 Architecture and Middleware
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Fig. 3: Behavior Layer Separation [17]

The software system of the Carol-
ogistics robots combines two dif-
ferent middlewares, Fawkes [13]
and ROS [24]. This allows us
to use software components from
both systems. The overall sys-
tem, however, is integrated using
Fawkes. Adapter plugins connect
the systems, for example to use
ROS’ 3D visualization capabili-
ties. The overall software struc-
ture is inspired by the three-layer architecture paradigm [4], as shown in Figure 3.
It consists of a deliberative layer for high-level reasoning, a reactive execution
layer for breaking down high-level commands and monitoring their execution,
and a feedback control layer for hardware access and functional components.
The communication between single components – implemented as plugins – is
realized by a hybrid blackboard and messaging approach [13].



3 Navigation

Fig. 4: Path planning in the
RCLL [5]. Obstacles are repre-
sented in occupancy grids which
in turn are used for the path
planning environment.

One of the most time-consuming tasks in the
RCLL is navigation. From a single robot’s
perspective, the RCLL is a difficult multi-
agent path planning scenario. The whole navi-
gation system has to provide fast and collision
free navigation with up to five other robots,
only two of which can be communicated with.
Hence the system has to deal with dynamic
obstacles since the opponent robot’s strate-
gies are unknown. In addition, communica-
tion is unreliable, resulting in a decoupled sys-
tem considering all robots on the field equally.
Performing path planning in a classic single-
agent approach turns out to be the best choice
here.

Switching to ROS Navigation [11] from a
custom navigation system in 2017 has proven
to be a flexible yet robust approach for single-
agent pathplanning. Having been in active development for more than ten years,
ROS Navigation is widely adopted on many robot platforms and is hence well-
tested. As per its design, ROS Navigation is structured to separate global and
local path planning. Global planning calculates shortest paths in a gradient-
descent method, which does not take kinematic constraints into account. Given
a feasible global path the local planner (being the controller) calculates colli-
sion free velocity commands to be executed by the mobile base. Figure 4 shows
a sample screenshot with obstacles and static map components represented in
an occupancy grid (costmap) [10]. Occupied cells are inflated to keep the robot
from navigating too close to obstacles or walls. The shown path navigating to
a position behind an MPS station reveals an important aspect of our configu-
ration: Within narrow passages the global planner is configured to prefer paths
navigating in the middle between the obstacles to allow fast motion.

The default local planner of ROS Navigation is supposed to be used for
differentially driven robots. Hence it cannot leverage the Robotino’s kinematic
freedom that allows strafing motions. To address this we use a timed elastic band
approach [26] as a controller which generates trajectories allowing the robot to
save time during motion by reaching the final goal orientation even though it is
still moving.

Moving obstacles are more of a threat than static obstacles due to the un-
certain goals they seek. To address this issue we decided to take environmental
aspects into account and filter the laser data to only consider dynamic obstacles.
Since the boundaries of the playing field are part of the static map and the poses
of the MPS are known during the production phase we can filter out laser beams
representing static information. This helps us control the maximum velocity of



the local planner by limiting the maximum velocity to a safe value in situations
where the robot is close to at least one dynamic obstacle.

A common problem with laser scanners is sensor noise. As per design the
costmap can not distinguish whether a laser beam can be neglected so it has
to consider each beam equally. As a result, sensor noise is also represented as
full scale obstacles within the costmap, threatening the efficiency of the whole
navigation system. To overcome this issue we decided to further filter the laser
by only considering a laser beam to represent an obstacle if it has a set of neigh-
boring laser beams. Figure 5 shows an example of this scenario. This increased
the efficiency significantly, resulting in a robust and fast navigation solution.

(a) Raw laser data (b) Filtered laser data (c) Resulting costmap

Fig. 5: Laser filtering process [5]. 5a shows the unfiltered laser readings and the
position of the robot in the bottom left. 5b depicts the filtered laser. 5c is the
resulting costmap representing filtered obstacles in an overlay to the filtered and
unfiltered laser beams. Note the single laser beams in the bottom left and right
corners that are not taken into account.

4 Perception: Conveyor Belt Detection

Fig. 6: The third (ICP) stage of our
conveyor detection system. Left: Model
pointcloud (blue) roughly aligned to
scene (black) based on initial guess.
Right: After running ICP, the model is
aligned to the scene precisely.

Every production step in the RCLL
ultimately comes down to either plac-
ing or picking a workpiece on or from
a narrow conveyor belt that is only a
few millimeters wider than the work-
piece itself. Producing a medium-high
complexity product can already in-
volve 18 pick or place operations.
Since a single manipulation error is
likely to result in total loss of the
product, reliability (and therefore pre-
cision) is of paramount importance.

To achieve this, we employ a three-
stage pipeline, with the individual
stages increasing in precision, but also
in computational cost:



Stage 1 – RANSAC line fitting. This stage works on the planar pointcloud gen-
erated from the SICK TiM571 laser scanners that is also used for self-localization.
The RANSAC algorithm [3] searches the entire surroundings for line parametri-
sations that match the width of the MPS side panels. This gives us an estimate
of where to look for the conveyor belt in the 3D camera picture. This stage is
imprecise (ε . 10cm), but fast (30Hz), robust and requires no initial estimate.

Stage 2 – RANSAC plane fitting. The estimate from the previous step gives us
a rough 3D bounding box in the 3D camera picture. Here, a RANSAC searches
for a rectangular plane parametrization that roughly matches the dimensions of
the flat front face of the conveyor belt. This stage is as fast as the previous one,
and reduces the error margin ε below 5mm.

Stage 3 – ICP model fitting. This last stage uses the Iterative Closest Point
algorithm [2] to fit a model pointcloud into the scene pointcloud (cf. Figure 6).
Depending on the quality of the initial estimate, this can take up to 2 seconds,
but it brings the error margin ε down to . 2mm.

4.1 Workpiece Detection

Experience from the previous RoboCup has shown that using an infrared sensor
to confirm a successful grip is very unreliable due to the disturbance from the
3D camera’s IR pattern projector. Instead of using a special sensor we will
use the images provided by the camera to confirm a successful grip. We have
chosen YOLO [25] to handle the workpiece detection in the camera image. The
choice is based on YOLO’s real-time capabilities, which are vital to ensure a
quick gripping process. The new approach will also be evaluated regarding the
detection of workpieces on a Cap Station shelf. In this context YOLO’s ability
to reliably detect several objects in a single frame confirms our decision.

5 Behavior Engine and High-Level Reasoning

In the following we describe the reactive and deliberative layers of the behavior
components. In the reactive layer, the Lua-based behavior engine provides a set
of skills. Those skills implement simple actions for the deliberative layer, which
is realized by an agent based on the CLIPS Executive (CX) [16], a goal reasoning
framework that supports multi-agent coordination.

5.1 Lua-based Behavior Engine

In previous work we have developed the Lua-based Behavior Engine (BE) [14]. It
serves as the reactive layer to interface between the low- and high-level systems.
The BE is based on hybrid state machines (HSM). They can be depicted as a
directed graph with nodes representing states for action execution, and/or moni-
toring of actuation, perception, and internal state. Edges denote jump conditions



implemented as Boolean functions. For the active state of a state machine, all
outgoing conditions are evaluated, typically at about 15 Hz. If a condition fires,
the target node of the edge becomes the active state. A table of variables holds
information like the world model, for example storing numeric values for ob-
ject positions. It remedies typical problems of state machines like fast growing
number of states or variable data passing from one state to another. Skills are
implemented using the light-weight, extensible scripting language Lua.

5.2 Reasoning and Planning with the CLIPS Executive
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Fig. 7: The goal lifecycle with all
possible goal modes [16].

We implemented an agent based on the
CLIPS Executive (CX) [16], which uses
a goal reasoning model [1]. A goal de-
scribes objectives that the agent should
pursue and can either achieve or maintain
a condition or state. The program flow is
determined by the goal mode, which de-
scribes the current progress of the goal.
The mode transitions are determined by
the goal lifecycle, which is depicted in Fig-
ure 7. When a goal is created, it is first
formulated, merely meaning that it may
be relevant to consider. The goal reasoner
may decide to select a goal, which is then
expanded into one or multiple plans, either
by using manually specified plans or au-
tomatic planners such as PDDL planners
[15]. The reasoner then commits to one of
those plans, which is dispatched, typically
by executing a skill of the behavior en-
gine. Eventually, the goal is finished and
the outcome is evaluated to determine the
success of the goal.

The CX provides an explicit representation of the agent’s world model, and
its goals, plans, and actions. It separates the domain model with the available
operators, predicates, and known facts from the execution model, which enhances
the domain model by features that are only relevant for the execution of the plan,
e.g., exogenous actions and sensed predicates. In contrast to the approaches
described in [15,18], we currently do not use a planner, but instead use pre-
defined plans.

5.3 Multi-Robot Coordination

The CX also provides means for multi-robot coordination, in particular world
model synchronization, mutual exclusion, and resource allocation [16]. To co-
operate effectively, each agent must share (parts of) its world model with the



other agents. The CX implements world model synchronization using a shared
database [19,27]. Each robot uses a database instance for local (agent-specific)
and global (shared) world model facts. The global world model database is syn-
chronized as part of a replica set with the global instances of the other robots.

Based on the replicated database, the CX also implements a locking mech-
anism. To lock a mutex, an agent must request a majority acknowledgement,
thereby avoiding two agents to hold the same mutex. To allow mutual exclusion,
the CX specifies two actions lock and unlock, which may be used by the agent
just as any other action. Additionally, each goal may be associated with one or
multiple resources that are required in order to dispatch the goal. If one resource
is currently unavailable, the goal is rejected. Once a goal is retracted, its acquired
resources are released automatically.

6 Conclusion

In 2020, we are continuing the development of an agent based on the CLIPS
Executive, which provides an explicit goal representation including plans and
actions with their preconditions and effects. We aim to utilize the previous work
on coordination mechanisms by applying explicit reasoning based on expected
effects of other agent’s goals in order to enhance cooperative play between the
group of robots. Work on the mechanical side of the manipulator system is fo-
cused on refining the radically redesigned gripper from 2019. A core task to tackle
is the optimization of the design to reduce the complexity of the assembly while
maintaining a robust construction that yields a reliable performance. Our per-
ception setup is extended by a machine learning approach to detect workpieces
in our gripper and on the Cap Station shelf.

The website of the Carologistics RoboCup Team with further information
and media can be found at https://www.carologistics.org.
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T. Hofmann and V. Mataré were supported by the DFG grants GL-747/23-1 and
FE-1077/4-1 (respectively) on Constraint-based Transformations of Abstract Task
Plans into Executable Actions for Autonomous Robots3.

N. Limpert was partly supported by the H2020 ROSIN project under grant agreement

No 7322874 on ROS-Industrial quality assured software components.

References

1. Aha, D.W.: Goal Reasoning: Foundations, Emerging Applications, and Prospects.
AI Magazine 39(2) (Jul 2018)

2. Chen, Y., Medioni, G.: Object modelling by registration of multiple range images.
Image and vision computing 10(3), 145–155 (1992)

3 http://gepris.dfg.de/gepris/projekt/288705857
4 https://cordis.europa.eu/project/rcn/206395/factsheet/en

https://www.carologistics.org
http://gepris.dfg.de/gepris/projekt/288705857
https://cordis.europa.eu/project/rcn/206395/factsheet/en


3. Fischler, M.A., Bolles, R.C.: Random sample consensus: A paradigm for model
fitting with applications to image analysis and automated cartography. Commun.
ACM 24(6), 381–395 (Jun 1981)

4. Gat, E.: Three-layer architectures. In: Kortenkamp, D., Bonasso, R.P., Murphy, R.
(eds.) Artificial Intelligence and Mobile Robots, pp. 195–210. MIT Press (1998)
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